Lecture - XXVI
Protection & Security

Tevfik Koşar

Fall 2011
University at Buffalo
December 6th, 2011

The Security Problem

- Protecting your system resources, your files, identity, confidentiality, or privacy
- Intruders (crackers) attempt to breach security
- Threat is potential security violation
- Attack is attempt to breach security
- Attack can be accidental or malicious
- Easier to protect against accidental than malicious misuse

Security Violations

- Categories
 - Breach of confidentiality
 - Information theft, identity theft
 - Breach of integrity
 - Unauthorized modification of data
 - Breach of availability
 - Unauthorized destruction of data
 - Theft of service
 - Unauthorized use of resources
 - Denial of service
 - Crashing web servers

Security Violation Methods

- Masquerading (breach authentication)
 - Pretending to be somebody else
- Replay attack (message modification)
 - Repeating a valid data transmission (e.g., money transfer)
 - May include message modification
- Session hijacking
 - The act of intercepting an active communication session
- Man-in-the-middle attack
 - Masquerading both sender and receiver by intercepting messages

Program Threats

- Trojan Horse
 - Code segment that misuses its environment
 - Exploits mechanisms for allowing programs written by users to be executed by other users
 - Spyware, pop-up browser windows, covert channels
- Trap Door
 - A hole in the security of a system deliberately left in place by designers or maintainers
 - Specific user identifier or password that circumvents normal security procedures
- Logic Bomb
 - Program that initiates a security incident under certain circumstances
- Stack and Buffer Overflow
 - Exploits a bug in a program (overflow either the stack or memory buffers)

Program Threats (Cont.)

- Viruses
 - Code fragment embedded in legitimate program
 - Very specific to CPU architecture, operating system, applications
 - Usually borne via email or as a macro
- Visual Basic Macro to reformat hard drive
 Sub AutoOpen()
 Dim ofS
 Set ofS = CreateObject("Scripting.FileSystemObject")
 vs = Shell("c:\command.com /k format c:\", vbHide)
 End Sub
Program Threats (Cont.)

- **Virus dropper** inserts virus onto the system
- Many categories of viruses, literally many thousands of viruses:
 - **File** (appends itself to a file, changes start pointer, returns to original code)
 - **Boot** (writes to the boot sector, gets exec before OS)
 - **Macro** (runs as soon as document containing macro is opened)
 - **Source code** (modifies existing source codes to spread)
 - **Polymorphic** (changes each time to prevent detection)
 - **Encrypted** (first decrypts, then executes)
 - **Stealth** (modify parts of the system to prevent detection, eg read system call)
 - **Tunneling** (installs itself as interrupt handler or device driver)
 - **Multipartite** (can infect multiple parts of the system, eg. Memory, bootsector, files)
 - **Armored** (hidden and compressed virus files)

System and Network Threats

- **Worms** - use spawn mechanism; standalone program
 - Internet worm (Robert Morris, 1998, Cornell)
 - Exploited UNIX networking features (remote access) and bugs in finger and sendmail programs
 - **Grappling hook** program uploaded main worm program
- **Port scanning** - Automated attempt to connect to a range of ports on one or a range of IP addresses
- **Denial of Service** - Overload the targeted computer preventing it from doing any useful work
 - Distributed denial-of-service (DDOS) come from multiple sites at once

Cryptography as a Security Tool

- Broadest security tool available
 - Source and destination of messages cannot be trusted without cryptography
 - Means to constrain potential senders (sources) and / or receivers (destinations) of messages
- Based on secrets (keys)

Secure Communication over Insecure Medium

Encryption

- An encryption algorithm must provide this essential property: Given a ciphertext \(c \in C \), a computer can compute \(m \) such that \(E(k)(m) = c \) only if it possesses \(D(k) \).
 - Thus, a computer holding \(D(k) \) can decrypt ciphertexts to the plaintexts used to produce them, but a computer not holding \(D(k) \) cannot decrypt ciphertexts.
 - Since ciphertexts are generally exposed (for example, sent on the network), it is important that it be infeasible to derive \(D(k) \) from the ciphertexts
Symmetric Encryption

