
Proc. KR2004 1

A Logic of Arbitrary and Indefinite Objects ∗

Stuart C. Shapiro
Department of Computer Science and Engineering

and Center for Cognitive Science
201 Bell Hall

University at Buffalo, The State University of New York
Buffalo, NY 14260-2000

shapiro@cse.buffalo.edu

Abstract

A Logic of Arbitrary and Indefinite Objects,LA, has been
developed as the logic for knowledge representation and rea-
soning systems designed to support natural language under-
standing and generation, and commonsense reasoning. The
motivations for the design ofLA are given, along with an in-
formal introduction to the theory of arbitrary and indefinite
objects, and toLA itself. LA is then formally defined by
presenting its syntax, proof theory, and semantics, which are
given via a translation scheme betweenLA and the standard
classical First-Order Predicate Logic. Soundness is proved.
The completeness theorem forLA is stated, and its proof is
sketched.LA is being implemented as the logic of SNePS 3,
the latest member of the SNePS family of Knowledge Repre-
sentation and Reasoning systems.

Introduction
Motivations
In this paper, we present a logic of arbitrary and indefi-
nite objects,LA, which we have developed as the logic for
knowledge representation and reasoning systems designed
to support natural language understanding and generation,
and commonsense reasoning.LA is based on, but is differ-
ent from, both the logic of arbitrary objects of Fine (1983;
1985a; 1985b) and the ANALOG logic of Ali and Shapiro
(Ali 1993; 1994; Ali & Shapiro 1993).LA is being im-
plemented as the logic of SNePS 3 (Shapiro 2000a), the
latest member of the SNePS family (Shapiro & Rapaport
1992; Shapiro 2000c; Shapiro & The SNePS Implementa-
tion Group 2002). SNePS is a propositional semantic net-
work in which every well-formed subexpression is a node
in a network whose labeled arcs indicate the argument posi-
tion of the node at the head of the arc within the functional
term which is the node at the tail end of the arc. In fact,
since we view propositions as first-class members of the do-
main, every node, including nodes that denote propositions,
is a term (Shapiro 1993). Nevertheless, we feel that the first
step in developingLA as a logic for SNePS 3 is to specify
its syntax, semantics, and proof theory, and the best way to
do that is with a “normal” linear syntax. We hope that others
will find this version ofLA interesting and useful on its own,
outside of its intended home in SNePS 3.
∗Copyright c© 2004, Stuart C. Shapiro. All rights reserved.

In the remainder of this section, we will give some mo-
tivations for the development ofLA, and compare it with
some previously developed logics. This will necessitate dis-
playing some formulas ofLA before its syntax has been de-
fined.

One motivation is the desire for a uniform syntax in the
representation of differently quantified sentences. We would
like sentences of the formx is whiteto uniformly be repre-
sented by formulas of the formWhite(x)for ease of retrieval
from a knowledge base. For example, for the questionWhat
is white?it should be as easy to retrieveevery sheepor some
sheepas it is to retrieveDolly. The standard classical first-
order logic, henceforth referred to asLS , does not provide
a uniform representation. A logic with restricted quantifiers
(LR) does use a uniform representation for universally and
existentially quantified sentences, but it is not the same rep-
resentation as for ground sentences. This is illustrated in
Table 1

A second motivation1 is the desire to simplify the problem
of translating between natural language sentences and sen-
tences of a formal knowledge representation, by maintaining
the locality of natural language phrases. InLS andLR, natu-
ral language phrases are split into several pieces, as they are
in Minimal Recursion Semantics (MRS) (Copestakeet al.
1999). However, inLA as well as in logics using “logical
form” (Allen 1995, p. 228) or “complex-terms” (Jurafsky &
Martin 2000, p. 555) (LC) they are left intact. For exam-
ple, in Table 2, pieces of formulas derived from the phrasea
trunk are underlined. Even thoughLC maintains locality of
phrases, it is an intermediate form, leaving quantifier scope
undecided, which is appropriate for its intended use repre-
senting the semantics of isolated sentences, whereasLA is a
final form with quantifier scope indicated, which is appropri-
ate for its intended use in a knowledge base representing the
integrated beliefs of some natural-language understanding
agent. MRS provides a representation both for ambiguous,
but constrained, quantifier scopes, and for fully-scoped sen-
tences. The MRS entry in Table 2 is a fully-scoped version.
Of course, the importance of this motivating factor depends
on the details of the parsing and generation techniques used.

1As pointed out by an anonymous reviewer, the first and second
motivations are very similar to those of Richard Montague for his
treatment of quantification (see(Thomason 1974)). The author is
happy to acknowledge his intellectual debt to Montague.

Proc. KR2004 2

English LS LR LA
Dolly is White. White(Dolly) White(Dolly) White(Dolly)
Every sheep is white. ∀x (Sheep(x)⇒White(x)) ∀xSheepWhite(x) White(any x Sheep(x))
Some sheep is white. ∃x (Sheep(x) ∧White(x)) ∃xSheepWhite(x) White(some x () Sheep(x))

Table 1: Some English sentences and their formalizations in several logics, illustrating uniform and non-uniform syntax for
different quantifiers. See Table 3 for the abbreviations of the logics.

Language Sentence
LS ∀x (Elephant(x)⇒ ∃y(Trunk(y) ∧Has(x , y)))
LR ∀xElephant∃yTrunk Has(x , y)

MRS h0: every(x,h1,h2), h1: elephant(x), h2: some(y,h3,h4), h3: trunk(y), h4: has(x,y)
LC Has(〈∀xElephant(x)〉, 〈∃yTrunk(y)〉)
LA Has(any x Elephant(x), some y (x) Trunk(y))

Table 2:Every elephant has a trunkin several logical languages. The underlined portion of each entry is the translation ofa
trunk.

A third motivation is the prospect of representing and rea-
soning about generalized quantifiers such asmany, most,
few,andboth (Barwise & Cooper 1981), which is not done
in LS orLR, but can be done in MRS,LC , orLA2

A fourth motivation is the use of structure sharing, in
which terms that occur in multiple places in one sentence,
or, more importantly, in multiple sentences in one knowl-
edge base, are stored only once (Referred to as the “Unique-
ness Principle” in, for example, (Shapiro & Rapaport 1992,
§3.4). See also (Sekar, Ramakrishnan, & Voronkov 2001)
for the importance of such structure sharing in automated
deduction). Since quantified terms inLA are “conceptually
complete” (Ali & Shapiro 1993); they can be shared without
losing their identity. Such complete terms do not exist inLS
or LR, nor even inLC where non-disambiguated scoping
information is in the context surrounding the occurrences of
complex-terms. It has been suggested3 that MRS provides
for structure sharing. However, MRS is defined so that “the
MRS structure forms a tree ..., with a single root that domi-
nates every other node, and no nodes having more than one
parent” (Copestakeet al. 1999, p. 8). Indeed, the MRS tech-
nique of implicit conjunction of nodes with the same handle
would make it impossible to share only one conjunct of a
group. Nevertheless, MRS may be seen as a notational vari-
ant ofLR plus generalized quantifiers, and only a few small
syntactic changes are required to change MRS into a similar
notational variant ofLA. These changes are outlined in the
section “MRS andLA” near the end of this paper.

