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Abstract

A Logic of Arbitrary and Indefinite Objects 4, has been
developed as the logic for knowledge representation and rea-
soning systems designed to support natural language under-
standing and generation, and commonsense reasoning. The
motivations for the design of 4 are given, along with an in-
formal introduction to the theory of arbitrary and indefinite
objects, and tal 4 itself. L4 is then formally defined by
presenting its syntax, proof theory, and semantics, which are
given via a translation scheme betweén and the standard
classical First-Order Predicate Logic. Soundness is proved.
The completeness theorem {61 is stated, and its proof is
sketched L 4 is being implemented as the logic of SNePS 3,
the latest member of the SNePS family of Knowledge Repre-
sentation and Reasoning systems.

Introduction
Motivations

In this paper, we present a logic of arbitrary and indefi-
nite objects,L 4, which we have developed as the logic for

In the remainder of this section, we will give some mo-
tivations for the development of 4, and compare it with
some previously developed logics. This will necessitate dis-
playing some formulas of 4 before its syntax has been de-
fined.

One motivation is the desire for a uniform syntax in the
representation of differently quantified sentences. We would
like sentences of the formis whiteto uniformly be repre-
sented by formulas of the forkVhite(x)for ease of retrieval
from a knowledge base. For example, for the questitrat
is white?it should be as easy to retrieegery sheepr some
sheepas it is to retrieveDolly. The standard classical first-
order logic, henceforth referred to &s;, does not provide
a uniform representation. A logic with restricted quantifiers
(LRr) does use a uniform representation for universally and
existentially quantified sentences, but it is not the same rep-
resentation as for ground sentences. This is illustrated in
Table 1

A second motivatiohis the desire to simplify the problem
of translating between natural language sentences and sen-
tences of a formal knowledge representation, by maintaining

knowledge representation and reasoning systems designecthe locality of natural language phrases£lnand. z, natu-

to support natural language understanding and generation,

and commonsense reasoningyy is based on, but is differ-
ent from, both the logic of arbitrary objects of Fine (1983;
1985a; 1985b) and the ANALOG logic of Ali and Shapiro
(Ali 1993; 1994; Ali & Shapiro 1993). L4 is being im-
plemented as the logic of SNePS 3 (Shapiro 2000a), the
latest member of the SNePS family (Shapiro & Rapaport
1992; Shapiro 2000c; Shapiro & The SNePS Implementa-
tion Group 2002). SNePS is a propositional semantic net-
work in which every well-formed subexpression is a node

in a network whose labeled arcs indicate the argument posi-

tion of the node at the head of the arc within the functional
term which is the node at the tail end of the arc. In fact,

ral language phrases are split into several pieces, as they are
in Minimal Recursion Semantics (MRS) (Copestadteal.
1999). However, inC 4 as well as in logics using “logical
form” (Allen 1995, p. 228) or “complex-terms” (Jurafsky &
Martin 2000, p. 555)£¢) they are left intact. For exam-
ple, in Table 2, pieces of formulas derived from the phiease
trunk are underlined. Even thougb- maintains locality of
phrases, it is an intermediate form, leaving quantifier scope
undecided, which is appropriate for its intended use repre-
senting the semantics of isolated sentences, wheélgas a

final form with quantifier scope indicated, which is appropri-
ate for its intended use in a knowledge base representing the
integrated beliefs of some natural-language understanding

since we view propositions as first-class members of the do- agent. MRS provides a representation both for ambiguous,
main, every node, including nodes that denote propositions, but constrained, quantifier scopes, and for fully-scoped sen-
is a term (Shapiro 1993). Nevertheless, we feel that the first tences. The MRS entry in Table 2 is a fully-scoped version.
step in developing 4 as a logic for SNePS 3 is to specify  Of course, the importance of this motivating factor depends
its syntax, semantics, and proof theory, and the best way to on the details of the parsing and generation techniques used.
do that is with a “normal” linear syntax. We hope that others ———

will find this version ofL 4 interesting and useful on its own,
outside of its intended home in SNePS 3.

As pointed out by an anonymous reviewer, the first and second
motivations are very similar to those of Richard Montague for his
treatment of quantificatiorsée(Thomason 1974)). The author is

*Copyright(© 2004, Stuart C. Shapiro. All rights reserved. happy to acknowledge his intellectual debt to Montague.
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English Lsg Lr La

Dolly is White. White(Dolly) White(Dolly) White(Dolly)

Every sheep is white. Vz(Sheep(z) = White(x)) Vgheep White(x) White(any x Sheep(x)
Some sheep is white. 3z (Sheep(z) A White(z))  Fzgpeep White(z)  White(some z () Sheep(x))

Table 1: Some English sentences and their formalizations in several logics, illustrating uniform and non-uniform syntax for
different quantifiers. See Table 3 for the abbreviations of the logics.
Language Sentence

Ls Va(Elephant(z) = Jy(Trunk(y) A Has(z,y)))

['R vxElephantEIyTrunk HGS(I, g)

MRS hO: everyk,h1,h3, h1: elephant), h2: somey,h3h4) h3: trunk(y), h4: has(x,y

Lo Has({VzElephant(x)), (JyTrunk(y)))

La Has(any x Elephant(z), some y (z) Trunk(y))

Table 2: Every elephant has a trurik several logical languages. The underlined portion of each entry is the translation of

trunk

A third motivation is the prospect of representing and rea-
soning about generalized quantifiers suchnay, most,
few, andboth (Barwise & Cooper 1981), which is not done
in Lg or L, but can be done in MR, or £ 42

A fourth motivation is the use of structure sharing, in
which terms that occur in multiple places in one sentence,
or, more importantly, in multiple sentences in one knowl-

tween quantified terms such &sny x Elephant(z)) and
(any x Albino(x) A Elephant(z)).

These motivations, and which of the logics satisfy them,
are summarized in Table 3.

