
1

9/15/2003 1

Introduction to Web Services

Bina Ramamurthy

9/15/2003 2

Literature Surveyed

IBM’s alphaworks site:
http://www-106.ibm.com/developerworks/webservices/

http://www-3.ibm.com/software/solutions/webservices/pdf/WSCA.pdf

9/15/2003 3

Web Services
Web Services is a technology that allows for 
applications to communicate with each other 
in a standard format.
A Web Service exposes an interface that can 
be accessed through XML messaging.
A Web service uses XML based protocol to 
describe an operation or the data exchange 
with another web service. Ex: SOAP
A group of web services collaborating 
accomplish the tasks of an application. The 
architecture of such an application is called 
Service-Oriented Architecture (SOA).

9/15/2003 4

Web Services Suite of 
Protocols

A suite of protocols define the Web Services 
Technology.
These are used to describe, publish, discover, 
deliver and interact with services.
The information about the protocols is from 
IBM’s developerworks.

9/15/2003 5

WS Suite of Protocols
Messaging protocol Simple Object Access Protocol 
(SOAP) encodes messages so that they can be 
delivered over the transport protocols HTTP, SMTP or 
IIOP.
Web Services Definition Language (WSDL) is used to 
specify the service details such as name, methods 
and their parameters, and the location of the service. 
This facilitates the registering and discovery of the 
service.
For services to locate each other, the Universal 
Description, Discovery and Integration (UDDI) 
protocol defines a registry and associated protocols 
for locating and accessing services. 

9/15/2003 6

WS Suite of Protocols (contd.)
The WS-Transaction and WS-Coordination protocols 
work together to handle distributed transactions.
The Business Process Execution Language for Web 
Services (BPEL4WS) defines workflow operations. 
WS-Security is a family of protocols that cover 
authentication, authorization, federated security, 
secure communications, and delivery. 
WS-Policy is another group of protocols that define 
the policy rules behind how and when Web services 
can interact with each other.
WS-Trust defines how trust models work between 
different services. 
These protocols are for e-business. Are there any 
available for e-science?



2

9/15/2003 7

WS Stack

Network

XML-based Messaging

Service Description

Service Publication

Service Discovery

Service Flow

HTTP, FTP, MQ
Email, IIOP

SOAP

WSDL

UDDI

UDDI

WSFL

Security

M
anagem

ent

Q
uality of Service

9/15/2003 8

WS Interoperability Infrastructure

Network

XML Messaging

Service DescriptionWSDL

SOAP

HTTP

Do you see any platform or language dependencies here?

9/15/2003 9

JAX-RPC
JAX-RPC: Java API for XML-based Remote Procedure 
Call (RPC).
An API for building Web Services and Web Services 
clients.
Some important concepts in JAX-RPC are:

Type-mapping system (WSDL to Java)
Service endpoint
Exception handling
Service endpoint context
Message handlers
Service clients and service context
SOAP with attachments
Runtime services
JAX-RPC client invocation models

9/15/2003 10

Application Architecture

Weather Client

JAX-RPC Stub

JAX-RPC 
Runtime (APIs)

Transport

Weather Service
Endpoint impl

JAX-RPC Ties

JAX-RPC 
Runtime (APIs)

TransportSOAP/HTTP

9/15/2003 11

Approaches to Web Service 
Implementation

Top down: Start with WSDL and map 
onto Java
Bottom up: Start with Java and end up 
all the supporting classes needed.
We used the second approach for our 
RMI example.

9/15/2003 12

WS Development Lifecycle

Build:
Definition of service interface
Definition of service implementation

New services
Existing application into WS
Composing a WS out of other WS and applications

Source compiled and Stubs and Ties are generated.
Deploy: 

Publication of the service interface and service 
implementation to service registry or service requestor.
Deployment of executables in an execution environment.



3

9/15/2003 13

WS Development Lifecycle 
(contd.)

Run: A WS is available for invocation. 
Requestor can perform find and bind 
operation.
Manage: on going management and 
administration for security, availability, 
performance, QoS, and business 
processes.

9/15/2003 14

A Simple Example from Sun 
Microsystem

HelloWorld distributed application:
Files of interest: 

HelloIF.java: service definition interface 
HelloImpl.java: Service definition implmentation.
HelloClient.java: remote client to invoke the service.
config-interface.xml: configuration file used by 
wscompile
jaxrpc-ri.xml: a configuration file used by wsdeploy
web.xml: a deployment descriptor for the web 
component that dispatches to the service.
build.xml for running the various steps such as 
compile, wscompile, deploy etc. Used by the ant tool.
build.properties: contains the details of varuious
context roots or paths.

9/15/2003 15

Building and Deploying the 
Service

Code the service definition interface 
and implementation class.
Compile the service definition code 
written above.
Package the code in a WAR (web 
archive) file.
Generate the ties and WSDL files.
Deploy the service.

9/15/2003 16

Coding the interface and 
implementation classes

The interface extends java.rmi.Remote
interface.
No constant declarations allowed.
Methods must throw 
java.rmi.RemoteException
Method parameters and return types 
must be supported by JAX-RPC types.

9/15/2003 17

Compiling and Packaging

To compile:
ant compile-server

To pacakge:
ant setup-web-inf
ant package

These two commands will generate and place 
the executables in appropriate directories. 
(Details will be given to you later in another 
handout).

9/15/2003 18

Generating Ties and WSDL file
and deploy the service

To generate Ties and WSDL: 
ant process-war
Will invoke wsdeploy to generate the tie classes and the 
WDSL file MyHello.wsdl

To deploy the service:
ant deploy

To verify deployment:
http://localhost:8080/hello-jaxrpc/hello
The details of the web service will be displayed.

To undeploy:
ant undeploy



4

9/15/2003 19

Building and Running the client

Generate the stubs.
Code the client.
Compile the client code.
Package the client classes into a JAR 
file.
Run the client.

9/15/2003 20

Client steps

To generate stubs:
ant generate-stubs
This will call wscompile to generate the 
stubs.

Coding the client: is a stand alone 
program. It calls the service through 
the generated stub which acts as a 
proxy for the remote service.

9/15/2003 21

Clients steps (contd.)

Compile the client code:
ant compile-client

Package the client:
ant jar-client

Running the client:
Ant run

9/15/2003 22

Iterative Development

Test the application.
Edit the source files.
Execute ant build to create and deploy war 
files.
Execute ant redeploy to undeploy and deploy 
the service.
Execute ant build-static to create jar files with 
static stubs. 
Execute ant run to run the client.

9/15/2003 23

Other features

Read about the types supported by 
JAX-RPC
An advanced feature of interest is the 
dynamic proxy.
Read about the directory structure and 
paths.

9/15/2003 24

Reading Material

Introduction to Web Services Ch.1.
Building Web Services with JAX-RPC Ch. 
11.
Ant build tool details.
XML, XML Schema and SOAP1.1.