A fifth motivation is the desire to use a simple
form of subsumption reasoning (Woods 1991) among
terms of the logic. Subsumption reasoning is at
the heart of description logics (see,e.g., (Woods &
Schmolze 1992)). However, in description logics sub-
sumption holds among concepts, which “are understood
as unary predicates” (Brachman & Levesque 2004, p.
161). In LA, the subsumption relation may hold be-

2However, the inclusion of generalized quantifiers inLA will
not be discussed in this paper.

3by an anonymous reviewer of a version of this paper

tween quantified terms such as(any x Elephant(x)) and
(any x Albino(x) ∧ Elephant(x)).

These motivations, and which of the logics satisfy them,
are summarized in Table 3.

The differences betweenLA and Fine’s logic of arbitrary
objects are discussed in the next section. ANALOG (Ali
1993; 1994; Ali & Shapiro 1993) could not distinguish be-
tween formulas structured like∀x¬A(x) and¬∀xA(x). See
the section, “An Informal Introduction toLA”, to see how
this is corrected inLA.

Arbitrary Objects
A theory of arbitrary objects has been developed and de-
fended by Fine (1983; 1985a; 1985b), “upon the basis of
which a satisfactory explanation of the rule of universal gen-
eralization could be given” (Fine 1985b, p. vii). “An arbi-
trary object has those properties common to the individual
objects in its range” (Fine 1985b, p. 5). The idea of us-
ing such arbitrary objects has also been tried by researchers
in knowledge representation under the rubric “typical mem-
ber,” most notably by Fahlman [1979]. The general ap-
proach was analyzed in (Shapiro 1980), along with its prob-
lems and difficulties. The advantage of Fine’s approach over
the previous KR approaches is its firm logical foundation.

Fine distinguishes two classes of arbitrary objects, inde-
pendent and dependent (Fine 1985b, p. 18). An independent
arbitrary object is characterized only by its range of values.
For example,a might be the arbitrary real number. Its range
of values is all the individual real numbers. Dependent ar-
bitrary objects are characterized by their range and the other
arbitrary objects they are dependent on. For example, one
dependent arbitrary object isa3, which “assumes the valuej
when and only whena assumes the value3

√
a” (Fine 1985b,

p. 17). The phrase “characterized (only) by” is made more
precise by identity criteria. Ifa andb are independent ar-
bitrary objects, “we say thata = b iff their ranges are the
same . . . [if]a andb are dependent [arbitrary] objects. . . we
shall say thata = b iff two conditions are satisfied. The first
is that they should depend upon the same arbitrary objects
. . . The second is that they should depend upon these objects

Proc. KR2004 3

LS LR MRS LC LA
Uniform syntax No No No Yes Yes
Locality of phrases No No No Yes Yes
Final form, including quantifier scoping Yes Yes Yes No Yes
Potential for generalized quantifiers No No Yes Yes Yes
Possibility of structure sharing No No No No Yes
Subsumption relation holds on terms No No No No Yes

Table 3: A summary of which logics satisfy which motivations.LS= Standard classical first-order logic;LR= Logic with
restricted quantifiers; MRS = Minimal Recursion Semantics;LC= Logic with complex terms;LA= Logic of arbitrary and
indefinite objects.

in the same way” (Fine 1985b, p. 18).
In some ways, independent arbitrary objects correspond

to universally quantified variables in classical logics, and
dependent arbitrary objects to existentially quantified vari-
ables: “Consider the sentence∀x∃yFxy. It is true . . . if, for
a an unrestricted A-object [i.e. an arbitrary object whose
range is all the members of the domain], we can find a to-
tally defined A-objectb dependent upona alone for which
Fab is true” (Fine 1985b, p. 46).

We, however, want to detach the notion of dependency
from the notion of correspondence to existentially quanti-
fied variables in classical logics, so that we can have objects
that correspond to existentially quantified variables in clas-
sical logics that yet are not dependent on any other arbitrary
object. We want this so that, among other benefits, we can
distinguish among the formalizations of the following sen-
tences.

1. Every sheep is white.

2. Some sheep is white.

3. Every sheep is not white.

4. Some sheep is not white.

5. It is not the case that every sheep is white.

6. It is not the case that some sheep is white.

We will use “arbitrary object” for the terms that corre-
spond to universally quantified variables in classical logics,
whether or not they are dependent on other arbitrary objects.
Arbitrary objects will be used to formalize sentences (1), (3),
and (5) above. We will use “indefinite object” for the terms
that correspond to existentially quantified variables in clas-
sical logics, whether or not they are dependent on any arbi-
trary objects. (An indefinite object will never be dependent
on any indefinite objects.) Indefinite objects will be used to
formalize sentences (2), (4), and (6).

Our arbitrary and indefinite objects will have restrictions
to specify their ranges and the other arbitrary objects they
depend on. In addition, each indefinite object will have a
set (perhaps empty) of arbitrary objects on which it explic-
itly depends, called its “supporting variables”. Similarly to
Fine’s criteria, we will consider two arbitrary objects to be
identical if they have the same restrictions, and these involve
the same other arbitrary objects. However, an indefinite ob-
ject occurring in one sentence (This use of “sentence” will
be defined below.) will never be considered to be identical
to an indefinite object occurring in another sentence. This is

to make invalid such arguments as
Lucy saw some dog.
Some dog is white.
Therefore, Lucy saw some white dog.
The next section contains an informal description of some

unusual features ofLA. The section after that contains a
formal definition.

An Informal Introduction to LA
Arbitrary Objects, Binding, Capture, and Closure

We will express anarbitrary object , x, with the restric-
tion R(x), as (any x R(x)), so every sheep is whiteis
formalized4 as White((any x Sheep(x))). We will allow
the omission of redundant parentheses, so this becomes
White(any x Sheep(x)).

Similarly, every sheep is a mammalis formal-
ized as Mammal(any x Sheep(x)). In accord with
the motivation of usingLA in an integrated knowl-
edge base, if these two wffs are combined into
White(any x Sheep(x)) ∧ Mammal(any x Sheep(x))
the two occurrences of(any x Sheep(x)) are liter-
ally two occurrences of the same variable, and de-
note the same arbitrary object. The arbitrary terms
(any x Sheep(x)) and (any x Raven(x)), how-
ever, we deem to beincompatible. Therefore,
White(any x Sheep(x)) and Black(any x Raven(x))
cannot be combined into a well-formed formula un-
less one of the variables is renamed. For example,
White(any x Sheep(x)) ∧ Black(any y Raven(y)) is
well-formed, and meansevery sheep is white and every
raven is black.

When a wff with a bound variable, such as
White(any x Sheep(x)), is combined with a wff with
the same variablefree, such asMammal(x), the bind-
ing of the bound variablecaptures the free one. So
White(any x Sheep(x)) ∧Mammal(x) is the same wff as
White(any x Sheep(x)) ∧Mammal(any x Sheep(x)). If
you want to avoid this, rename all occurrences ofx in one of
the wffs. The wffWhite(any x Sheep(x)) ∧Mammal(y)

4We realize that a natural language sentence cannot be repre-
sented independently of context. Nevertheless, the practice of as-
sociating one isolated natural language sentence with one sentence
of a logic is common when defining a logic, and we shall follow
that practice in this paper.

Proc. KR2004 4

contains a bound occurrence of the variablex and a free
occurrence of the variabley.