The differences betweef)4 and Fine’s logic of arbitrary
objects are discussed in the next section. ANALOG (Ali
1993; 1994; Ali & Shapiro 1993) could not distinguish be-

edge base, are stored only once (Referred to as the “Unique-tween formulas structured likér—A(x) and—-vz A(x). See

ness Principle” in, for example, (Shapiro & Rapaport 1992,
§3.4). See also (Sekar, Ramakrishnan, & Voronkov 2001)
for the importance of such structure sharing in automated
deduction). Since quantified terms Al are “conceptually
complete” (Ali & Shapiro 1993); they can be shared without
losing their identity. Such complete terms do not exist in

or L, nor even inLc where non-disambiguated scoping
information is in the context surrounding the occurrences of
complex-terms. It has been suggestdtht MRS provides
for structure sharing. However, MRS is defined so that “the
MRS structure forms a tree ..., with a single root that domi-

the section, “An Informal Introduction t@ 4", to see how
this is corrected irC 4.

Arbitrary Objects

A theory of arbitrary objects has been developed and de-
fended by Fine (1983; 1985a; 1985b), “upon the basis of
which a satisfactory explanation of the rule of universal gen-
eralization could be given” (Fine 1985b, p. vii). “An arbi-
trary object has those properties common to the individual
objects in its range” (Fine 1985b, p. 5). The idea of us-
ing such arbitrary objects has also been tried by researchers

nates every other node, and no nodes having more than onein knowledge representation under the rubric “typical mem-

parent” (Copestaket al. 1999, p. 8). Indeed, the MRS tech-
nigue of implicit conjunction of nodes with the same handle
would make it impossible to share only one conjunct of a

group. Nevertheless, MRS may be seen as a notational vari-

ant of L g plus generalized quantifiers, and only a few small

ber,” most notably by Fahlman [1979]. The general ap-
proach was analyzed in (Shapiro 1980), along with its prob-
lems and difficulties. The advantage of Fine’s approach over
the previous KR approaches is its firm logical foundation.
Fine distinguishes two classes of arbitrary objects, inde-

syntactic changes are required to change MRS into a similar pendent and dependent (Fine 1985b, p. 18). An independent

notational variant of 4. These changes are outlined in the
section “MRS and_ 4" near the end of this paper.

A fifth motivation is the desire to use a simple
form of subsumption reasoning (Woods 1991) among
terms of the logic. Subsumption reasoning is at
the heart of description logics (see.g., (Woods &
Schmolze 1992)). However, in description logics sub-
sumption holds among concepts, which “are understood
as unary predicates” (Brachman & Levesque 2004, p.
161). In L4, the subsumption relation may hold be-

2However, the inclusion of generalized quantifiersdn will
not be discussed in this paper.
3by an anonymous reviewer of a version of this paper

arbitrary object is characterized only by its range of values.
For exampleq might be the arbitrary real number. Its range
of values is all the individual real numbers. Dependent ar-
bitrary objects are characterized by their range and the other
arbitrary objects they are dependent on. For example, one
dependent arbitrary objectd$, which “assumes the valye
when and only when assumes the valuga” (Fine 1985b,

p. 17). The phrase “characterized (only) by” is made more
precise by identity criteria. It andb are independent ar-
bitrary objects, “we say that = b iff their ranges are the
same ...[ifla andb are dependent [arbitrary] objects. .. we
shall say that: = b iff two conditions are satisfied. The first

is that they should depend upon the same arbitrary objects
... The second is that they should depend upon these objects
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Ls Lr MRS Lo La
Uniform syntax No No No Yes Yes
Locality of phrases No No No Yes Yes
Final form, including quantifier scoping Yes Yes Yes No Yes
Potential for generalized quantifiers No No Yes Yes Yes
Possibility of structure sharing No No No No Yes
Subsumption relation holds on terms No No No No Yes

Table 3: A summary of which logics satisfy which motivationSg= Standard classical first-order logi€;z= Logic with
restricted quantifiers; MRS = Minimal Recursion Semanti€g= Logic with complex terms, 4= Logic of arbitrary and

indefinite objects.

in the same way” (Fine 1985b, p. 18).

In some ways, independent arbitrary objects correspond
to universally quantified variables in classical logics, and
dependent arbitrary objects to existentially quantified vari-
ables: “Consider the senten¢e3y Fxy. Itis true .. .if, for
a an unrestricted A-object.p. an arbitrary object whose
range is all the members of the domain], we can find a to-
tally defined A-object dependent upon alone for which
Fabis true” (Fine 1985b, p. 46).

We, however, want to detach the notion of dependency
from the notion of correspondence to existentially quanti-
fied variables in classical logics, so that we can have objects
that correspond to existentially quantified variables in clas-
sical logics that yet are not dependent on any other arbitrary
object. We want this so that, among other benefits, we can
distinguish among the formalizations of the following sen-
tences.

1. Every sheep is white.

to make invalid such arguments as

Lucy saw some dog.

Some dog is white.

Therefore, Lucy saw some white dog.

The next section contains an informal description of some
unusual features of 4. The section after that contains a
formal definition.

An Informal Introductionto L4
Arbitrary Objects, Binding, Capture, and Closure

We will express ararbitrary object, x, with the restric-

tion R(z), as (any = R(z)), so every sheep is whites

formalized as White((any = Sheep(z))). We will allow

the omission of redundant parentheses, so this becomes

W hite(any x Sheep(z)).
Similarly, every sheep

ized as Mammal(any x Sheep(x)).

is a mammais formal-
In accord with

2. Some sheep is white. the motivation of usingL, in an integrated knowl-
3. Every sheep is not white. edge base, if these two wffs are combined into

: . White(any x Sheep(x)) A Mammal(any x Sheep(z))

4. Some sheep is not white. the two occurrences of(any = Sheep(z)) are liter-
5. Itis not the case that every sheep is white. ally two occurrences of the same variable, and de-
6. Itis not the case that some sheep is white. note the same arbitrary object. The arbitrary terms

. o - (any « Sheep(z)) and (any ¢ Raven(z)), how-

We will use “arbitrary object” for the terms that corre- ever, we deem to beincompatible. Therefore,

spond to universally quantified variables in classical logics,
whether or not they are dependent on other arbitrary objects.
Arbitrary objects will be used to formalize sentences (1), (3),
and (5) above. We will use “indefinite object” for the terms
that correspond to existentially quantified variables in clas-
sical logics, whether or not they are dependent on any arbi-
trary objects. (An indefinite object will never be dependent
on any indefinite objects.) Indefinite objects will be used to
formalize sentences (2), (4), and (6).

