

Secu	rity need	5		
	1965-75	1975-89	1990-99	Current
Platforms	Multi-user timesharing computers	Distributed systems based on local networks		The Internet + mobil devices
Shared resources	Memory, files	Local services (e.g. NFS), local network		Distributed objects, mobile code
Security requirements	User identification a authentication	urProtection of service	Strong security for commercial transactions	Access control for individual objects, secure mobile code
Security management environment	Single authority, single authorization database (e.g. /etc/ passwd)		Many authorities, no network-wide authorities	Per-activity authorities, groups with shared Responsibilities, mass authenticatio

TEA in use			
void tea(char mode, /* mode is 'e' for er char ch, Text[8] while(!feof(infil	crypt, 'd' for decry '; int i;	E *outfile, unsigned long k[]) { pt, k[] is the key.*/	(
	xt, 1, 8, infile);	/* read 8 bytes from infile	into
Text */	1		
$if (i \le 0) b$ while (i < 8) switch (mod case 'e':	${Text[i++] = '';}$	/* pad last block with spac	es */
encrypt(case 'd':	k, (unsigned long*)	Text); break;	
decrypt(}	k, (unsigned long*)	Text); break;	
fwrite(Text, outfile */	1, 8, outfile);	/* write 8 bytes from Text i	to
	B.Ramamur	thu	13

To find a key pair e, d:	
	nbers, P and Q (each greater than 10100), and
form:	
N = P x Q	
Z = (P-1) x (Q-1)	
	at is relatively prime with Z (that is, such that d
has no common factors with	Z).
We illustrate the comput	ations involved using small integer values for P
and <i>Q</i> :	
$P = 13, Q = 17 \rightarrow N$	= 221, <i>Z</i> = 192
<i>d</i> = 5	-
3. To find e solve the equat	10n:
$e x d = 1 \mod Z$	
That is, $e \ge d$ is the smallest ele 3Z+1,	ement divisible by d in the series $Z+1$, $2Z+1$,

	e RSA method, the plaintext is divided into equal blocks of
	< N (that is, such that the numerical value of a block is always
$k = 7$, since $2^7 = 1$	al applications, k is usually in the range 512 to 1024).
The function for encrypt	ting a single block of plaintext M is: (N = P X Q = $13X17$ =
221), e = 77, d = 5:	
$E'(e,N,M) = M^e$ m	od N
	the ciphertext is $M^{77} \mod 221$
The function for decrypt plaintext block is:	ing a block of encrypted text c to produce the original
$D'(d,N,c) = c^d \mod c^d$	d N
	can be regarded as a key for the encryption function, and taken the decryption function.
So we can write $K_e = $	$N>$ and $K_d = \langle d, N \rangle$, and we get the encryption function:
$E(K_{\rho}, M) = \{M\}_{K}$ (the no	tation here indicating that the encrypted message can be
doominated only by the	holder of the private key K_d and $D(K_d, = \{M\}_K) = M$.

1.0	
1. Certificate type 2. Name	Account number Alice
3. Account	6262626
4. Certifying authority	
5. Signature	$\{Digest(field 2 + field 3)\}_{Bpriv}$
Certifying authority	Bob's Bank

	Distinguished Name, Public Key
Issuer	Distinguished Name, Signature
Period of validity	Not Before Date, Not After Date
Administrative information Extended Information	Version, Serial Number
Subjects.	used in e-commerce to authenticate
	s a trusted third party, which certifies
	long to their claimed owners. Verisign, <u>CREN</u> (Corp for Educational Thawte

Г

1 1 1		protocol
Header	Message	Notes
1. A->S:	A, B, N _A	A requests S to supply a key for communication with B.
2. S->A:	$\{N_{A}, B, K_{AB}, \\ \{K_{AB}, A\}_{KB}\}_{KA}$	S returns a message encrypted in A's secret key, containing a newly generated key K_{AB} and a 'ticket' encrypted in B's secret key. The nonce N_A demonstrates that the message was sent in response to the preceding one. A believes that S sent the message because only S knows A's secret key.
3. A->B:	$\{K_{AB}, A\}_{KB}$	A sends the 'ticket' to B.
4. B->A:	$\{N_B\}_{KAB}$	B decrypts the ticket and uses the new key K_{AB} to encrypt another nonce N_{B} .
5. A->B:	$\{N_B - 1\}_{KAB}$	A demonstrates to B that it was the sender of the previous message by returning an agreed transformation of N_{R} .

Component	Description	Example
Key exchange method	the method to be used for exchange of a session key	RSA with public-key certificates
Cipher for data transfer	the block or stream cipher to bused for data	06:IDEA
Message digest function	for creating message authentication codes (MACs)	SHA