Since bound occurrences of a variable capture free
occurrences of the same variable, and all occurrences of
a variable in a well-formed formula are compatible, all
but one occurrence of(any x R(x)) may be abbreviated
as x. Thus, White(any x Sheep(x)) ∧Mammal(x)
is officially an abbreviation of
White(any x Sheep(x)) ∧Mammal(any x Sheep(x)).

Since the bindings of bound variables take wide scope
over the wff,¬White(any x Sheep(x)) means thatevery
sheep is not white. To keep variable bindings from rising too
far, we use theclosureoperatorbx. . .c, which contains the
scope of the variablex. Thus¬bx White(any x Sheep(x))c
meansit is not the case that every sheep is white.

The binding of a closed, bound variable does not capture
free occurrences of the same variable outside its closure. So
the wff5 Odd(any x Number(x)) ∨ Even(x) which is an
abbreviation of

Odd(any x Number(x)) ∨ Even(any x Number(x))

meansevery number is odd or even, while

bx Odd(any x Number(x))c
∨bx Even(any x Number(x))c

meanseither every number is odd or every number is even.

Indefinite Objects
We will express anindefinite object, x, dependent on
the arbitrary objectsy1, . . . , yn, with the restrictionR(x),
as (some x (y1 , . . . , yn)R(x)), where n ≥ 0. Issues
of abbreviations, binding, capture, and closure apply to
indefinite variables in the same way as they do to arbitrary
variables. So a few examples should suffice for introducing
indefinite variables.
Has(any x Elephant(x), some y (x) Trunk(y)) means
every elephant has a (its own) trunk.Note that the occur-
rence ofx in the list of variables thaty depends on is an
abbreviated form of(any x Elephant(x)), and is the same
variable as is the first argument ofHas.
¬White(some x () Sheep(x)) means some sheep
is not white. ¬byWhite(some y () Sheep(y))c
means it is not the case that some sheep is white.
(any x Number(x)) < (some y (x) Number(y))
means every number has some number big-
ger than it, or, in LS ,∀x∃y(x < y).
(any x Number(x)) < (some y () Number(y)), where y
has no supporting variables, meanssome number is bigger
than every number,or, inLS ,∃y∀x(x < y).

The list of arbitrary objects an indefinite object depends
on is directly related to the arguments of Skolem functions,
and is similar to the dependency links used in several previ-
ous propositional semantic network formalisms (Ali 1993;
1994; Ali & Shapiro 1993; Kay 1973; Schubert 1976;
Schubert, Goebel, & Cercone 1979)

5These examples are based on a discussion in (Fine 1985b, p.
9ff).

Tricky Sentences
There are several classes of sentences that have been dis-
cussed in the literature as being particularly difficult to rep-
resent inLS . The most natural apparent representation of the
donkey sentence,Every farmer who owns a donkey beats it
(Geach 1962) inLS is

∀x [(Farmer(x) ∧ ∃y(Donkey(y) ∧Owns(x , y)))
⇒ Beats(x , y)]

However, the occurrence ofy in the consequent is outside
the scope of its quantifier. The only logically correct repre-
sentation of the donkey sentence inLS is

∀x∀y [(Farmer(x) ∧Donkey(y) ∧Owns(x , y))
⇒ Beats(x , y)]

but this has been objected to because it quantifies over all
farmers and all donkeys, rather than just donkey-owning
farmers. The variable capturing feature ofLA, which is as-
sociated with its intended structure-sharing representation in
SNePS 3 captures the sense of the donkey sentence correctly
as

Beats(any x Farmer(x)
∧ Owns(x , some y (x) Donkey(y)),

y)
Another tricky class of sentences are those that require

branching quantifiers, for exampleSome relative of each vil-
lager and some relative of each townsman hate each other.
(See(McCawley 1981, p. 449).) An attempt to represent
this sentence inLS is

∀v∃x∀w∃y [(Villager(v) ∧ Relative(x , v)
∧Townsman(w) ∧ Relative(y ,w))
⇒ Hates(x , y)]

However, there is no way to express this without making at
least one ofx or y dependent on bothv andw, which does
not seem warranted. InLA, this sentence can be represented
correctly as

Hate(some x (any v Villager(v)) Relative(x , v),
some y (any w Townsman(w)) Relative(y ,w))

The tricky sentences discussed in this subsection are
represented the same way in ANALOG (Ali 1993; 1994;
Ali & Shapiro 1993) as they are inLA, but ANALOG does
not have the closure operator, and so cannot distinguish
some sheep is not whitefrom it is not the case that some
sheep is whitenor every number is odd or evenfrom either
every number is odd or every number is even.

Nested Beliefs (An Aside)
There are several techniques in the KR literature for repre-
senting nested beliefs, including sentences (e.g., see(Davis
1990)) and reified propositions (e.g, see(McCarthy 1979;
Shapiro 1993) and (Copestakeet al. 1999) for an exam-
ple from the NL processing literature). We prefer the latter,
which requires a reinterpretation of the representation logic
so that predicates, logical connectives, and quantifiers are
proposition-forming rather than sentence-forming. We do
not do that reinterpretation in the bulk of this paper in order
to presentLA as a variety of a classical logic. However, we

Proc. KR2004 5

do use that reinterpretation in SNePS (e.g.,(Shapiro 1979;
Shapiro & Rapaport 1991; 1992; Rapaport, Shapiro, &
Wiebe 1997)), and representing nested beliefs was one
of our motivations for the closure operator. In this ver-
sion ofLA, Believes(Mike, Spy(some x () Person(x)))
means there is someone whom Mike believes is a spy,
Believes(Mike,¬Spy(some x () Person(x))) means
there is someone whom Mike believes is not a spy,
Believes(Mike, bxSpy(some x () Person(x))c) means
Mike believes that there is someone who is a spy,
Believes(Mike, bx¬Spy(some x () Person(x))c) means
Mike believes that there is someone who is not a spy, and
Believes(Mike,¬bxSpy(some x () Person(x))c) means
Mike believes that it is not the case that there is someone
who is a spy.

LA, The Logic of Arbitrary and Indefinite
Objects

Syntax ofLA
Atomic symbols The following sets of atomic symbols
should be disjoint:

Individual constants Such as John, Clyde, and
savanna.

Variables Such asx, y, and z, possibly with sub-
scripts, such asx1, andx2.

Determiners any andsome.
Function symbols Such as sonOf and successor ,

each with some arity, which may be shown as a su-
perscript, such assonOf 2 andsuccessor1 .

Predicate symbolsSuch asElephant and On, each
with some arity, which may be shown as a super-
script, such asElephant1 andOn2 .

Quantified terms

1. If x is a variable andA(x) is a formula containing one or
more occurrences ofx open and free, then(any x) and
(any x A(x)) are arbitrary terms.x is called the vari-
able of those arbitrary terms.any is called their deter-
miner.A(x) is called the restriction of the arbitrary term
(any x A(x)), and of the variable x.
All open occurrences of the variable of an arbitrary term
are bound in the arbitrary term, all closed occurrences re-
main closed, and all occurrences of other variables that
are free (bound, open, closed) inA(x) are free (bound,
open, closed) in(any x A(x)).