Our arbitrary and indefinite objects will have restrictions
to specify their ranges and the other arbitrary objects they
depend on. In addition, each indefinite object will have a
set (perhaps empty) of arbitrary objects on which it explic-
itly depends, called its “supporting variables”. Similarly to
Fine’s criteria, we will consider two arbitrary objects to be
identical if they have the same restrictions, and these involve
the same other arbitrary objects. However, an indefinite ob-
ject occurring in one sentence (This use of “sentence” will
be defined below.) will never be considered to be identical
to an indefinite object occurring in another sentence. This is

White(any x Sheep(z)) and Black(any ¢ Raven(zx))
cannot be combined into a well-formed formula un-
less one of the variables is renamed. For example,
White(any x Sheep(x)) A Black(any y Raven(y)) is
well-formed, and meansvery sheep is white and every
raven is black.

When a wff with a bound variable, such as
White(any x Sheep(z)), is combined with a wff with
the same variabléree, such asMammal(z), the bind-
ing of the bound variablecaptures the free one. So
White(any x Sheep(x)) A Mammal(z) is the same wif as
White(any x Sheep(x)) A Mammal(any © Sheep(z)). If
you want to avoid this, rename all occurrences of one of
the wffs. The wif White(any x Sheep(z)) A Mammal(y)

“We realize that a natural language sentence cannot be repre-
sented independently of context. Nevertheless, the practice of as-
sociating one isolated natural language sentence with one sentence
of a logic is common when defining a logic, and we shall follow
that practice in this paper.
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contains a bound occurrence of the variabland a free Tricky Sentences

occurrence of the variablge _ There are several classes of sentences that have been dis-
Since bound occurrences of a variable capture free cyssed in the literature as being particularly difficult to rep-
occurrences of the same variable, and all occurrences of resenting. The most natural apparent representation of the

a variable in a well-formed formula are Compatib_|e, all donkey Sentencévery farmer who owns a donkey beats it
but one occurrence ofany z R(z)) may be abbreviated  (Geach 1962)irCg is

as z. Thus, White(any x Sheep(x)) A Mammal(x
s " oty e Abbieviation - of  Vel(Farmer(a) £ 3y(Donkey(y) n Ouns(a, 1))

White(any x Sheep(x)) A Mammal(any © Sheep(z)). = Beats(z, y)]
Since the bindings of bound variables take wide scope However, the occurrence @fin the consequent is outside
over the wff, = White(any = Sheep(z)) means thaevery the scope of its quantifier. The only logically correct repre-

sheep is not whiteTo keep variable bindings from rising too  sentation of the donkey sentencedp is
far, we use thelosure operator|,. . .|, which contains the Vavul(F A Donk AO
scope of the variable. Thus—|, White(any x Sheep(z))] g y[;agzgg) y)] onkey(v) 1 Ouns ()
meandt is not the case that every sheep is white. . ’ . , »
The binding of a closed, bound variable does not capture but this has been objected to because it quantifies over all

free occurrences of the same variable outside its closure. Sofarmers and all donkeys, rather than just donkey-owning
the wif® Odd(any = Number(z)) V Even(z) which is an farmers. The variable capturing feature®f, which is as-
abbreviation of sociated with its intended structure-sharing representation in

SNePS 3 captures the sense of the donkey sentence correctly
Odd(any & Number(z)) V Even(any x Number(z)) as

Beats(any x Farmer(z)

meansevery number is odd or evewhile A Owns(z, some y () Donkey(y)),

|- Odd(any x Number(z))] Y)

Vs Even(any x Number(z))] Another tricky class of sentences are those that require
branching quantifiers, for exampBmme relative of each vil-
lager and some relative of each townsman hate each other.
.- . McCawley 1981, p. 449).) An attem represen
Indefinite Objects Er?iges(en?gr?ce?%s i958 ' P %)) attempt to represent
We will express anindefinite object, z, dependent on . :

the arbitrary objectg, . .., y,, with the restrictionR(x), VvﬂwaHy[(/I(;{lO(gyzzr(é)inA( ﬁe%%ﬁ%’vg y,w))
as (some = (y1,...,yn) R(z)), wheren > 0. Issues — Hates(z,y)] ’

of abbreviations, binding, capture, and closure apply to ) ’ o )
indefinite variables in the same way as they do to arbitrary However, there is no way to express this without making at
variables. So a few examples should suffice for introducing €ast one of: or y dependent on both andw, which does

meanseither every number is odd or every number is even

indefinite variables. not seem warranted. 14, this sentence can be represented
Has(any x Elephant(x), some y (z) Trunk(y)) means correctly as

every elephant has a (its own) truniote that the occur- Hate(some x (any v Villager(v)) Relative(z, v),

rence ofz in the list of variables thay depends on is an some y (any w Townsman(w)) Relative(y, w))

abbreviated form ofany = Elephant(x)), and is the same
variable as is the first argumentidfs

— White(some = () Sheep(z)) means some  sheep
is not white. - |, White(some y () Sheep(y))]
means it is not the case that some sheep is white.
(any  Number(z)) < (some y (x) Number(y))

means every number has some number big-
ger than it, or, in Lg,Vady(x < y).