- Same key used to encrypt and decrypt
 - $E(k)$ can be derived from $D(k)$, and vice versa
- DES is most commonly used symmetric block-encryption algorithm (created by US Govt)
 - Encrypts a block of data at a time (64 bit messages, with 56 bit key)
- Triple-DES considered more secure (repeat DES three times with three different keys)
- Advanced Encryption Standard (AES) replaces DES
 - Key length up to 256 bits, working on 128 bit blocks
- RC4 is most common symmetric stream cipher (works on bits, not blocks), but known to have vulnerabilities
 - Encrypts/decrypts a stream of bytes (i.e. wireless transmission, web browsers)
 - Key is an input to pseudo-random-bit generator
 - Generates an infinite keystream

Secure Communication over Insecure Medium

Asymmetric Encryption

- Encryption and decryption keys are different
- Public-key encryption based on each user having two keys:
 - public key - published key used to encrypt data
 - private key - key known only to individual user used to decrypt data
- Must be an encryption scheme that can be made public without making it easy to figure out the decryption scheme
 - Most common is RSA (Rivest, Shamir, Adleman) block cipher

Asymmetric Encryption (Cont.)

- Formally, it is computationally infeasible to derive $D(k_d, N)$ from $E(k_e, N)$, and so $E(k_e, N)$ need not be kept secret and can be widely disseminated
 - $E(k_e, N)$ (or just k_e) is the public key
 - $D(k_d, N)$ (or just k_d) is the private key
 - N is the product of two large, randomly chosen prime numbers p and q (for example, p and q are 512 bits each)
 - Select k_e and k_d, where k_e satisfies $k_e k_d \mod (p-1)(q-1) = 1$
 - Encryption algorithm is $E(k_e, N)(m) = m^{k_e} \mod N$
 - Decryption algorithm is then $D(k_d, N)(c) = c^{k_d} \mod N$

Encryption and Decryption using RSA Asymmetric Cryptography

Asymmetric Encryption Example

- For example, choose $p = 7$ and $q = 13$
- We then calculate $N = pq = 7 \times 13 = 91$ and $(p-1)(q-1) = 72$
- We next select k_e relatively prime to 72 and < 72, yielding 5
- Finally, we calculate k_d such that $k_e k_d \mod 72 = 1$, yielding 29
- We now have our keys
 - Public key, $k_e, N = 5, 91$
 - Private key, $k_d, N = 29, 91$
- Encrypting the message 69 with the public key results in the ciphertext 62 ($E=69^{5} \mod 91$)
- Cyphertext can be decoded with the private key
 - Public key can be distributed in cleartext to anyone who wants to communicate with holder of public key
Cryptography (Cont.)

- Note symmetric cryptography based on transformations, asymmetric based on mathematical functions
 - Asymmetric much more compute intensive
 - Typically not used for bulk data encryption
 - Used for authentication, confidentiality, key distribution

Key Distribution

- Delivery of symmetric key is huge challenge
 - Sometimes done out-of-band, via paper documents or conversation
- Asymmetric keys can proliferate - stored on key ring
 - Even asymmetric key distribution needs care - man-in-the-middle attack

Man-in-the-middle Attack on Asymmetric Cryptography

Digital Certificates

- Proof of who or what owns a public key
- Public key digitally signed a trusted party
- Trusted party receives proof of identification from entity and certifies that public key belongs to entity
- Certificate authority are trusted party - their public keys included with web browser distributions
 - They vouch for other authorities via digitally signing their keys, and so on
 - I.e. VeriSign, Comodo etc.

Encryption Example - SSL

- Insertion of cryptography at one layer of the ISO network model (the transport layer)
- SSL - Secure Socket Layer (also called TLS)
- Cryptographic protocol that limits two computers to only exchange messages with each other
 - Very complicated, with many variations
- Used between web servers and browsers for secure communication (credit card numbers)
- The server is verified with a certificate assuring client is talking to correct server
- Asymmetric cryptography used to establish a secure session key (symmetric encryption) for bulk of communication during session
- Communication between each computer then uses symmetric key cryptography

Any Questions? Hmm.
Acknowledgements

- “Modern Operating Systems” book and supplementary material by A. Tanenbaum
- R. Doursat and M. Yuksel from UNR