2. If x is a variable, q1, . . . , qn are variables or ar-
bitrary terms, andA(x) is a formula containing
one or more occurrences ofx open and free, then
(some x ()), (some x () A(x)), (some x (q1 , . . . , qn)),
and(some x (q1 , . . . , qn) A(x)) are indefinite terms.x
is called the variable of those indefinite terms.some is
called their determiner.A(x), where included, is called
the restriction of the indefinite term and of the variable,
andq1, . . . , qn, where included, are called the supporting
variables of the indefinite term, and of the variable.
All open occurrences of the variable in an indefinite term
are bound, All closed occurrences remain closed, and all

occurrences of other variables that are free (bound, open,
closed) in the supporting variables or the restriction of an
indefinite term are free (bound, open, closed) in the indef-
inite term.

3. arbitrary terms and indefinite terms are quantified terms,
and nothing else is.

4. The quantified terms in a set of quantified terms arecom-
patible if either

(a) No two terms have the same variable, or
(b) whenever two terms have the same variable, then: i)

they have the same determiner; ii) they have the same
restriction; and iii) if they are indefinite terms they also
have the same supporting variables.

Otherwise, they are calledincompatible.
We will say that the set,α, of quantified terms is compat-
ible with the set,β, of quantified terms if and only if the
quantified terms inα ∪ β are compatible.

Terms

1. Every individual constant is a term.

2. Every variable is a term. For every variable,x, the occur-
rence ofx in the termx is free and open.

3. Every quantified term is a term.

4. If fn is a function symbol of arityn, t1, . . . , tn are terms,
and all open quantified terms int1, . . . , tn are compatible,
thenfn(t1, . . . , tn) is a term.
Any open variables that are bound in anyti, 1 ≤ i ≤ n,
are open and bound infn(t1, . . . , tn), any other vari-
ables that are free in anyti, 1 ≤ i ≤ n are free in
fn(t1, . . . , tn), and all occurrences of variables that are
open (closed) inti, 1 ≤ i ≤ n, remain open (closed) in
fn(t1, . . . , tn).

5. Nothing else is a term.

Atomic formulas If Pn is a predicate symbol of arity
n, t1, . . . , tn are terms, and all open quantified terms in
t1, . . . , tn are compatible, thenPn(t1, . . . , tn) is an atomic
formula.

Any open variables that are bound in anyti, 1 ≤ i ≤ n,
are open and bound inPn(t1, . . . , tn), any other variables
that are free in anyti, 1 ≤ i ≤ n are free inPn(t1, . . . , tn),
and all occurrences of variables that are open (closed) in
ti, 1 ≤ i ≤ n, remain open (closed) inPn(t1, . . . , tn).

Well-formed formulas (wffs)

1. Every atomic formula is a well-formed formula.

2. If A(x) is a wff containing open bound occurrences of
the variablex, thenbxA(x)c is a wff, called the closure
of A(x) with respect tox.
All open occurrences of the variablex in A(x) are closed
in bxA(x)c. Other open (closed, bound, free) (occur-
rences of) variables inA(x) remain so inbxA(x)c. Note
that every closed occurrence of a variable is of a bound
variable.

Proc. KR2004 6

3. If A is a wff, then(¬A) is a wff.

Any (occurrences of) variables that are free (bound, open,
closed) inA are free (bound, open, closed) in(¬A).

4. If A andB are wffs, and the set of open quantified terms
in A is compatible with the set of open quantified terms
in B, then(A o B) is a wff, whereo is one of∧, ∨,⇒, or
⇔.

Any open variables that are bound inA orB are open and
bound in(A o B), any other variables that are free inA
or B are free in(A o B), and all occurrences of variables
that are open (closed) inA orB remain so in(A o B).

5. Nothing else is a well-formed formula.

Sentences

1. Any wff all of whose variables are bound is a sentence.

2. A sentence containing an open occurrence of a variable
is a generic sentence.

3. A sentence containing no open occurrence of a variable
is a non-generic sentence.

Theorem 1 If σ is the set of open quantified terms of any
sentence ofLA, or of any well-formed subformula of a
sentence ofLA, or of any term occurring in a sentence of
LA, then the quantified terms inσ are compatible.

Proof: By the definition of a sentence, all the variables in
a sentence are bound. The rest of the proof is by structural
induction on the formation of terms, atomic formulas, and
wffs.

The significance of Theorem 1 is that all the open quanti-
fied terms in a sentence or in a subformula of a sentence
that share a variable are occurrences of the same term.
The scope of the variable of a quantified term in a sen-
tence in which the variable is open is the entire sentence,
but the scope ofx in a closed formulabxA(x)c is lim-
ited to that closed formula. This observation will be rein-
forced by the translation rules in the section, “Translation
betweenLA andLS”.

Ground Expressions Any term, wff, or sentence that con-
tains no variables is called a ground term, wff, or sen-
tence, respectively.

Abbreviations

1. In any wff containing a set of bound quantified terms with
the same variable, all but one of the terms may be abbre-
viated as just the variable.

2. Parentheses may be omitted wherever they are not needed.
In particular, the outer parentheses of a quantified term
may be omitted whenever no confusion results.

3. Any quantified term of the form(any x A1(x) ∧
· · · ∧ An(x)) or (some x φ A1(x) ∧ · · · ∧ An(x))
may be abbreviated as(any x A1(x) . . . An(x)) or
(some x φ A1(x) . . . An(x)), respectively.

Examples See the section, “An Informal Introduction to
LA” for examples of sentences ofLA.

Translation betweenLA andLS
To show that the language ofLA includesLS , the standard,
classical first-order logic, and to show the correctness of the
rules presented in the section, “Proof Theory ofLA”, we
provide translations between the wffs ofLA and those of
LS .

Translation from LA to LS The translation fromLA to
LS is to be done top-down starting with sentences. No
higher numbered rule is to be applied unless no lower num-
bered rule can apply.

1. If no bound quantified term occurs inA, then
trAS(A) = A.

2. trAS(bxAc) = trAS(A), for any variablex.

3. If no open bound quantified term occurs in¬A, then
trAS(¬A) = ¬trAS(A).

4. If no open bound quantified term occurs in bothA(x)
andB(y), thentr(A(x) o B(y)) = tr(A(x)) o tr(B(y)),
whereo is one of∧, ∨,⇒, or⇔.

5. trAS(A((some x (q1 , . . . , (any qi C(qi)), . . . , qn)
B(x , q1 , . . . , qn))))

= ∀qi trAS(C(qi)
⇒ A((some x (q1 , . . . , qi−1 , qi+1 , . . . , qn)

B(x , q1 , . . . , qn)))),
whether or notB(x , q1 , . . . , qn) actually occurs, and
where the right hand side is obtained by replacing all open
occurrences of(any qi C(qi)) in A by qi.

6. trAS(A((some x ()))) = ∃x trAS(A(x)), where the
right hand side is obtained by replacing all open
occurrences of(some x ()) in A by x.

7. trAS(A((some x () B(x)))) = ∃x trAS(B(x) ∧ A(x)),
where the right hand side is obtained by replacing all
open occurrences of(some x () B(x)) in A by x.

8. trAS(A((any x))) = ∀x trAS(A(x)), where the right
hand side is obtained by replacing all open occurrences
of (any x) in A by x.

9. trAS(A((any x B(x)))) = ∀x trAS(B(x)⇒ A(x)),
where the right hand side is obtained by replacing all
open occurrences of(any x B(x)) in A by x.

Example Table 4 showstrAS applied to the branching
quantifier sentence in the section, “Tricky Sentences”, as-
suming that each rule applies to the left-most place possible.

Translation from LS to LA To translate from a wff,F ,
of LS to one,trSA(F), of LA, follow the following steps,
in order.