The tricky sentences discussed in this subsection are
represented the same way in ANALOG (Ali 1993; 1994;
Ali & Shapiro 1993) as they are if 4, but ANALOG does
not have the closure operator, and so cannot distinguish
some sheep is not whifeom it is not the case that some
sheep is whit@or every number is odd or evdrom either
every number is odd or every number is even

(any = Number () < (some y () Number(y), whetey — Nesteq Beliefs (An Aside)
has no supporting variables, meawne number is bigger ) ) .
than every numbear, in Lg, Jy¥z(z < y). There are several techniques in the KR literature for repre-

The list of arbitrary objects an indefinite object depends S€Nting nested beliefs, including sentenceg ( se¢Davis

i i ; 1990)) and reified proposition®.g, segMcCarthy 1979;
on is directly related to the arguments of Skolem functions, )
and is similar to the dependency links used in several previ- SNapiro 1993) and (Copestake al. 1999) for an exam-
ous propositional semantic network formalisms (Ali 1993; ple from the NL processing literature). We prefer the latter,

1994; Ali & Shapiro 1993; Kay 1973: Schubert 1976: which requires a reinterpretation of the representation logic
Schubert Goebel. & Cercor;e 1979) ' " so that predicates, logical connectives, and quantifiers are

proposition-forming rather than sentence-forming. We do
*These examples are based on a discussion in (Fine 1985b, p. not do that reinterpretation in the bulk of this paper in order
off). to presentC 4 as a variety of a classical logic. However, we
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do use that reinterpretation in SNeRSq(, (Shapiro 1979;
Shapiro & Rapaport 1991; 1992; Rapaport, Shapiro, &

Wiebe 1997)), and representing nested beliefs was one

of our motivations for the closure operator. In this ver-
sion of £ 4, Believes(Mike, Spy(some x () Person(z)))
meansthere is someone whom Mike believes is a, spy
Believes(Mike,~Spy(some x () Person(z))) means

there is someone whom Mike believes is not a, spy 4.

Believes(Mike, | ;Spy(some x () Person(z))]) means
Mike believes that there is someone who is a, spy
Believes(Mike, | ;—Spy(some x () Person(z))|) means
Mike believes that there is someone who is not g apd
Believes(Mike, = |, Spy(some x () Person(z))|) means

Mike believes that it is not the case that there is someone

who is a spy.

L 4, The Logic of Arbitrary and Indefinite
Objects
Syntax of £ 4

Atomic symbols The following sets of atomic symbols
should be disjoint:

Individual constants Such as John,
savanna.

Variables Such asz, y, and z, possibly with sub-
scripts, such as;, andzs.

Determiners any andsome.

Function symbols Such assonOf and successor,
each with some arity, which may be shown as a su-
perscript, such agonOf 2 andsuccessor! .

Predicate symbols Such asFElephant and On, each
with some arity, which may be shown as a super-
script, such a®lephant’ and On”.

Quantified terms

1. If z is a variable and4(z) is a formula containing one or
more occurrences of open and free, thefuny x) and
(any = A(z)) are arbitrary terms.z is called the vari-
able of those arbitrary termsany is called their deter-
miner. A(z) is called the restriction of the arbitrary term
(any x A(x)), and of the variable x.

All open occurrences of the variable of an arbitrary term

Clyde, and

are bound in the arbitrary term, all closed occurrences re- g open and bound iR" (¢,
: , .
main closed, and all occurrences of other variables that {hat are free in any;, 1 < i < n are free NP (1, .

are free (bound, open, closed) .4(x) are free (bound,
open, closed) itany = A(z)).

. If x is a variable, ¢1,...,q, are variables or ar-
bitrary terms, and.A(x) is a formula containing
one or more occurrences aof open and free, then
(some z (), (some z () A(z)), (some z (q1,.-.,qn)),
and(some z (qi,. .., qn) A(z)) are indefinite termszx
is called the variable of those indefinite termsime is
called their determiner.A(x), where included, is called
the restriction of the indefinite term and of the variable,
andqy, ..., q,, where included, are called the supporting
variables of the indefinite term, and of the variable.

All open occurrences of the variable in an indefinite term

are bound, All closed occurrences remain closed, and all

5

occurrences of other variables that are free (bound, open,
closed) in the supporting variables or the restriction of an
indefinite term are free (bound, open, closed) in the indef-
inite term.

3. arbitrary terms and indefinite terms are quantified terms,

and nothing else is.

The quantified terms in a set of quantified termscanma-
patibleif either

(a) No two terms have the same variable, or

(b) whenever two terms have the same variable, then: i)
they have the same determiner; ii) they have the same
restriction; and iii) if they are indefinite terms they also
have the same supporting variables.

Otherwise, they are calladcompatible

We will say that the sety, of quantified terms is compat-
ible with the set, of quantified terms if and only if the
guantified terms iy U 3 are compatible.

Terms

1
2

3.
4. If f™is afunction symbol of arity,, ¢4, . .

5

. Every individual constant is a term.

. Every variable is a term. For every variabtethe occur-
rence ofx in the termz is free and open.

Every quantified term is a term.

., t, are terms,
and all open quantified termsin, . . ., ¢,, are compatible,
thenf™(ty,...,t,) is aterm.

Any open variables that are bound in ayl < i < n,
are open and bound ifi"(¢y,...,t,), any other vari-
ables that are free in ang,1 < i < n are free in
f™(t1,...,t,), and all occurrences of variables that are
open (closed) int;, 1 < i < n, remain open (closed) in

fr(t1, .. tn).

. Nothing else is a term.

Atomic formulas If P™ is a predicate symbol of arity

n, t1,...,t, are terms, and all open quantified terms in
ty,...,t, are compatible, the®" (¢4, ..., t,) is an atomic
formula.

Any open variables that are bound in agyl < i < n,
., tn), any other variables

e tn),

and all occurrences of variables that are open (closed) in

t;, 1 <i < n, remain open (closed) iff" (¢, ..

Stn).

Well-formed formulas (wffs)

1. Every atomic formula is a well-formed formula.

2

. If A(z) is a wff containing open bound occurrences of
the variabler, then|,.A(z)] is a wff, called the closure
of A(z) with respect tar.

