CSE 421/521 - Operating Systems
Fall 2012

LECTURE - I
INTRODUCTION

Tevfik Koşar

University at Buffalo
August 28th, 2012

Contact Information

- Instructor: Prof. Tevfik Kosar
 - Office: 338J Davis Hall
 - Phone: 645-2323
 - Email: tkosar@buffalo.edu
 - Web: http://www.cse.buffalo.edu/~tkosar
 - Office hours: Wed 11:00am - noon, Thu 11:00am - noon
 (Or anytime by appointment)

- Teaching Assistants:
 - Sonali Batra <sonaliba@buffalo.edu>
 - Ying Yang <vyang25@buffalo.edu>
 - Weida Zhong <weidazho@buffalo.edu>
Recitations

• You need to attend one of the following recitations:
 - Tue 11:00am - 11:50am (Capen 260)
 - Wed 10:00am - 10:50am (Obrian 112)

• Recitations will include:
 - Clarification of some important course material
 - Solutions of some exercise questions
 - Project & HW guidance
 - Programming tips

Course Web Page

• Course web page:
 - http://www.cse.buffalo.edu/faculty/tkosar/cse421-521/
 - All lecture notes will be available online
 - As well as homework assignments, projects and other important course information

<table>
<thead>
<tr>
<th>Date</th>
<th>Lect.</th>
<th>Title</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug 28</td>
<td>1</td>
<td>Introduction</td>
<td>Read Ch.1</td>
</tr>
<tr>
<td>Aug 30</td>
<td>2</td>
<td>Operating System Structures</td>
<td></td>
</tr>
<tr>
<td>Sep 4</td>
<td>3</td>
<td>Processes</td>
<td></td>
</tr>
<tr>
<td>Sep 6</td>
<td>4</td>
<td>Threads</td>
<td></td>
</tr>
<tr>
<td>Sep 11</td>
<td>5</td>
<td>CPU Scheduling - I</td>
<td></td>
</tr>
<tr>
<td>Sep 13</td>
<td>6</td>
<td>CPU Scheduling - II</td>
<td></td>
</tr>
<tr>
<td>Sep 18</td>
<td>7</td>
<td>Project-I Discussion</td>
<td></td>
</tr>
<tr>
<td>Sep 20</td>
<td>8</td>
<td>Process Synchronization - I</td>
<td></td>
</tr>
<tr>
<td>Sep 25</td>
<td>9</td>
<td>Process Synchronization - II</td>
<td></td>
</tr>
<tr>
<td>Sep 27</td>
<td>10</td>
<td>Deadlocks – I</td>
<td></td>
</tr>
<tr>
<td>Oct 2</td>
<td>11</td>
<td>Deadlocks – II</td>
<td></td>
</tr>
<tr>
<td>Oct 4</td>
<td>12</td>
<td>Main Memory – I</td>
<td></td>
</tr>
<tr>
<td>Oct 9</td>
<td>13</td>
<td>Main Memory – II</td>
<td></td>
</tr>
<tr>
<td>Oct 11</td>
<td>14</td>
<td>Midterm Review</td>
<td></td>
</tr>
<tr>
<td>Oct 16</td>
<td>MIDTERM EXAM (Room: Davis 101)</td>
<td>9:30am-10:50am</td>
<td></td>
</tr>
<tr>
<td>Oct 18</td>
<td>15</td>
<td>Midterm Discussion</td>
<td></td>
</tr>
<tr>
<td>Oct 23</td>
<td>16</td>
<td>Project-II Discussion</td>
<td></td>
</tr>
</tbody>
</table>
Textbook: Required

Recommended Supplementary Text
Recommended Supplementary Text

Grade Components

- The end-of-semester grades will be composed of:
 - Pop Quizzes : 5% (4-5)
 - Homework : 10% (4)
 - Projects : 30% (3)
 - Midterm : 25% (1)
 - Final : 30% (1)

* You are expected to attend the classes and actively contribute via asking and/or answering questions.
Grading Scale

- Final grades will be given according to this scale:

<table>
<thead>
<tr>
<th>Point Range</th>
<th>Letter Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>95.00-100</td>
<td>A</td>
</tr>
<tr>
<td>90.00-94.99</td>
<td>A-</td>
</tr>
<tr>
<td>85.00-89.99</td>
<td>B+</td>
</tr>
<tr>
<td>80.00-84.99</td>
<td>B</td>
</tr>
<tr>
<td>75.00-79.99</td>
<td>B-</td>
</tr>
<tr>
<td>70.00-74.99</td>
<td>C+</td>
</tr>
<tr>
<td>65.00-69.99</td>
<td>C</td>
</tr>
<tr>
<td>60.00-64.99</td>
<td>C-</td>
</tr>
<tr>
<td>55.00-59.99</td>
<td>D+</td>
</tr>
<tr>
<td>50.00-54.99</td>
<td>D</td>
</tr>
<tr>
<td>0-49.99</td>
<td>F</td>
</tr>
</tbody>
</table>

* I will use “curve” to adjust grades (up) to this scale.
* There will be separate curves for graduate & undergraduate students.