1. Rename the variables apart so that no two quantifiers gov-
ern the same variable.

2. Change every subformulaF of the form ∃xA(x) to
∃xA((some x (v1, . . . , vn))), where(v1, . . . , vn) is a list
of all the universally quantified variables within whose
scopeF is.

Proc. KR2004 7

Rules Result
trAS(Hate(some x (any v Villager(v)) Relative(x , v), some y (any w Townsman(w)) Relative(y ,w)))

5 ∀v trAS(Villager(v)⇒ Hate(some x () Relative(x , v), some y (any w Townsman(w)) Relative(y ,w)))
4, 1 ∀v(Villager(v)⇒ trAS(Hate(some x () Relative(x , v), some y (any w Townsman(w)) Relative(y ,w))))
5, 4, 1 ∀v(Villager(v)⇒ ∀w(Townsman(w)⇒ trAS(Hate(some x () Relative(x , v), some y () Relative(y ,w)))))
7, 4, 1 ∀v(Villager(v)⇒ ∀w(Townsman(w)⇒ ∃x (Relative(x , v) ∧ trAS(Hate(x , some y () Relative(y ,w))))))
7, 4, 1, 1 ∀v(Villager(v)⇒ ∀w(Townsman(w)⇒ ∃x (Relative(x , v) ∧ ∃y(Relative(y ,w) ∧Hate(x , y)))))

Table 4: Translation of the branching quantifier sentence from the section, “Tricky Sentences”, showing the order oftrAS rule
application, assuming that each rule applies to the left-most place possible.

3. Change every subformula of the form

∃x(A((some x (v1, . . . , vn)))
∧ B((some x (v1, . . . , vn))))

to ∃xB((some x (v1, . . . , vn) A(x))).
4. Change every subformula of the form∃xA to bxAc.
5. Change every subformula of the form∀xA(x) to
∀xA((any x)).

6. Change every subformula of the form∀x(A((any x))⇒
B((any x))) to ∀xB((any x A(x))).

7. Change every subformula of the form∀xA to bxAc.
LA More Expressive ThanLS LA is more expressive
thanLS in the sense thattrAS translates several formulas
of LA into the same formula ofLS , and there are wffs of
LA that are not in the range oftrSA. For example, the result
of the translation shown in Table 4 is also the translation of

Hate(some x (any v Villager(v),w) Relative(x , v),
some y (v , any w Townsman(w)) Relative(y ,w))

in which bothx andy depend on bothv andw. This formula
of LA, is the value oftrSA applied to the last line of Table 4.
On the other hand, there is no formula ofLS which trSA
translates into the first line of Table 4.

Semantics ofLA
Specifying an independent semantics forLA is yet to be
done. For now, we will take the meaning of any wffA of
LA to be the meaning inLS of trAS(A).

Proof Theory of LA
In this section, we present the rules of inference ofLA.6

(axiom) Γ,A `LA A.

(hyp) If Γ `LA A, thenΓ,B `LA A.

(cut) If Γ `LA A, andΓ,A `LA B, thenΓ `LA B.

(closureI) If Γ `LA A, thenΓ `LA bxAc, for any variable
x.

(closureE) If Γ `LA bxAc, for some variablex, then
Γ `LA A.
Notice thatLA does not have the subformula property that
if A ⇔ B, andC containsA as a subformula, andD is
6Although we prefer using a paraconsistent logic in our KRR

system (Shapiro 2000c), we will present this logic as a classical
logic to avoid confusing two independent issues.

exactly likeC except for havingB whereC hasA, then
C ⇔ D, at least not ifA is a closure ofB or vice versa.

(¬I) If Γ, A `LA B andΓ, A `LA ¬B thenΓ,`LA ¬A.

(¬E) If Γ `LA ¬¬A thenΓ `LA A.

(∧I) If Γ `LA A andΓ `LA B, and ifA andB have no
incompatible open arbitrary terms, and if there is no open
indefinite term inB with the same variable as an open
indefinite term inA, thenΓ `LA A ∧ B. To make this
rule applicable, all the occurrences of some variable inA
or B may be renamed to a variable that occurs in neither
A nor inB.
An example of a situation the conditions onA andB are
designed to prevent is the putative inference

from Γ `LA
Saw(Lucy , some x () Dog(x))

and Γ `LA
White(some x () Dog(x))

to Γ `LA
Saw(Lucy , some x () Dog(x))
∧White(some x () Dog(x)).

(See the section, “Arbitrary Objects”, above.)

(∧E) If Γ `LA A ∧ B, thenΓ `LA A andΓ `LA B.

(∨I) If Γ `LA A, and if all open quantified terms inA and
B are compatible, thenΓ `LA A ∨ B andΓ `LA B ∨ A.

(∨E) If Γ `LA A∨B andΓ,A `LA C andΓ,B `LA C,then
Γ `LA C.

(⇒ I) If Γ,A `LA B, and ifA andB have no incompatible
open arbitrary terms, and if there is no open indefinite
term in B with the same variable as an open indefinite
term inA, thenΓ `LA A ⇒ B

(⇒ E) If Γ `LA A, andΓ `LA A ⇒ B, thenΓ `LA B.

(⇔ I) If Γ `LA A ⇒ B, andΓ `LA B ⇒ A, thenΓ `LA
A ⇔ B.

(⇔ E) If Γ `LA A ⇔ B, andΓ `LA A, thenΓ `LA B,
and ifΓ `LA A ⇔ B, andΓ `LA B, thenΓ `LA A.

(anyI1) If Γ,A(a) `LA B(a) anda is a term that does not
occur inΓ, andx is a variable that does not occur open in
A(a) or in B(a), nor doesa occur withinA(a) or B(a)
inside the scope ofbx. . .c, thenΓ `LA B(any x A(x)),
whereB(any x A(x)) andA(x) are derived fromB(a)
andA(a), respectively, by replacing all occurrences of
a with (any x A(x)), and by replacing all open occur-
rences of indefinite terms(some y (q1, . . . , qn) C(y))
with (some y (x, q1, . . . , qn) C(y)).

Proc. KR2004 8

(anyI2) If Γ `LA B(a) anda is a term that does not oc-
cur in Γ, andx is a variable that does not occur open
in B(a), nor doesa occur withinB(a) inside the scope
of bx. . .c, then Γ `LA B(any x), whereB(any x)
is derived fromB(a), by replacing all occurrences of
a with (any x), and by replacing all open occurrences
of indefinite terms(some y (q1, . . . , qn) C(y)) with
(some y (x, q1, . . . , qn) C(y)).

(anyE1) If Γ `LA A(a) and Γ `LA B(any x A(x)),
then Γ `LA B(a), for any term a, where A(a)
and B(a) are derived fromA(x) and B(x), re-
spectively, by replacing every open occurrence of
(any x A(x)) by a, and every open occurrence
of (some y (q1, . . . , qi, x, qi+1, . . . , qn) C(y)) by
(some y (q1, . . . , qi, qi+1, . . . qn) C(y)).

(anyE2) If Γ `LA B(any x), then Γ `LA B(a),
for any term a, where B(a) is derived from
B(any x), by replacing every open occurrence
of (any x) by a, and every open occurrence of
(some y (q1, . . . , qi, x, qi+1, . . . , qn) C(y)) by
(some y (q1, . . . , qi, qi+1, . . . qn) C(y)).