All open occurrences of the variablein A(z) are closed

in |, A(x)]. Other open (closed, bound, free) (occur-
rences of) variables irl(x) remain so in|,.A(z)|. Note
that every closed occurrence of a variable is of a bound
variable.
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3. If Ais awff, then(—.A) is a wif. Translation betweenL 4 and Lg

Any (occurrences of) variables that are free (bound, open, To show that the language &f, includesCg, the standard,
closed) inA are free (bound, open, closed)(inA). classical first-order logic, and to show the correctness of the
rules presented in the section, “Proof Theorymf”, we

4. If d ffs, and the set of tified t X :
-l and5 are wifs, and the set of open quantified terms provide translations between the wffs 6f; and those of

in A is compatible with the set of open quantified terms
in B, then(.A o B) is a wif, whereo is one ofA, v, =, or Ls.

<. Translation from L4 to £Lg The translation fronC 4 to
Any open variables that are bounditor B are openand  Ls is to be done top-down starting with sentences. No
bound in(A o B), any other variables that are free.ih higher numbered rule is to be applied unless no lower num-
or B are free in(A o B), and all occurrences of variables ~ bered rule can apply.

that are open (closed) id or B remain so in.A 0 ). 1

. If no bound quantified term occurs 4, then

tras(A) = A.
2. tras(|zA]) = tras(A), for any variabler.

5. Nothing else is a well-formed formula.

Sentences
3. If no open bound quantified term occurs -, then
tras(—A) = ~tras(A).

4. If no open bound guantified term occurs in botfx)
andB(y), thentr(A(z) o B(y)) = tr(A(z)) o tr(B(y)),
whereo is one ofA, V, =, or <.

1. Any wff all of whose variables are bound is a sentence.

2. A sentence containing an open occurrence of a variable
is a generic sentence.

3. Asentence containing no open occurrence of a variable
is a hon-generic sentence.

Theorem 1 If o is the set of open quantified terms of any 5 tras(Al(some z g](]x’ q ’ (anyqqs)()?)(qz)), v )
sentence of’ 4, or of any well-formed subformula of a — Vagitras(Clg) ALy dn
sentence of 4, or of any term occurring in a sentence of ! N A((Some T (Gt ey Gimts Gt s e s )
L 4, then the quantified terms inare compatible. 8(357, qu’. - ’ én)z))),’ T

Proof: By the definition of a sentence, all the variables in
a sentence are bound. The rest of the proof is by structural
induction on the formation of terms, atomic formulas, and
wifs.

The significance of Theorem 1 is that all the open quanti-

fied terms in a sentence or in a subformula of a sentence
that share a variable are occurrences of the same term.

The scope of the variable of a quantified term in a sen- 7.

tence in which the variable is open is the entire sentence,

6.

but the scope of in a closed formuld ;. A(x)] is lim-
ited to that closed formula. This observation will be rein-
forced by the translation rules in the section, “Translation
betweenl 4, andLg".

Ground Expressions Any term, wif, or sentence that con-
tains no variables is called a ground term, wff, or sen-
tence, respectively.

Abbreviations

8.

whether or notB(z,qy,...,q,) actually occurs, and
where the right hand side is obtained by replacing all open
occurrences ofany ¢; C(g;)) in A by g;.

tras(A((some z ()))) = 3z tras(A(z)), where the
right hand side is obtained by replacing all open
occurrences ofsome x ()) in A by x.

tras(A((some z () B(z)))) = 3z tras(B(z) A A(x)),
where the right hand side is obtained by replacing all
open occurrences ¢gome x () B(x)) in A by «.

tras(A((any z))) = Vo tras(A(z)), where the right
hand side is obtained by replacing all open occurrences
of (any z) in A by z.

9. trus(A((any z B(z)))) = Vz tras(B(z) = A(x)),

where the right hand side is obtained by replacing all
open occurrences ¢tiny x B(x)) in A by x.

1. In any wff containing a set of bound quantified terms with Example Table 4 showsirs applied to the branching
the same variable, all but one of the terms may be abbre- quantifier sentence in the section, “Tricky Sentences”, as-
suming that each rule applies to the left-most place possible.

viated as just the variable.

2. Parentheses may be omitted wherever they are not neededTranslation from L to £, To translate from a wffF,
In particular, the outer parentheses of a quantified term Of Ls to one,trsa(F), of L4, follow the following steps,
in order.

may be omitted whenever no confusion results.

3. Any quantified term of the formlany = A;(z) A
o AN Ay(z)) or (some z ¢ Aj(x) A - A Ap(x))
may be abbreviated aGiny = A;i(z) ... A,(z)) or

(somex ¢ Ai(z) ... An(x)), respectively.

Examples See the section, “An Informal Introduction to
L 4" for examples of sentences 6fj .

1. Rename the variables apart so that no two quantifiers gov-

ern the same variable.

2. Change every subformul# of the form Jz.A(x) to

JrA((some x (v1,...,vy))), Where(vy, ..., vy,) is alist
of all the universally quantified variables within whose
SCOpeF is.
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Rules Result

tras(Hate(some z (any v Villager(v)) Relative(x,v), some y (any w Townsman(w)) Relative(y, w)))
5 Vv tras(Villager(v) = Hate(some x () Relative(z,v), some y (any w Townsman(w)) Relative(y, w)))
4,1 Yo (Villager(v) = tras(Hate(some x () Relative(z, v), some y (any w Townsman(w)) Relative(y, w))))
5,4,1 Yo (Villager(v) = Yw(Townsman(w) = tras(Hate(some z () Relative(z,v), some y () Relative(y, w)))))
7,4,1 Yo (Villager(v) = Yw(Townsman(w) = 3z (Relative(z, v) A tras(Hate(z, some y () Relative(y, w)))))
7,4,1,1 VYo(Villager(v) = Yw(Townsman(w) = Jz(Relative(z, v) A Jy(Relative(y, w) A Hate(z,y)))))

Table 4: Translation of the branching quantifier sentence from the section, “Tricky Sentences”, showing thetorderdé
application, assuming that each rule applies to the left-most place possible.

