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ABSTRACT
The end-to-end performance of TCP over wide-area may
be a major bottleneck for large-scale network-based appli-
cations. Two practical ways of increasing the TCP per-
formance at the application layer is using multiple parallel
streams and tuning the buffer size. Tuning the buffer size
can lead to significant increase in the throughput of the ap-
plication. However using multiple parallel streams gener-
ally gives better results than optimized buffer size with a
single stream. Parallel streams tend to recover from fail-
ures quicker and are more likely to steal bandwidth from
the other streams sharing the network. Moreover our ex-
periments show that proper usage of tuned buffer size with
parallel streams can even increase the throughput more than
the cases where only tuned buffers and only parallel streams
are used. In that sense, balancing a tuned buffer size and the
number of parallel streams and defining the optimal values
for those parameters are very important. In this paper, we
analyze the results of different techniques to balance TCP
buffer and parallel streams at the same time and present the
initial steps to a balanced modeling of throughput based on
these optimized parameters.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Measurement Techniques,
Modeling Techniques, Performance Attributes

General Terms
Design, Measurement, Performance
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1. INTRODUCTION
Large-scale network-based applications spaning multiple

sites over wide area networks heavily depend on the un-
derlying data transfer protocol for their data handling, and
their end-to-end performance may suffer significantly if the
underlying protocol does not use the available bandwidth
effectively. Most of the widely used transfer protocols are
based on TCP, which may sacrifice performance for the sake
of fairness. There has been considerable research on en-
hancing TCP as well as tuning its parameters for improved
performance [6, 12, 5, 14, 16, 15, 13].

In the application layer, opening parallel streams and tun-
ing the buffer size could improve the bottlenecks of TCP
performance. Parallel streams achieve high throughput by
mimicking the behavior of individual streams and get an
unfair share of the available bandwidth [23, 16, 2, 8, 6, 12,
17]. On the other hand, using too many simultaneous con-
nections reaches the network on a congestion point and af-
ter that threshold, the achievable throughput starts to drop
down . Unfortunately it is difficult to predict the point of
congestion and is variable over some parameters which are
unique in both time and domain.

There are a few studies that try to find the optimal num-
ber of streams and they are mostly based on approximate
theoretical models [7, 18, 1, 14]. They all have specific con-
straints and assumptions and can not predict the complex
behavior of throughput in existence of congestion. Also the
correctness of the proposed models are mostly proved with
simulation results only. Hacker et al. claim that the total
number of streams behaves like one giant stream that trans-
fers in capacity of total of each streams’ achievable through-
put [7]. However, this model only works for uncongested
networks. Thus, it cannot provide a feasable solution for
congested networks. Another study [5] declares the same
theory but develops a protocol which at the same time pro-
vides fairness. Dinda et al. [18] model the bandwidth of mul-
tiple streams as a partial second order equation and require
two different throughput measurement of different stream
numbers to predict the others. However, this model cannot
predict the optimal number of parallel streams necessary to
achieve best transfer throughput. Yet in another model [1],
the total throughput always shows the same characteristics
depending on the capacity of the connection as the number
of streams increases and 3 streams are sufficient to get a 90%
utilization. A new protocol study [14] that adjusts sending
rate according to calculated backlog presents a model to



predict the current number of flows which could be useful to
predict the future number of flows.

In [26], we developed a model that could predict the be-
havior of parallel stream throughput with as few as 3 data
values of throughput of different parallelism levels. The
model presented in that study could give very accurate re-
sults when the correct data points are selected. Hence we
need an algorithm to be able to select the correct data points
intelligently that at the same time will maximize the accu-
racy.

Another important parameter to be tuned for high through-
put is the TCP buffer size. It is important in the sense
that it affects the maximum number of bits that could be
on the fly before an acknowledgement is received. Usually
the buffer size is tuned as setting it to twice the value of
bandwidth× delay product (BDP) [11]. However there are
also different interpretations of bandwidth and delay con-
cepts. Most of the current buffer size tuning work either
require changes to the kernel stack [4], [22], [24], [25] or are
based on estimations made on bandwidth and delay values
in the application level [11], [21], [9], [19] .