(someI1) If Γ `LA A(a) ∧ B(a), for any terma, then
Γ `LA B(some x () A(x)).

(someI2) If Γ `LA B(a), for any terma,
thenΓ `LA B(some x ()).

(someE1) If Γ `LA B(some x () A(x)),
thenΓ `LA A(a)∧B(a), for any ground terma that does
not occur inΓ nor inB(some x () A(x)).

(someE2) If Γ `LA B(some x ()), thenΓ `LA B(a),
for any ground terma that does not occur inΓ nor in
B(some x ()).

Examples Table 5 shows a proof thatSome child of ev-
ery woman all of whose sons are doctors is busyfollows
from Some child of every person all of whose sons are pro-
fessionals is busy, Every woman is a person, and Every
doctor is a professional.7 Notice, in particular, the use of
(any z sonOf (z , a)) as a term in lines 4–6. In a compara-
bleLS derivation, this one use ofanyE1 would require two
uses of∀E, two uses of⇒ E, one use of⇒ I, and one use
of ∀I.

There is a 24-step proof8 of
`LA ¬bx¬A(any x B(x))c ⇔ A(some x () B(x)),

but space limits preclude presenting it here.

Soundness and Completeness ofLA
Since we are taking the meaning of any wffA of LA to be
the meaning inLS of trAS(A),

A |=LA B iff trAS(A) |=LS trAS(B)
Therefore,

Lemma 1 LA is sound if, for every sentenceA and B of
LA, if A `LA B thentrAS(A) |=LS trAS(B)

7This is based on an example in (Woods 1991).
8This is in response to a question from an anonymous reviewer

of this paper.

and, sinceLS is sound,

Lemma 2 LA is sound if, for every sentenceA and B of
LA, if A `LA B thentrAS(A) `LS trAS(B)

Theorem 2 LA is sound.

Proof: Using Lemma 2, we only need to show that, for
each rule of inference, if the translations of the antecedent
derivation(s) intoLS can be done inLS , then so also can
the the translations of the consequent derivation(s) intoLS .
These proofs are shown in Appendix A.

Theorem 3 LA is complete.

Proof: It can be shown that, for every rule of inference of
LS , the translation of the conclusion intoLA follows from
the translations of the antecedents intoLA using the rules
of inference ofLA from the section, “Proof Theory ofLA”.
Therefore, sinceLS is complete, so isLA.

Subsumption Reasoning inLA
Subsumption Reasoning inLA depends on derived rules
of inference, several of which are presented here. The
proofs of aaSubsumption and iiSubsumption are shown in
Appendix B.

(aaSubsumption)A(any x B(x)),B(any y C(y)) `LA
A(any y C(y))
For example, fromEvery mammal is hairyandEvery ele-
phant is a mammalto Every elephant is hairy.

(iiSubsumption) A(some x φ B(x)), C(any y B(y)) `LA
A(some x φ C(x))
For example, fromSome albino elephant is valuableand
Every albino elephant is an elephantto Some elephant is
valuable.

(aiSubsumption) A(any x B(x)), C(some y φ B(y)) `LA
A(some y φ C(y))
For example, fromEvery mammal is hairyand Some
mammal is a petto Some pet is hairy.

aaSubsumption and aiSubsumption are the traditional syl-
logisms called Barbara and Darii, respectively (Lejewski
1967).

MRS andLA
An MRS structure (Copestakeet al. 1999) is a triple,
〈T ,L, C〉, whereL is a bag of reified elementary predica-
tions (EPS), each labeled by a “handle”,T is the handle
of the topmost EP, andC is a bag of handle constraints,
which, in a scope-resolved MRS structure will all be han-
dle equalities. For example a scope-resolved MRS structure
for the sentenceevery nephew of some fierce aunt runs, in
which every nephewoutscopessome fierce auntis (Copes-
take et al. 1999, p. 10)〈h1, {h2 : every(x, h3, h4), h5 :
nephew(x, y), h6 : some(y, h7, h8), h9 : fierce(y), h9 :
aunt(y), h10 : run(x)}, {h1 = h2, h3 = h5, h4 =
h6, h7 = h9, h8 = h10}〉. The following changes to scope-
resolved MRS structures would make them notational vari-
ants of the SNePS 3 implementation ofLA: 1) give each EP
its own handle, but allow a handle to be equated to a set of
handles inC; make the top handle the central EP, instead of

Proc. KR2004 9

1. Γ,A `LA Woman(a) axiom;∧E
2. Γ,A `LA Person(any x Woman(x)) axiom
3. Γ,A `LA Person(a) anyE1,1,2
4. Γ,A `LA Doctor(any z sonOf (z , a)) axiom;∧E
5. Γ,A `LA Professional(any x Doctor(x)) axiom
6. Γ,A `LA Professional(any z sonOf (z , a)) anyE1,4,5
7. Γ,A `LA Person(a) ∧ Professional(any z sonOf (z , a)) ∧I,3,6
8. Γ,A `LA Busy(some x (any y Person(y) ∧ Professional(any z sonOf (z , y))) child of (x , y)) axiom
9. Γ,A `LA Busy(some x () child of (x , a)) anyE1,7,8

10. Γ `LA Busy(some x (any y Woman(y) Doctor(any z sonOf (z , y))) child of (x , y)) anyI,9

Table 5: Example proof inLA of Γ ` Busy(some x (any y Woman(y) Doctor(any z sonOf (z , y))) child of (x , y)), where
Γ stands forBusy(some x (any y Person(y) ∧ Professional(any z sonOf (z , y))) child of (x , y)),
Person(any x Woman(x)),Professional(any x Doctor(x)) andA stands forWoman(a) ∧Doctor(any z sonOf (z , a)).

a quantifier EP; eliminate the scope argument from quanti-
fier EPS; add a set of supporting variables as an argument
in a some EP; add a closure EP. After these changes the
above MRS structure would be〈h8, {h1 : every(x, h2), h3 :
nephew(x, y), h4 : some(y, {x}, h5), h6 : fierce(y), h7 :
aunt(y), h8: run(x)}, {h2 = h3, h5 = {h6, h7}}〉.

Current Implementation Status
An implementation ofLA as the logic of (the not yet re-
leased) SNePS 3 is currently under way, and partially com-
pleted.

A discussion of SNePS 3 may be found in (Shapiro
2000a). However, the actually implemented representation
of LA sentences differs in several respects from the repre-
sentation discussed in that paper.

Acknowledgments
The author greatly appreciates discussions with Jean-Pierre
Koenig, David Pierce, William Rapaport, and other mem-
bers of the University at Buffalo’s SNePS Research Group,
comments on a previous draft by Kit Fine, and the com-
ments of the anonymous reviewers of this and previous ver-
sions of this paper. This work was supported in part by
the U.S. Army Communications and Electronics Command
(CECOM) Intelligence and Information Warfare Directorate
(I2WD), Ft. Monmouth, NJ, through Contract #DAAB-07-
01-D-G001 with Booze·Allen & Hamilton.

Appendix A: Soundness Proofs
For each rule of inference ofLA, we need to show that if
the translations of the antecedent derivation(s) intoLS can
be done inLS , then so also can the the translations of the
consequent derivation(s) intoLS .

Proofs of the following rules of inference are trivial, since
they are the same as the corresponding rules of inference of
LS : axiom,hyp, cut,¬I,¬E,∧E,∨E,⇒ E,⇐ I,⇔ E.