3. Change every subformula of the form

Jz(A((some x (v1,...,v,)))
A B((some x (v1,...,vn))))
to JzB((some  (v1, ..., v,) A(7))).

4. Change every subformula of the foem.A to | ,.A].

5. Change every subformula of the foriviz A(x) to
Ve A((any x)).

6. Change every subformula of the forma(A((any z)) =
B((any x))) toVaB((any x A(x))).

7. Change every subformula of the fokm.A to | ,..A].

L4 More Expressive ThanLs L4 is more expressive

than Ls in the sense thatr4s translates several formulas

of £ 4 into the same formula of s, and there are wffs of

L 4 that are not in the range ofs 4. For example, the result

of the translation shown in Table 4 is also the translation of
Hate(some z (any v Villager(v), w) Relative(z, v),

some y (v, any w Townsman(w)) Relative(y, w))
in which bothz andy depend on both andw. This formula
of L 4, is the value ofrs 4 applied to the last line of Table 4.

On the other hand, there is no formula 6§ which trs4
translates into the first line of Table 4.

Semantics ofL 4

Specifying an independent semantics 10y is yet to be
done. For now, we will take the meaning of any wAfof
L 4 to be the meaning i s of tr 45(A).

Proof Theory of £ 4

In this section, we present the rules of inference& gf®
(axiom) I' Ab,, A.

(hyp) If '+, , A, thenI', B+,, A.

(cut) fI',, A andl’, At , B, thenl' k., B.

(closurel) If T ., A, thenT ., |..A], for any variable
Z.

(closureE) If T' .,
b, A
Notice that’ 4 does not have the subformula property that
if A < B, andC containsA as a subformula, anf is

|zA], for some variabler, then

SAlthough we prefer using a paraconsistent logic in our KRR
system (Shapiro 2000c), we will present this logic as a classical
logic to avoid confusing two independent issues.

exactly likeC except for having3 whereC has.4, then
C & D, atleast not if4 is a closure o3 or vice versa.

(-I) fT,At,, Bandl',At,, ~Bthenl,F,, —A.
(—\E) If T l_LA —-—-A thenl’ |—£A A.

(NI) ¥ T +,, AandT +,, B, and if A and B have no
incompatible open arbitrary terms, and if there is no open
indefinite term inB with the same variable as an open
indefinite term inA, thenl’ ., A A B. To make this
rule applicable, all the occurrences of some variabld in
or B may be renamed to a variable that occurs in neither
AnorinB.

An example of a situation the conditions ghand B are
designed to prevent is the putative inference

from I" ¢, Saw(Lucy, some z () Dog(x))

and I' ., White(some z () Dog(z))

to I'tr, Saw(Lucy,some z () Dog(x))
A White(some z () Dog(x)).

(See the section, “Arbitrary Objects”, above.)
(ANE) f Tz, AAB,thenl' k., Aandl' ., B.

(VI) f T' ., A, and if all open quantified terms iA and
B are compatible, thefi ., AV Bandl' ., BV A.

(VE) fT'F,, AvBandl', At,, Candl, B+., Cthen
T't,, C.

(=1 IfT', At., B, and if A andB have no incompatible
open arbitrary terms, and if there is no open indefinite
term in B with the same variable as an open indefinite
terminA, thenl't-,, A= B

(=E) fT+,, A andl' b, A= B, thenl -, B.

() fT e, A= B,andl' ., B = A, thenI' .,
A& B.

(E)If'ty,, A< B,andl k., A, thenl' ., B,
andifl' ., A< B,andl’ ., B, thenl' ., A.

(anyl) If T', A(a) k2, B(a) anda is a term that does not
occur inT", andz is a variable that does not occur open in
A(a) orin B(a), nor doesa occur within.A(a) or B(a)
inside the scope of,...|, thenT ., B(any = A(z)),
whereB(any = A(x)) and.A(z) are derived from3(a)
and A(a), respectively, by replacing all occurrences of
a with (any = A(z)), and by replacing all open occur-
rences of indefinite term§some y (q1,...,qn) C(y))
with (some y (z,q1,-..,qn) C(y))
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(anylz) If I' k., B(a) anda is a term that does not oc-
cur inT', andx is a variable that does not occur open
in B(a), nor doesa occur within B(a) inside the scope
of |;...], thenT ., B(any z), where B(any x)
is derived fromB(a), by replacing all occurrences of
a with (any x), and by replacing all open occurrences
of indefinite terms(some y (q1,...,¢,) C(y)) with
(Some Yy (37, q1y-- -, Q’rb) C(y))

(anygy) f T k., A(a) andT k., Blany x A(x)),
thenT" +,., B(a), for any terma, where A(a)
and B(a) are derived from A(xz) and B(x), re-
spectively, by replacing every open occurrence of
(any = A(x)) by a, and every open occurrence
of (some y (q1,...,¢,2,Git1,---,9,) C(y)) by
(some Yy (qla s Qi Qi s - Q’n) C(y))

(anyEq) If T' ., B(any z), thenT' +,., B(a),
for any term a, where B(a) is derived from
B(any x), by replacing every open occurrence
of (any z) by a, and every open occurrence of
(Some ) (qla'"aqiaxaqi+1a"'7qn) C(y)) by
(somey (ql,...,qi, Gi+1s---qn) C(y))

(somely) If T' k., A(a) A B(a), for any terma, then
Tk, B(somez () A(x)).

(somely) If T+, B(a), for any terma,
thenI" k., B(some z ()).

(someE,) If T' k., B(some z () A(z)),
thenI" ., A(a) A B(a), for any ground terna that does
not occur inl" nor in B(some z () A(z)).

(someEy) If T’ k., B(some x ()), thenT ., B(a),
for any ground ternmu that does not occur i’ nor in
B(some z ().

Examples Table 5 shows a proof th&ome child of ev-
ery woman all of whose sons are doctors is bémjows
from Some child of every person all of whose sons are pro-
fessionals is busyEvery woman is a persorand Every
doctor is a professiondl Notice, in particular, the use of
(any z sonOf (z,a)) as aterm in lines 4-6. In a compara-
ble Ls derivation, this one use afnyE; would require two
uses ofVE, two uses o= E, one use of=- I, and one use
of V1.