The techniques that need modifications to the kernel [4],
[22], [24], [25] is usually based on dynamic changes to the
buffer size during the transfer based on the congestion win-
dow or flow control window parameters. The approach pre-
sented in [4] requires changes to the Kernel Stack. Based
on the current congestion window, RTT and server Read
Time, they calculate the following congestion window and
set the buffer variables based on the current and next con-
gestion window sizes. Another study [22] is also similar to
the previous where the sender buffer size is adjusted based
on the congestion window. Also the buffer memory is fairly
shared among the connections. The receive buffer is suffi-
ciently large so that it will not limit the throughput. Other
two of the competitive techniques which are widely used are
Dynamic Right-Sizing [25] and Linux 2.4 Auto-Tuning [24].
DRS is basicly a receiver -based approach where the receiver
tries to estimate the bandwidth × delay product by using
TCP packet header information and time stamps. Instead
of using static flow control windows the advertised receive
window is dynamically changes so that the sender is not lim-
ited by the flow control. On the other side Linux auto-tuning
is a memory management technique in which it increases or
decreases window size continuously based on the available
memory and socket buffer space.

The techniques that are applied in the application level
without changing the kernel and the protocol [11], [21], [9],
[19] are usually static and once the buffer size is set it does
not change throughout the transfer. In [9] the estimated
throughput of a connection is calculated based on packet
loss probability, RTT and Retransmission time out based
on the model presented in [20]. Then by using the BDP
product the buffer size is determined:

Buffersize = Estimated Throughput×RTT (1)

In [19], a series of ICMP messages are sent out and
the packet length is divided by the time difference between
two consecutive packets and by dividing them to the RTT ,
the available bandwidth of the bottleneck link is calculated.
Then by multiplying it with the RTT the buffer size is de-
termined. The study in [11] and [21] separates the buffer of
a congested path from a non-congested path. The approach
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Figure 1: Optimal Buffer Selection

they propose finds the efficient buffer size for especially non-
congested paths. In a non-congested path the optimal buffer
size is found by considering the existing cross traffic. They
propose an application layer tool called SOBAS, where in
uncongested paths it limits the buffer size so it does not
overflow the buffers of the bottleneck link and in congested
paths it does not limit the transfer window so that the buffer
size increases and becomes congestion limited. They send
periodic UDP probing packets and calculate the through-
put based on those probes. When the throughput becomes
stable for some period of time they limit the receiver buffer
according to that value.

Although the window size parameter is properly tuned,
it does not show a better performance than using parallel
streams because parallel streams recover from packet loss
more quickly rather than a buffer tuned single stream. There
are a few studies that tries to derive a mathematical model to
find the relationship between buffer size and number of par-
allel streams [10, 3]. The study in [10] models the through-
put of parallel streams as multiple continuous time models
of TCP congestion control mechanism. Another study rep-
resents the relationship between number of parallel streams,
buffer size and round trip time by a single regression equa-
tion [3]. However this equation again considers a no-loss
network. Mostly the models are derived for no-loss net-
works and they do not present an optimal value for both
parameters.

In this study, we introduce models and algorithms that
could calculate the throughput of parallel streams accurately
and define and apply techniques that will balance the buffer
size parameter with the optimal stream number to gain
highest throughput. Our experiments show that a reason-
able tuned buffer size parameter based on network sam-
plings combined with our parallel stream optimization mod-
els could give higher throughput results than the only buffer
size tuning or only parallel stream tuning techniques.

2. BUFFER SIZE OPTIMIZATION
Buffer size parameter affects maximum number of packets

that will be on the fly before the sender will wait for an
acknowledgement. If a network buffer is undersized then the
network cannot be fully utilized. However, if it is oversized



there could also be degradation in the throughput because of
packet losses hence window reductions. Usually it is tuned
manually by the application users or in the kernel level of
the operating system.

A common method to tune the buffer size is to set it to
the twice the value of bandwidth × delay product (BDP).
However this assumption of making the buffer size as large as
the twice of the BDP only holds when there is no cross traffic
along the path which is quite impossible. So it brings the
question of whether to use the capacity of the network or the
available bandwidth as well as minimum RTT or maximum
RTT. Hence there is a quite variety in the understandings
of the bandwidth and delay concepts. Below is a list of
different meanings of BDP [11]:

• BDP1: B = C ×RTTmax

• BDP2: B = C ×RTTmin

• BDP3: B = A×RTTmax

• BDP4: B = A×RTTmin

• BDP5: B = BTC ×RTTave

• BDP6: B = B∞

In the above equations B represents the buffer size, C

represents the capacity of the link, A represents the avail-
able bandwidth and RTT is the round trip time. BTC in
BDP5 is the average throughput of a bulk congestion-limited
transfer and calculated based on the congestion window size.
Finally B∞ in BDP6 is a large value which is always greater
that the congestion window so that the connection will al-
ways be congestion-limited.

