
1

9/24/2004 B.Ramamurthy 1

Distribution Infrastructures

Chapter 5

9/24/2004 B.Ramamurthy 2

Object Model

Object References (OR)
Interfaces
Actions
Exceptions
Garbage Collection

9/24/2004 B.Ramamurthy 3

Object References

Objects are accesses via object references.
Methods are invoked on a target object by
providing object reference, method name and
arguments.
Methods are invoked on the receiver or target
object.
OR are first class values meaning that they
can be assigned, passed as arguments, and
returned as results.

9/24/2004 B.Ramamurthy 4

Interfaces

An interface provides a definition of the
signatures of a set of methods without
specifying their implementation.
Interface can also define new types for
parameters and return values.
Interfaces do NOT have constructors.
An object may implement many interfaces.
An interface may be implemented many
ways.

9/24/2004 B.Ramamurthy 5

Actions

Actions in an object-oriented program is
initiated by an object invoking a method
in another object.
An invocation can have two effects:

The state of the receiver may change
Further invocations may take place
If no exceptions occur control will
eventually return to the caller.

9/24/2004 B.Ramamurthy 6

Exceptions

Exceptions provide a clean way to deal with
error conditions.
Each method heading explicitly lists as
exceptions the error conditions it may
encounter.
A block of code is defined to throw an
exception on error and catch blocks to
capture and process the errors.
Control may not return to the point the
exception was thrown.

2

9/24/2004 B.Ramamurthy 7

Garbage Collection

Is means of freeing up space occupied by
objects which are no longer needed.
Java has a built in mechanism to do that.
But for development in languages such as
C++ it is the responsibility of the
programmer to do this.
If garbage is collected properly it may lead
memory leak and eventual break down of the
software system.

9/24/2004 B.Ramamurthy 8

Distributed Object Model

Remote Object Reference (ROR)
Remote Interface
Distributed Actions
Distributed Garbage Collection
Exceptions (Remote in Java)
Look at Java RMI implementation as
an example.

9/24/2004 B.Ramamurthy 9

RMI Method Invocation
Semantics

Any request-reply model can be implemented
in different ways to provide different delivery
guarantees.

Retry request message: whether to transmit the
request until server receives it.
Duplicate filtering: filter duplicate requests to the
server.
Retransmission of results: Keep a history of
requests to enable retransmission of results
without re-executing requests.

9/24/2004 B.Ramamurthy 10

Transparency

Originally RPC (Birell and Nelson) aimed to
make RPC no different from a local call.
CORBA and RMI do hide marshalling and
messaging from the programmer.
But latency and partial failure of server
cannot be ignored.
Waldo (1994) says it cannot be transparent.
We should assign a different syntax to
remote calls.

9/24/2004 B.Ramamurthy 11

The role of proxy and skeleton in
remote method invocation

object A object Bskeleton
Request

proxy for B

Reply

CommunicationRemote Remote referenceCommunication
modulemodulereference module module

for B’s class
& dispatcher

remote
client server

9/24/2004 B.Ramamurthy 12

Communication Module

Two co-operating modules carry out the
request-reply protocol. Message structure
given in next slide.
Communication model is responsible for
providing invocation semantics, we discussed
earlier.
Object references are responsibility of remote
object reference module.
Method id and marshalling aspects are
responsibility the RMI software.

3

9/24/2004 B.Ramamurthy 13

Request-reply message structure

messageType

requestId

objectReference

methodId

arguments

int (0=Request, 1= Reply)

int

RemoteObjectRef

int or Method

array of bytes

9/24/2004 B.Ramamurthy 14

Remote Reference Module

A remote reference module is responsible for
translating between local and remote object
reference and for creating remote object
references.
Remote reference module in each process
has remote reference table that has

An entry all the objects held by the process.
An entry for each local proxy

9/24/2004 B.Ramamurthy 15

Actions of the Remote
Reference Module

“Send”: When a remote object is to be
passed as argument or result for the first
first, ROR is created and added to the table.
“Receive”: When a ROR arrives in a request
or reply, Remote Reference module has to
search its table for a local object reference
which may be a proxy or a remote object. If
it is not there a proxy is created and added to
the table.
Basically maintain a table of ROR and proxies.

9/24/2004 B.Ramamurthy 16

RMI Software

Between application-level objects and
remote reference module and
communication module.
It contains the middleware objects:
proxy, dispatcher, and skeleton.
We will study the roles of these classes
next:

9/24/2004 B.Ramamurthy 17

RMI Software: Proxy
Role of proxy is to make remote invocation
transparent to the clients.
There is one proxy for each remote object for which
a process holds remote object reference.
Class of a proxy implements the methods in the
remote interface quite differently.
For each method proxy marshals a reference to the
target object, its own methodId and its arguments
into a request message, and sends it to the target,
awaits the reply message, unmarshals it and return
the result to the invoker.

9/24/2004 B.Ramamurthy 18

RMI Software: Dispatcher,
Skeleton

A server has one dispatcher and skeleton for
each class representing a remote object.
It then maps the methodID to the
appropriate method in the skeleton.
Skeleton unmarshals the arguments and
invokes the actual remote object method and
marshals the result and or exceptions, if any.

4

9/24/2004 B.Ramamurthy 19

RMI design and
Implementation

Remote objects are created by factory
methods.
A binder is needed by the server to
register and object and by the server
to lookup an object.
A binder maintains a table containing
mappings of textual references to ROR.
RMI registry is a binder.

9/24/2004 B.Ramamurthy 20

RMI Naming class

RMiRegistry is accessed by the Naming
class.

void rebind(String name, Remote obj)
void bind(String Name, Remote obj)
void unbind(String name, Remote obj)
void lookup(String name)
String[] list() list all the bindings.

9/24/2004 B.Ramamurthy 21

Use of Reflection in RMI

Reflection is a process by which an object can
be queried to reveal its methods.
Reflection is used to pass information in
request messages about the method to be
invoked.
It uses a class called Method defined in
java.lang.reflect package.
Method can be invoked on an object of
suitable class.

9/24/2004 B.Ramamurthy 22

Using Method class In RMI

Proxy marshals by putting method in Method
object, and arguments in an array of Objects.
Dispatcher unmarshals (a) the Method object
and (b)array of argument objects and directly
invokes by using invoke method and the two
parameters above.
So the dispatcher can be generic and may not
need the support of a object-specific
skeleton.

9/24/2004 B.Ramamurthy 23

Assignment

Read Section 5.4 Event and
Notifications which is another example
dealing with distributed infrastructures.