There is a 24-step probof

Fr, ole—A(any z B(z))] < A(some z () B(x)),
but space limits preclude presenting it here.

Soundness and Completeness @f4
Since we are taking the meaning of any wffof £ 4 to be
the meaning inCs of tr 45(.A),

A ):LA B iff tT’Ag(.A) ':Ls tTAS(B)
Therefore,
Lemmal L4 is sound if, for every sentencé and BB of
Ly, ifA Fe, B thent’l“_As(A) |:Es tT‘As(B)

"This is based on an example in (Woods 1991).
8This is in response to a question from an anonymous reviewer
of this paper.

and, sinceCg is sound,

Lemma 2 L4 is sound if, for every sentencé and 5 of
La,if A, Bthentr4s(A) Frg tras(B)

Theorem 2 L 4 is sound.

Proof: Using Lemma 2, we only need to show that, for
each rule of inference, if the translations of the antecedent
derivation(s) intoLg can be done inCg, then so also can
the the translations of the consequent derivation(s) Ao
These proofs are shown in Appendix A.

Theorem 3 L 4 is complete.

Proof: It can be shown that, for every rule of inference of
Lg, the translation of the conclusion int, follows from
the translations of the antecedents imt@ using the rules
of inference of£ 4 from the section, “Proof Theory of 4.
Therefore, sinc& s is complete, so i€ 4.

Subsumption Reasoning inl 4

Subsumption Reasoning ii4 depends on derived rules
of inference, several of which are presented here. The
proofs of aaSubsumption and iiSubsumption are shown in
Appendix B.

(aaSubsumption) A(any = B(x)),Blany y C(y)) Fr,
Alany y C(y)) o
For example, fronEvery mammal is hairgndEvery ele-
phant is a mammab Every elephant is hairy.

(iiSubsumption) A(some = ¢ B(zx)),C(any y B(y)) Frc,
A(some x ¢ C(z))
For example, fronBome albino elephant is valualdad
Every albino elephant is an elephatSome elephant is
valuable.

(aiSubsumption) A(any = B(x)),C(somey ¢ B(y)) Fr.4
A(some y ¢ C(y))
For example, fromEvery mammal is hairyand Some
mammal is a peip Some pet is hairy.

aaSubsumption and aiSubsumption are the traditional syl-
logisms called Barbara and Darii, respectively (Lejewski
1967).

MRS and £ 4

An MRS structure (Copestaket al. 1999) is a triple,
(T,L,C), whereL is a bag of reified elementary predica-
tions (EFs), each labeled by a “handle’] is the handle

of the topmost EP, and is a bag of handle constraints,
which, in a scope-resolved MRS structure will all be han-
dle equalities. For example a scope-resolved MRS structure
for the sentencevery nephew of some fierce aunt ruims
which every nephewutscopesome fierce auns (Copes-
takeet al. 1999, p. 10)(h1,{h2 : every(z, h3,hd), h5 :
nephewz, y), h6 : some(y, h7,h8),h9 : fierce(y),h9 :
aunt(y), h10 : run(z)}, {hl h2,h3 hb,hd =

h6, h7 = h9, h8 = h10}). The following changes to scope-
resolved MRS structures would make them notational vari-
ants of the SNePS 3 implementationdf: 1) give each EP

its own handle, but allow a handle to be equated to a set of
handles irC; make the top handle the central EP, instead of
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1. T,AF,, Woman(a) axiom; AE

2. T, At Person(any x Woman(z)) axiom

3. T, At Person(a) anyE;,1,2

4. T, Atr, Doctor(any z sonOf (z, a)) axiom; AE

5. T, At Professional(any x Doctor(z)) axiom

6. T, At,, Professional(any z sonOf(z, a)) anyE,,4,5

7. T, Atr, Person(a) A Professional(any z sonOf(z, a)) N 3,6

8. T, At Busy(some z (any y Person(y) A Professional(any z sonOf (z,y))) child_of (z,y)) axiom

9. T, At Busy(some z () child_of (z, a)) anyE,,7 8
10. T+, Busy(some x (any y Woman(y) Doctor(any z sonOf (z,y))) child_of (z,y)) anyl, 9

Table 5: Example proof i 4 of I - Busy(some z (any y Woman(y) Doctor(any z sonOf (z,y))) child_of (z,y)), where
I' stands forBusy(some = (any y Person(y) A Professional(any z sonOf (z,y))) child_of (z,y)),
Person(any © Woman(z)), Professional(any x Doctor(z)) and.A stands forWoman(a) A Doctor(any z sonOf (z, a)).

a quantifier EP; eliminate the scope argument from quanti-  The following rules of inference of 4 have restrictions
fier EPs; add a set of supporting variables as an argument on the wifs. In the cases where these restrictions are satis-
in a some EP; add a closure EP. After these changes thefied, thel 4 are the same as the correspondihgrules of

above MRS structure would Bé8, {h1: everyx, h2), h3: inference:Al VI, = 1.
nephewz, y), hd : some(y, {x}, hb), h6 : fierce(y),h7 : This leaves, as relatively non-trivial, the introduction and
aunt(y), h8: run(z)}, {h2 = h3,h5 = {h6, h7}}). elimination rules for quantified terms. Fgis proofs, | will

use the proof theory given in (Shapiro 2000b).
Current Implementation Status
anyly

An implementation ofC 4 as the logic of (the not yet re-  Assume, without loss of generality, that no open bound
leased) SNePS 3 is currently under way, and partially com- quantified term in4(a) uses the same variable as any open
pleted. bound quantified term if8(a).