Most of the tuning methods described in the literature do
the tuning in the kernel level and approaches that use appli-
cation level auto-tuning are so few [11], [21]. The methods
that use one of the above equations usually rely on tools to
take the measurement of available bandwidth and RTT and
do not consider the effect of the cross traffic and congestion
created by using large buffer sizes.

A practical way that will predict the buffer size hiding all
the details of the cross traffic and congestion factors is to
do samplings to measure the point in which the throughput
stops increasing and becomes stable. In Figure 1, the buffer
size parameter is increased exponentially and around 1MB,it
becomes stable. So rather than using a BDP related equa-
tion, finding the point that throughput does not increase is a
good choice because it will encapsulate all the related issues
regarding cross traffic and congestion created.

3. PARALLEL STREAM OPTIMIZATION
In a previous study [26], we have presented mathematical

models to predict the throughput of parallel streams. The
model called Newton’s Method model was able to predict
the peek point of throughput and hence the optimal parallel
stream number with only three data points known in the
throughput curve. If the correct data points were used the
accuracy of the model is very high. In this section we intro-
duce another model called Full Second Order model which
can increase the throughput accuracy more if the selection
of the data points is appropriate. The model derivation is
similar to the one presented in [26].

According to [7], the throughput of n streams is equal to
:

Thn <= n
MSS

RTTn

c√
pn

(2)

RTT represents round trip time, MSS represents the max-
imum segment size, p represents the packet loss rate , n is
the number of streams and c is a constant.

We define the relation among RTT , n and p with a new
variable p′

n. We assume that p′
n is related to a full second

order polynomial and the following equations are derived to
be used in this model.

p
′
n = pn

RTT 2
n

c2MSS2
= a

′
n

2 + b
′
n + c

′ (3)

According to Equation 3, we derive:

Thn =
n√
p′

n

=
n√

a′n2 + b′n + c′
(4)

In order to obtain the values of a′, b′ and c′ presented in
Equation 4, we need the throughput values of three different
parallelism levels(Thn1

, Thn2
, Thn3

) which can be obtained
from the predictions of network measurement tools or past
data transfers .

Thn1
=

n1
p

a′n2
1 + b′n + c′

(5)

Thn2
=

n2
p

a′n2
2 + b′n + c′

(6)

Thn3
=

n3
p

a′n2
3 + b′n + c′

(7)

By solving the following three equations we could place the
a′,b′ and c′ variables to Equation 4 to calculate the through-
put of any parallelism level. Based on equations 8,9 and 10,
the values of a′,b′ and c′ can be calculated easily.

a
′ =

n
2
3

T h2
n3

−
n
2
1

T h2
n1

n3−n1

−
n
2
2

T h2
n2

−
n
2
1

T h2
n1

n2−n1

n3 − n2
(8)

b
′ =

n2

2

Th2
n2

− n2

1

Th2
n1

n2 − n1
− (n1 + n2)a

′ (9)

c
′ =

n2
1

Th2
n1

− n
2
1a

′ − n1b
′ (10)

As we have mentioned before the selection of correct data
points to do the prediction is very important since it could
increase the accuracy of the model as well as prevent unlikely
behaviors of the throughput prediction curve. We could see
in Figure 2 the ineffectiveness of random data point selec-
tion strategy clearly. The graphics show the throughput of
wide area data transfers for parallel streams and three pre-
diction models are applied with randomly selected points. In
the worst case scenario, the prediction curves do not reflect
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Figure 2: Ineffective combination of Models

the characteristics of the throughput curve at all. There-
fore it is important that we should avoid a random selection
strategy and make intelligent decisions.