The proofs of closureI and closureE are trivial
since, by rule 2 of the translation fromLA to LS ,
trAS(bxAc) = trAS(A),

The following rules of inference ofLA have restrictions
on the wffs. In the cases where these restrictions are satis-
fied, theLA are the same as the correspondingLS rules of
inference:∧I,∨I,⇒ I.

This leaves, as relatively non-trivial, the introduction and
elimination rules for quantified terms. ForLS proofs, I will
use the proof theory given in (Shapiro 2000b).

anyI1

Assume, without loss of generality, that no open bound
quantified term inA(a) uses the same variable as any open
bound quantified term inB(a).
trAS(Γ), trAS(A(a)) `LS trAS(B(a)) assumption
trAS(Γ) `LS trAS(A(a))⇒ trAS(B(a)) ⇒ I
trAS(Γ) `LS trAS(A(a)⇒ B(a)) trASrule 4
trAS(Γ) `LS ∀x trAS(A(x)⇒ B(x)) ∀I
trAS(Γ) `LS trAS(B(any x A(x))) trASrule 9

anyI2

trAS(Γ) `LS trAS(B(a)) assumption
trAS(Γ) `LS ∀x trAS(B(x)) ∀I
trAS(Γ) `LS trAS(B(any x)) trASrule 8

anyE1

Let (any u R1(u)) be the supporting variables of indefinite
terms(some w (u) R2(w)) and(some v (u)) that occur in
bothA(a) andB(a), and let(any y) and(any z R3(z)) be
additional arbitrary terms that occur in bothA(a) andB(a).

To save space, let
∆ = trAS(Γ), trAS(R1(c1)), trAS(R3(c3)).

trAS(Γ) `LS trAS(A(a)) assumption
trAS(Γ) `LS trAS(B(any x A(x))) assumption
∆ `LS trAS(R1(c1)) axiom
∆ `LS trAS(R3(c3)) axiom
∆ `LS trAS(A(a)) Hyp
∆ `LS trAS(B(any x A(x))) Hyp
∆ `LS ∀u∃v∃w∀y∀z[trAS(R3(z)

⇒ (R2(w) ∧ (R1(u)⇒ A′(a))))] trASrules 5–9

Proc. KR2004 10

∆ `LS ∀u∃v∃w∀y∀z[trAS(R3(z)
⇒ (R2(w) ∧ (R1(u)⇒ B′(any x A′(x)))))]

trASrules 5–9
∆ `LS ∀u∃v∃w∀y∀z[trAS(R3(z))

⇒ (trAS(R2(w)) ∧ (trAS(R1(u))
⇒ trAS(A′(a)))))] trASrule 4

∆ `LS ∀u∃v∃w∀y∀z[trAS(R3(z))
⇒ (trAS(R2(w)) ∧ (trAS(R1(u))
⇒ trAS(B′(any x A′(x))))))] trASrule 4

∆ `LS [trAS(R3(c3))⇒ (trAS(R2(c2))
∧(trAS(R1(c1))⇒ trAS(A′(a)))))] ∀E,∃E

∆ `LS [trAS(R3(c3))
⇒ (trAS(R2(c2)) ∧ (trAS(R1(c1))
⇒ trAS(B′(any x A′(x))))))] ∀E,∃E

∆ `LS trAS(A′(a)) ⇒ E,∧E,⇒ E
∆ `LS trAS(B′(any x A′(x))) ⇒ E,∧E,⇒ E
∆ `LS ∀x trAS(A′(x)⇒ B′(x)) trASrule 9
∆ `LS trAS(A′(a)⇒ B′(a)) ∀E
∆ `LS trAS(A′(a))⇒ trAS(B′(a)) trASrule 4
∆ `LS trAS(B′(a)) ⇒ E
trAS(Γ) `LS ∀u∃v∃w∀y∀z[trAS(R3(z)

⇒ (R2(w) ∧ (R1(u)⇒ B′(a))))] ⇒ I,∧I,∀I,∃I
trAS(Γ) `LS trAS(B(a)) trASrules 5–9

anyE2

trAS(Γ) `LS trAS(B(any x)) assumption
trAS(Γ) `LS ∀x trAS(B(x)) trASrule 8
trAS(Γ) `LS trAS(B(a)) ∀E

someI1

trAS(Γ) `LS trAS(A(a) ∧ B(a)) assumption
trAS(Γ) `LS ∃x trAS(A(x) ∧ B(x)) ∃ I
trAS(Γ) `LS trAS(B(some x () A(x))) trASrule 7

someI2

trAS(Γ) `LS trAS(B(a)) assumption
trAS(Γ) `LS ∃x trAS(B(x)) ∃ I
trAS(Γ) `LS trAS(B(some x ())) trASrule 6

someE1

trAS(Γ) `LS trAS(B(some x () A(x))) assumption
trAS(Γ) `LS ∃x trAS(A(x) ∧ B(x)) trASrule 7
trAS(Γ) `LS trAS(A(a) ∧ B(a)) ∃ E

someE2

trAS(Γ) `LS trAS(B(some x ())) assumption
trAS(Γ) `LS ∃x trAS(B(x)) trASrule 6
trAS(Γ) `LS trAS(B(a)) ∃ E

Appendix B: Proofs of Subsumption Rules
aaSubsumption
A(any x B(x)),B(any y C(y)) `LA B(any y C(y))axiom
A(any x B(x)),B(any y C(y)) `LA A(any x B(x))

axiom
A(any x B(x)),B(any y C(y)) `LA A(any y C(y))

anyE1

iiSubsumption
Let φ = (any z1P1(z1), . . . , any znPn(zn)),
a1, . . . , an, b be ground terms that do not oc-
cur in A(some x φ B(x)), C(any y B(y)), and
P (a) = P1(a1), . . . Pn(an), and whereA′ and B′ are
derived fromA andB, respectively, by replacing every open
occurrence of(any zi Pi(zi)) by ai, and every open occur-
rence of(some x (z1, . . . , zi−1, zi, zi+1, . . . , zn) Q(zi)) by
(some x (z1, . . . , zi−1, zi+1, . . . zn) Q(ai)).