Rules

- No use of laptops/phones during the lectures!
- No late homework/project submissions accepted!
- Exams will be closed book.
- You are only responsible from material covered in the class, homework, and projects.
- Academic dishonesty will be treated “very” seriously!
Passive vs Active Learning

Passive learning: learning through reading, hearing & seeing

Active learning: learning through saying and doing

After 2 weeks, we tend to remember:

Passive learning
• 10% of what we read
• 20% of what we hear
• 30% of what we see (i.e. pictures)
• 50% of what we hear and see

Active learning
• 70% of what we say
• 90% of what we say and do

How to Become an Active Learner

• Recall prior materials
• Answer a question
• Guess the solution first (even guessing wrong will help you to remember the right approach)
• Work out the next step before you have to read on
• Think of an application
• Imagine that you were the professor and think about how you would give a test on the subject material so that key concepts and results will be checked.
• Summarize a lecture, a set of homework or a lab in your own words concisely.
What Expect to Learn?

- Key Concepts of Operating Systems
 - Design, Implementation, and Optimization

- Topics will include:
 - Processes, Threads and Concurrency
 - CPU and I/O Scheduling
 - Memory and Storage Management
 - File System Structures
 - Synchronization and Deadlocks
 - Protection and Security
 - Distributed Computing & Related Issues

INTRODUCTION
What is an Operating System?

- A program that manages the computer hardware.
- An intermediary between the computer user and the computer hardware.
- Manages hardware and software resources of a computer.

Computer System Overview

- **A computer system consists of (bottom-up):**
 1. hardware
 2. firmware (BIOS)
 3. operating system
 4. system programs
 5. application programs
 6. users
Computer System Overview

1. **Hardware**
 ✓ provides basic computing resources
 ✓ CPU, memory, disk, other I/O devices

2. **Firmware (BIOS)**
 ✓ software permanently stored on chip (but upgradable)
 ✓ loads the operating system during boot

3. **Operating system**
 ✓ controls and coordinates the use of the hardware among the various application programs for the various users

4. **System programs**
 ✓ basic development tools (shells, compilers, editors, etc.)
 ✓ not strictly part of the core of the operating system

5. **Application programs**
 ✓ define the logic in which the system resources are used to solve the computing problems of the users
 ✓ database systems, video games, business programs, etc.

6. **Users**
 ✓ people, other computers, machines, etc.
Role of an Operating System

- The Silberschatz “pyramid” view

Abstract view of the components of a computer system

- The Tanenbaum “layered” view

A computer system consists of hardware, system programs and application programs
Role of an Operating System

- **The Stallings “layered & stairs” view**

 ![Diagram showing layers and views of a computer system](image)

 - End User
 - Programmer
 - Application Programs
 - Utilities
 - Operating System
 - Computer Hardware

 Layers and views of a computer system

Role of an Operating System

- **The Molay “aquarium” view**
 - the only not-layered view
 - everything must transit through the O/S or “kernel”

 ![Diagram showing connections and kernel management](image)

 - How are they all connected?
 - The kernel manages all connections

Key Point

- An operating system is a program that acts as an intermediary between users/applications and the computer hardware.

Operating System Goals

- From the user perspective:
 - Executes user programs and make solving user problems easier
 - Makes the computer system convenient to use
 - hides the messy details which must be performed
 - presents user with a virtual machine easier to use

- From the System/HW Perspective:
 - Manages the resources
 - Uses the computer hardware in an efficient manner
 - time sharing: each program gets some time to use a resource
 - resource sharing: each program gets a portion of a resource
OS Services for Users

- **Program Execution**
 - The OS loads programs and data into memory, initializes I/O devices and files, schedules the execution of programs

- **Access to I/O Devices**
 - The OS hides I/O device details from applications (direct I/O access is forbidden) and offers a simplified I/O interface

- **Controlled Access to Files & Directories**
 - The OS organizes data into files and directories, controls access to them (i.e. create, delete, read, write) and preserves their integrity

OS Services for Users

- **Communications**
 - The OS allows exchange of information between processes, which are possibly executing on different computers

- **Error Detection and Response**
 - The OS properly handles HW failures and SW errors with the least impact to running applications (i.e. terminating, retrying, or reporting)
OS Services for System/HW

- Resource Allocation
 - The OS allocates resources to multiple users and multiple jobs running at the same time
- Operation Control
 - The OS controls the execution of user programs and operations of I/O devices
- System Access
 - The OS ensures that all access to resources is protected, including authorization, conflict resolution etc.
- Accounting and Usage Statistics
 - The OS keeps performance monitoring data

Summary

- What is an OS?
- Role of an OS
- Operating System Goals
 - User View vs System View
- Operating System Services
 - For Users and HW

- Reading Assignment: Chapter 1 from Silberschatz.
Acknowledgements

- “Modern Operating Systems” book and supplementary material by A. Tanenbaum

- R. Doursat and M. Yuksel from UNR