3.1 Delimitation of Coefficients
To figure out whether a certain combination of data points

is good or not before we try to use it to calculate the opti-
mum parallel stream numbers, we examine the coefficients
a′,b′ and c′ derived from application of the model by using
the certain combination of data points. If the coefficients
meet some requirements for each model, then we can use
this combination to calculate the optimum parallel stream
number, otherwise we need to get another combination of
data points. But we have to keep in mind that, we may still
be far from the combination that will give the most accurate
model.

In the following subsections we give out the requirements
of the coefficients that should be met so that they can cor-
rectly reflect the relationship between the throughput and
parallel stream number for the models. Since we have based
our model improvements on Dinda et al model [18], we con-
sider this model as a base while comparing our models. Also
we present a short proof for the Full Second Order Model.

3.1.1 Statements of the coefficients requirements

i)For Dinda et al model:

• a′ > 0

• b′ > 0

ii)For Newton’s Method Model:

• a′ > 0

• b′ > 0

• c′ ≥ 2

•
“

2b′

a′(c′−2)

”

1

c′

> 1

iii)For Full second order Model:

• a′ > 0

• b′ < 0

• c′ > 0

• 2c′ + b′ > 0



3.1.2 Proof of Full second order Model coefficients
requirements

In order to get a curve which increases first and then de-
creases monotonically, we should guarantee that the through-
put function is positive first and when it reaches the peak
point, becomes zero, finally decreases into negative value.

Th
′
ful =

8

>

>

>

>

>

<

>

>

>

>

>

:

b
′

2
n+c′

(a′n2+b′n+c′)
3

2

> 0 n < optnum

b
′

2
n+c′

(a′n2+b′n+c′)
3

2

= 0 n = optnum

b
′

2
n+c′

(a′n2+b′n+c′)
3

2

< 0 n > optnum

⇒

8

>

>

<

>

>

:

b′

2
n + c′ > 0 n < optnum

b′

2
n + c′ = 0 n = optnum

b′

2
n + c′ < 0 n > optnum

a′n2 + b′n + c′ > 0 ∀n ∈ N+

⇒

8

>

>

<

>

>

:

a′ > 0
b′ < 0
c′ > 0

optnum = −2c′

b′
> 1

⇒

8

>

>

<

>

>

:

a′ > 0
b′ < 0
c′ > 0
2c′ + b′ > 1

Further more, since

lim
n→∞

n√
a′n2 + b′n + c′

= lim
n→∞

2
√

a′n2 + b′n + c′

2a′n + b′

= lim
n→∞

q

a′ + b′

n
+ c′

n2

a′

=

√
a′

a′
(11)

According to the above equalities and inequalities ,we
conclude that Full second order Model increases first, then
reaches a peak value, later decreases with a lower bound√

a′

a′ .

3.2 Exponential Increasing Steps Solution
In this section we present an exponential increasing al-

gorithm that will intelligently select a sequence of stream
numbers 1, 2, 22, 23, · · · , 2k. Each time we double the num-
ber of streams until the throughput of the corresponding
stream number begins to drop or increase very slightly com-
pared with the previous one. After k+1 steps, we have k+1
data pairs that are selected intelligently.

The ExpSelection algorithm takes a set T of through-
put values for different parallelism values. These values
could be gathered from historical transfers or through in-
stant samplings performed at the time of algorithm execu-
tion. First the algorithm sets the accuracy to a predefined
small value[Line 2], and starts with a single stream and add
the stream number and the corresponding throughput values
to the output set [Lines 6-7]. The second parallelism level
is calculated as twice the value of the previous parallelism
value[Line 9]. The slop among the current and the previous
throughput values are calculated[Line 11]. If the slop is less

than the accuracy value, the loop stops and we gather our
selected set of stream number and throughput pairs (O).
ExpSelection(T )

⊲ Input: T
⊲ Output: O[i][j]
1 Begin

2 accuracy ← α

3 i← 1
4 streamno1← 1
5 throughput1← Tstreamno1

6 O[i][1] ← streamno1
7 O[i][2] ← throughput1
8 do

9 streamno2← 2 ∗ streamno1
10 throughput2← Tstreamno2

11 slop← throughput2−throughput1
streamno2−streamno1

12 i← i + 1
13 O[i][1] ← streamno2
14 O[i][2] ← throughput2
15 streamno1← streamno2
16 throughput1← throughput2
17 while slop > accuracy