A(some x φ B(x)), C(any y B(y)), P (a) `LA P (a)
axiom

A(some x φ B(x)), C(any y B(y)), P (a)
`LA A(some x φ B(x)) axiom

A(some x φ B(x)), C(any y B(y)), P (a)
`LA A′(some x () B′(x)) anyE1

A(some x φ B(x)), C(any y B(y)), P (a) `LA B′(b) ∧ A′(b)
someE1

A(some x φ B(x)), C(any y B(y)), P (a) `LA B′(b)
∧E

A(some x φ B(x)), C(any y B(y)), P (a)
`LA C(any y B′(y)) axiom

A(some x φ B(x)), C(any y B(y)), P (a) `LA C(b)
anyE1

A(some x φ B(x)), C(any y B(y)), P (a) `LA A′(b)
∧E

A(some x φ B(x)), C(any y B(y)), P (a) `LA C(b) ∧ A′(b)
∧I

A(some x φ B(x)), C(any y B(y)), P (a)
`LA A′(some x () C(x)) someI1

A(some x φ B(x)), C(any y B(y)) `LA A(some x φ C(x))
anyI1

References
Ali, S. S., and Shapiro, S. C. 1993. Natural language pro-
cessing using a propositional semantic network with struc-
tured variables.Minds and Machines3(4):421–451.
Ali, S. S. 1993. A structured representation for noun
phrases and anaphora. InProceedings of the Fifteenth An-
nual Conference of the Cognitive Science Society, 197–
202. Hillsdale, NJ: Lawrence Erlbaum.
Ali, S. S. 1994.A “Natural Logic” for Natural Language
Processing and Knowledge Representation. Ph.D. disser-
tation, Technical Report 94-01, Department of Computer
Science, SUNY at Buffalo, Buffalo, NY.
Allen, J. 1995. Natural Language Understanding. Red-
wood City, CA: Benjamin/Cummings, second edition.
Barwise, J., and Cooper, R. 1981. Generalized quan-
tifiers and natural language.Linguistics and Philosophy
4(2):159–219.
Brachman, R. J., and Levesque, H. J., eds. 1985.Readings
in Knowledge Representation. San Mateo, CA: Morgan
Kaufmann.
Brachman, R. J., and Levesque, H. J. 2004.Knowledge
Representation and Reasoning. San Francisco, CA: Mor-
gan Kaufmann.

Proc. KR2004 11

Copestake, A.; Flickinger, D.; Sag, I. A.; and Pollard., C.
1999. Minimal recursion semantics: an introduction. Draft
of September 1999. CSLI, Stanford University, Stanford,
CA.
Davis, E. 1990.Representations of Commonsense Knowl-
edge. San Mateo, CA: Morgan Kaufmann.
Fahlman, S. 1979a.NETL. Cambridge, MA: MIT Press.
Fahlman, S. 1979b.NETL: A System for Representing
and Using Real-World Knowledge. Cambridge, MA: MIT
Press.
Fine, K. 1983. A defence of arbitrary objects.Proceedings
of the Aristotelian SocietySupp. Vol. 58:55–77.
Fine, K. 1985a. Natural deduction and arbitrary objects.
Journal of Philosophical Logic.
Fine, K. 1985b.Reasoning with Arbitrary Objects. New
York: Blackwell.
Geach, P. T. 1962.Reference and Generality. Ithaca, NY:
Cornell University Press.
Jurafsky, D., and Martin, J. H. 2000.Speech and Language
Processing. Upper Saddle River, NJ: Prentice Hall.
Kay, M. 1973. The MIND system. In Rustin, R., ed.,Nat-
ural Language Processing. New York: Algorithmics Press.
155–188.
Kulas, J.; Fetzer, J. H.; and Rankin, T. L., eds. 1988.Phi-
losophy, Language, and Artificial Intelligence. Studies in
Cognitive Systems. Dordrecht: Kluwer.
Lehmann, F., ed. 1992.Semantic Networks in Artificial
Intelligence. Oxford: Pergamon Press.
Lejewski, C. 1967. Ancient logic. In Edwards, P., ed.,
The Encyclopedia of Philosophy, volume Four. New York:
Macmillan Publishing Co. 516.
McCarthy, J. 1979. First order theories of individual con-
cepts and propositions. In Hayes, J. E.; Michie, D.; and
Mikulich, L. I., eds.,Machine Intelligence 9. Chichester,
England: Ellis Horwood Limited. 129–147. Reprinted in
(Brachman & Levesque 1985, pp. 524–533).
McCawley, J. D. 1981.Everything that Linguists have
Always Wanted to Know about Logic∗ ∗but were ashamed
to ask. Chicago, IL: The University of Chicago Press.
Orilia, F., and Rapaport, W. J., eds. 1998.Thought, Lan-
guage, and Ontology: Essays in Memory of Hector-Neri
Castãneda. Dordrecht: Kluwer Academic Publishers.
Rapaport, W. J.; Shapiro, S. C.; and Wiebe, J. M. 1997.
Quasi-indexicals and knowledge reports.Cognitive Sci-
ence21(1):63–107. Reprinted in (Orilia & Rapaport 1998,
pp. 235–294).
Schubert, L. K.; Goebel, R. G.; and Cercone, N. J. 1979.
The structure and organization of a semantic net for com-
prehension and inference. In Findler, N. V., ed.,Associa-
tive Networks: The Representation and Use of Knowledge
by Computers. New York: Academic Press. 121–175.
Schubert, L. K. 1976. Extending the expressive power of
semantic networks.Artificial Intelligence7(2):163–198.
Sekar, R.; Ramakrishnan, I. V.; and Voronkov, A. 2001.
Term indexing. In Robinson, A., and Voronkov, A., eds.,

Handbook of Automated Reasoning II. Cambridge, MA:
MIT Press. 1853–1964.
Shapiro, S. C., and Rapaport, W. J. 1991. Models
and minds: Knowledge representation for natural-language
competence. In Cummins, R., and Pollock, J., eds.,Phi-
losophy and AI: Essays at the Interface. Cambridge, MA:
MIT Press. 215–259.
Shapiro, S. C., and Rapaport, W. J. 1992. The SNePS
family. Computers & Mathematics with Applications23(2–
5):243–275.
Shapiro, S. C., and The SNePS Implementation Group.
2002. SNePS 2.6 User’s Manual. Department of Com-
puter Science and Engineering, University at Buffalo, The
State University of New York, Buffalo, NY.
Shapiro, S. C. 1979. The SNePS semantic network pro-
cessing system. In Findler, N. V., ed.,Associative Net-
works: The Representation and Use of Knowledge by Com-
puters. New York: Academic Press. 179–203.
Shapiro, S. C. 1980. Review of (Fahlman 1979a).Ameri-
can Journal of Computational Linguistics6(3–4):183–186.
Shapiro, S. C. 1993. Belief spaces as sets of propositions.
Journal of Experimental and Theoretical Artificial Intelli-
gence (JETAI)5(2&3):225–235.
Shapiro, S. C. 2000a. An introduction to SNePS 3. In Gan-
ter, B., and Mineau, G. W., eds.,Conceptual Structures:
Logical, Linguistic, and Computational Issues, volume
1867 of Lecture Notes in Artificial Intelligence. Berlin:
Springer-Verlag. 510–524.
Shapiro, S. C. 2000b. Propositional, first-order and higher-
order logics: Basic definitions, rules of inference, and ex-
amples. In Iwánska, Ł. M., and Shapiro, S. C., eds.,Natu-
ral Language Processing and Knowledge Representation:
Language for Knowledge and Knowledge for Language.
Menlo Park, CA: AAAI Press/The MIT Press. 379–395.
Shapiro, S. C. 2000c. SNePS: A logic for natural language
understanding and commonsense reasoning. In Iwańska,
Ł., and Shapiro, S. C., eds.,Natural Language Processing
and Knowledge Representation: Language for Knowledge
and Knowledge for Language. Menlo Park, CA: AAAI
Press/The MIT Press. 175–195.
Thomason, R. H. 1974. Introduction. In Thomason, R. H.,
ed.,Formal Philosophy: Selected Papers of Richard Mon-
tague. New Haven, CT: Yale University Press. 1–69.
Woods, W. A., and Schmolze, J. G. 1992. The KL-ONE
family. Computers & Mathematics with Applications23(2–
5):133–177.
Woods, W. A. 1991. Understanding subsumption and tax-
onomy. In Sowa, J., ed.,Principles of Semantic Networks.
Los Altos, CA: Morgan Kaufmann. 45–94.