A discussion of SNePS 3 may be found in (Shapiro

2000a). However, the actually implemented representation ZASER7£TA515<74A(CE)¢21& ‘))S Z“‘%ﬁ (B E%)()a)) ‘:SIumptlon
of £, sentences differs in several respects from the repre- , % 7.0 ©s A9 1 B ¢ lo 4
sentation discussed in that paper. ras(D) Fes tras(Ala) = Bla)) rasruie
tras(') Frg Vo tras(A(x) = B(z)) VI
tras(I') by tras(Blany x A(x))) tr gsrule 9
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Appendix A: Soundness Proofs A = trs(T),tr as(Ry(cl)), tr as(R3(c3)).

For each rule of inference af 4, we need to show that if  t7.as(I') Fzg tras(A(a)) assumption
the translations of the antecedent derivation(s) ifitocan tras(T) Frg tras(Blany x A(z))) assumption
be done inlg, then so also can the the translations of the A b, tras(Ri(cl)) axiom
consequent derivation(s) inis. Abr, tras(Rs(c3)) axiom

Proofs of the following rules of inference are trivial, since A -, tr4s(A(a)) Hyp
they are the same as the corresponding rules of inference of A . tr 45(B(any = A(z))) Hyp
Ls: axiom, hyp, cut, -1, -E,AE,VE, = E, < I, < E. A b, VuIoIwvyvE]tras(Rs(2)

The proofs of closurel and closureE are trivial = (Ra(w) A (R1(u) = A'(a))))] trasrules 5-9

since, by rule 2 of the translation fronf, to Lg,
tras(lzA]) = tras(A),
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A b r, YuTFoTwvVyvz[tr as(Rs(2)
= (Ra(w) A (Ri(u) = B'(any z A'(2)))))]

tr 4srules 5-9
A Fr, YuTFoTwVyVz[tr as(Rs(2))
= (tT_AS (RQ (w)) A\ (tTAs(Rl (u))

= tras(A'(a)))))] tr gsrule 4
A Fr, YuTFoIwVyvz[tr 4s(Rs(2))

= (tras(Ra(w)) A (tr as(Ry(u))

= tras(B'(any x A'(x))))))]  trasrule4

Alrg [t’I“_AS(R?,(C?)))
/\(tT‘As(R1( 1
A '_ﬁs [tT’As(R3(C3))

(tT_As(R 02))
) = tras(A'(a)))))] VE,JE

= (tras(Ra(c2)) A (tTAS(R1( )

= trAS(B’(any z A'(x))))))] VE,JE
Al_ﬁs tTAS( ( )) :>E NE, = E
Abpg tras(B ( nyxA’( ) :>E7/\E,$E
Abp, Ve tras(A(z) = B'(x)) trgsrule 9
Atbrg tras(A(a) = B'(a)) VE
Abgg trAg(.A/(a)) = tras(B'(a)) tr gsrule 4
Al_ﬁs tTAS( ( )) = E

tras(T) oo VaFoIovyVz(tras(Rs(z)

= (Ro(w) A (R1(u) = B'(a))))] = I,ALVI, 31
tras(T) bFrg tras(B(a)) tr 4srules 5-9
anyE»
tras(T) by tras(Blany x)) assumption
tras(T) Feg Vo tras(B(z)) tr ssrule 8
tras(T) bFrg tras(B(a)) VE
somel;
tras(T) Frg tras(Ala) A B(a)) assumption
tras(I) Feg 3z tras(A(z) A B(x)) 1
tras(T) by tras(B(some z () A(z))) trgsrule 7
somels
tras(T) by tras(B(a)) assumption
tT‘_As(F) Frg Jo tTAs(B(x)) 1
tras(T) bFrg tras(B(some z ())) tr 4srule 6
somelE
tras(T) by tras(B(some z () A(z))) assumption
tras(I) Frg F tras(A(z) A B(z)) trasrule 7
tras(T) Frg tras(Ala) A B(a)) JE
someE-
tras(I) by tras(B(some z ())) assumption
tras(T) by 3z tras(B(z)) tr ssrule 6
tras(l) g tras(B(a)) IE

Appendix B: Proofs of Subsumption Rules
aaSubsumption
Alany x B(z)), B(any y C(y)) -z, Blany y C(y ))aXiom

Alany  B(z)), Blany y C(y)) k., Alany x B(z))
axiom

A(any z B(x)), B(any y C(y)) -z, Alany y C(y))
anyE;

10

iISubsumption
Let ¢ = (any 21 P1(21),...,any 2z, Pn(2,)),
ai,...,an,b be ground terms that do not oc-

cur in A(some x ¢ B(x)),Clany y B(y)), and
P(a) = Pi(a1),...P,(ay), and whered’ and B’ are
derived fromA andB, respectively, by replacing every open
occurrence ofany z; P;(z;)) by a;, and every open occur-

rence of(some x (z1,...,2i—1, Zi, Zit1, - - -, 2n) Q(2:)) DY
(some x (21,...,2i—1, Zi+1, - - - 2n) Q(a;)).
A(some z ¢ B(x)),Clany y B(y)), P(a) bz, Pla)
axiom
A(some z ¢ B(z)),C(any y B(y)), P(a) _
Fr, A(some x ¢ B(x)) axiom
A(some z ¢ B(x)). Clany y B(x))., P(a)
Fro, A(somez () B'(2)) anyE,

A(some z ¢ B(x)), Clany y B(y)), P(a) F 2, B/(5) AA'(D)

somekE
Fea B'(D)
AE

~—

A(some x ¢ B(x)),C(any y B(y)), P(a

A(some x ¢ B(x)),C(any y B(y)), P(a
Fea Clany y B'(y))
A(some x ¢ B(x)),C(any y B(y)), P(a

~—

axiom
I—[,A C(b)

anyE;
FL'A A/(b)

ANE
Fr, C(b) AA'(b)

AN |

~—

A(some x ¢ B(z)),C(any y B(y)), P(a

~—

A(some x ¢ B(z)),C(any y B(y)), P(a

~—

A(some x ¢ B(x)),C(any y B(y)),%
e, A(some x () C(x)) somel;
A(some x ¢ B(x)),C(any y B(y)) Fr, A(some z ¢ C(x))

anyl,
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