18 End

Now that we have our selected set O, we apply a compar-
ison algorithm that will select the best combination based
on both the coefficient values as well as the error rates of
the selected combination. In BestCmb algorithm, we give
the selected set O, number of items in the set (n) and the
model to be applied as input. For every set of combination,
the coefficients are calculated and if they are in the effec-
tive range that we presented in previous section, the total
difference between the actual throughput and the predicted
throughput is calculated[Lines 6-8]. The combination with
the minimum err is selected and returned.
BestCmb(O,n, model)

⊲ Input: O, n

⊲ Output: a, b, c, optnum

1 Begin

2 errm ← init

3 for i← 1 to (n− 2) do

4 for j ← (i + 1) to (n− 1) do

5 for k ← (j + 1) to n do

6 a′, b′, c′ ← CalCoe(O, i, j, k, model)
7 if a′, b′, c′are effective then

8 err← 1
n

Pn

t=1 |O[t][2] − Thpre(O[t][1])|
9 if errm = init || err < errm then

10 errm ← err

11 a← a′

12 b← b′

13 c← c′

14 end if

15 end if

16 end for

17 end for

18 end for

19 optnum← CalOptStreamNo(a, b, c, model)
20 return optnum

21 End

In Figure 3, we give the experimental results of the appli-
cation of our algorithm. Two different experimental environ-
ments are used. In Figure 3.a and 3.b, the experiments are
conducted over the LONI network with 1Gbps NICs while
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Figure 3: Application of prediction models over past data transfers

in Figure 3.c and 3.d, wide area transfers are conducted over
100Mbps NICs. Our models are compared with the Dinda
et al Model [18]. We have seen that ExpSelection algorithm
combined with BestCmp algorithm gives very accurate pre-
dictions. With these algorithms we minimize the amount
of data we need to calculate an accurate prediction while
maximizing the accuracy at the same time. The cost of the
algorithm is even suitable for making instant samplings to
get the relevant data points to do an accurate optimization
rather than selecting them from past historical transfers.

4. BALANCING THE BUFFERSIZE AND
PARALLEL STREAM NUMBER

There has been a large number of studies in the area of
buffer optimization and our results in parallel stream opti-
mization are very promising. However, a good combination
of tuned buffer size and parallel streams could even give
more effective results than the single applications of these
two techniques. Unfortunately there are not any practical
work to balance the buffer size and parallel stream number to
achieve the optimal throughput. In this section, we present
the results and discussion of simulations performed on NS-2
and a set of experiments in real network environment com-
bined with the application of our models to describe the way
a balance must be set. We conducted those experiments in
LONI network with 10G NICs with a 6 ms delay. The net-
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Figure 7: Topology

work traffic of the LONI network varies a lot hence we could
see the effect of the application of both techniques better.

4.1 Simulation Results and Discussion
In our simulations we have tried different scenarios by

changing the buffer size and parallel streams. The network
topology we used is represented in Figure 7. The bottle-
neck link bandwidth is 100Mbps with a 20ms delay. The
sources(Sr0,Sr1) for our transfers and the cross traffic are
connected to the bottleneck link router R0 with 1Gbps band-
width and 5ms delay, while the destination nodes (Ds0,Ds1)
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are connected to R1 with 1Gbps bandwidth and 4ms delay.
The cross traffic flows from Sr0 to Ds0 while the actual
transfer occurs between Sr1 and Ds1.

In the first set of experiments we did not use any cross traf-
fic and changed the buffer size with parallel streams. With
a very small buffer size such as 16KB, the full utilization of
the network can be achieved only with a very large num-
ber of streams (Figure 4.a). After reaching its peak point,
the throughput starts to fall down around 45 streams. In-
creasing the buffer size into 32KB, peak throughput point
is pulled back to 22 streams. Further increasing the buffer
size to 64KB pulls the stream number further to 10 streams.
However for larger buffer sizes than 64KB the throughput
never can reach into its maximum point. The reasonable se-
lection in this case is to use a buffer size around 16KB-64KB
and parallel streams around 45-10 respectively to be able to
get the highest throughput. In this case further increasing
the buffer size does not help but causes a decrease in the
throughput achieved. The maximum throughput values can
be gained with a smaller buffer size than BDP and usage
of parallel streams. The figure shows us a wave behavior of
throughput, when we increase the buffer size and decrease
parallel streams, it eventually decreases in its peak point. In

Figure 4.b, we compare the parallel streams in vice versa.
We could see that larger stream numbers could gain more
throughput in smaller buffer sizes.

In the second set of experiments, we have done the simu-
lations in the existence of a non-congesting cross traffic of 5
streams of 64KB buffer sizes. The results were quite interest-
ing. With a very small buffer size of 16KB, the throughput
increases linearly up to the congestion point with the cross
traffic as we increase the parallel streams(Figure 5.a). The
throughput is shared between the two traffics. Further in-
creasing the buffer size will pull the peak throughput point
into smaller stream numbers. This kind of behavior is simi-
lar to the previous case where there is no cross traffic except
that the throughput is shared. In the mean time there is
no effect on the cross traffic as the parallel stream number
increases(Figure 5.b). However, further increase of paral-
lel stream number in our traffic, results in the cross traffic
to loose the fight and as the total throughput of our traffic
starts to increase, the throughput of the cross traffic starts
to decrease. The best results of throughput without affect-
ing the cross traffic in this case is 32KB-64KB buffer size
with a parallel stream range of 6-13 streams.

In the third case, there is congesting cross traffic of 12
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Figure 6: Effect of parallel streams and buffer size with a cross traffic of 12 streams with 64KB buffer size

streams with 64KB buffer sizes. Interestingly tuning the
buffer size has no effect on the cross traffic since all of curves
show the similar characteristics . As the number of streams
increases, the throughput increases as well(Figure 6.a). In
the mean time it starts to steal from the throughput of cross
traffic as it gradually decreases(Figure 6.b). The only way
to gain more throughput in this case is to open parallel
streams.

4.2 LONI Experiments
Although simulation results gave us a good idea about

the behavior of tuning buffer size and parallel streams, we
would like to see the effects of both in real network environ-
ment settings. We applied two different techniques to decide
which one is more effective in gaining maximum throughput.

4.2.1 1st Settings
In the first technique, we would like to measure the effect

of a buffer size tuning over a transfer that is already tuned
with optimal parallel stream number with our model. In
Figure 8.a, we conducted transfers with an untuned buffer
size of 256K and applied Newton’s Method Model. Accord-
ing to the model the optimal stream number that gives the
peak point is 14 and around 1.7 Gbps throughput value in
average is gained. By using this optimal stream number, we
ranged the buffer size from 128K to 4M(Figure 8.b). We
have seen that the highest throughput results were gained
again with default buffer size of 256K that we used to opti-
mize the stream number. There was not an improvement in
average throughput values.

4.2.2 2nd Settings
In the second technique, we decided to apply the proce-

dure in the reverse order. We conducted some sampling
transfers by increasing the buffer size exponentially using
only single stream. In Figure 9.a, the throughput curve
started to become stable around 1M buffer size. So we
picked up this value as the optimal buffer size value and
conducted parallel transfers with this buffer size value. The
results could be seen in Figure 9.b. We applied the Full
Second Order model this time. The optimal stream number
with the Full Second Order was 4 and we were able to get a
throughput value of more than 2 Gbps. With this technique

we were able to get a higher throughput value and opened
less number of streams for optimization and hence placed
less burden on the end system.

To better compare the techniques we present, we prepared
a comparison graphic that presents both the average and
maximum throughput results of the techniques applied. In
Figure 10, the first column represents the settings where
only single stream was used with an untuned buffer size. In
the second column, the result of an optimized throughput
of parallel streams with our models and an untuned buffer
size is presented. In the last column, the result of the second
technique is presented. Clearly the last technique was able to
get more throughput for both average and maximum values.

5. CONCLUSION
Tuning buffer size and parallel stream number are two

ways of optimizing the application level throughput. When
the correct balance is found, these techniques applied to-
gether could improve the end-to-end throughput comparing
to the single application of each technique. In this study,
we presented a mathematical model and an algorithm that
could predict the throughput of parallel streams very ac-
curately. Also we presented the steps for constructing a
balance among tuned buffer sizes and parallel streams. Our
experiments showed that the usage of parallel streams on
fairly tuned buffers could give higher throughput values and
less number of streams are needed for optimization.
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