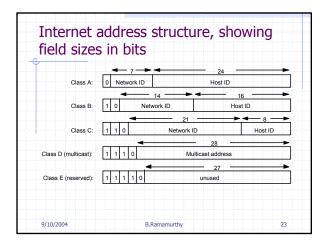
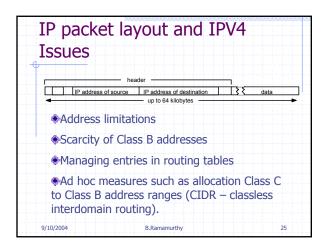
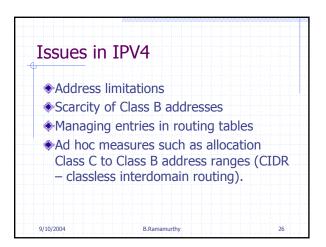

031	OSI protocol summary				
Layer	Description	Examples			
Application	Protocols that are designed to meet the communication requirements of specific applications, often defining the interface to a service.	HTTP, FTP, SMTP, CORBA IIOP			
Presentation	Protocols at this level transmit data in a network representation that is independent of the representations used in individual computers, which may differ. Encryption is also performed in this layer, if required.	Secure Sockets (SSL),CORBA Data Rep.			
Session	At this level reliability and adaptation are performed, such as detection of failures and automatic recovery.	Kep.			
Transport	This is the lowest level at which messages (rather than packets) are handled. Messages are addressed to communication ports attached to processes, Protocols in this layer may be connection-oriented or connectionless.	TCP, UDP			
Network	Transfers data packets between computers in a specific network. In a WAN or an internetwork this involves the generation of a route passing through routers. In a single LAN no routing is required.	IP, ATM virtual circuits			
Data link	Responsible for transmission of packets between nodes that are directly connected by a physical link. In a WAN transmission is between pairs of routers or between routers and hosts. In a LAN it is between any pair of hosts.	Ethernet MAC, ATM cell transfer, PPP			
Physical	The circuits and hardware that drive the network. It transmits sequences of binary data by analogue signalling, using amplitude or frequency modulation of electrical signals (on cable circuits), light signals (on fibre optic circuits) or other electromagnetic signals (on radio and microwave circuits).	Ethernet base- band signalling, ISDN			

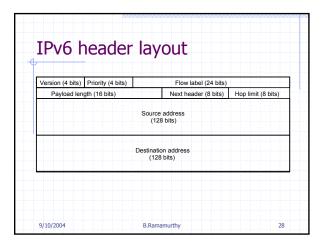


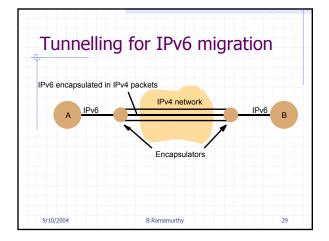
Ros	utings fro	m 1		Routings fro	om B		Rout	inas fro	m C
0.			- ·				Routings from C		
To	Link	Cost	<u></u>		Cost	+ + +	To	Link	Cos
A	local	0	A		1		A	2	2
B	1	1	B		0		B	-	1
C	1	2	C	2	1		C	local	0
D E	3	2	E	4	2		D E	5	2
		Rot	tings from	gs from D R		Routings from E			
		То	Link	Cost	То	Link	Cost		
		Α	3	1	Α	4	2		
		В	3	2	В	4	1		
		С	6	2	C	5	- 1		
		D	local	0	D	6	1		
		E	6	1	E	local	0		


algorit	o-code for RIP routing	
-		
outgoing link.	conds or when Tl changes, send Tl on each non-faulty	
	ever a routing table Tr is received on link n:	
for all rows		
	$link \mid n$ (
Rr	r.cost = Rr.cost + 1;	
Rr	r.link = n;	
	(Rr.destination is not in Tl) add Rr to Tl;	
	add new destination to Tl	
els	se for all rows <i>Rl</i> in <i>Tl</i> {	
	if (<i>Rr.destination</i> = <i>Rl.destination</i> and (<i>Rr.cost</i> < <i>Rl.cost</i> or <i>Rl.link</i> = <i>n</i>)) <i>Rl</i> = <i>Rr</i> ;	
	(Rr.cost < Ri.cost of $Ri.link = n)$ $Ri = Rr;// Rr.cost < Rl.cost : remote node has better route$	
	// RL link = n; remote node is more authoritative	
	" A and " " Temple hode is more authoritative	
····· }···		
	B.Ramamurthy	








	octet 1	octet 2	octet 3		Range of addresses
	Network ID		Host ID		
Class A:	1 to 127	0 to 255	0 to 255	0 to 255	1.0.0.0 to 127.255.255.255
	Netv	vork ID	Ho	st ID	
Class B:	128 to 191	0 to 255	0 to 255	0 to 255	128.0.0.0 to 191 255 255 255
		Network ID		Host ID	
Class C:	192 to 223	0 to 255	0 to 255	1 to 254	192.0.0.0 to 223.255.255.255
	1	Multicas	st address	~	
Class D (multicast):	224 to 239	0 to 255	0 to 255	1 to 254	224.0.0.0 to 239.255.255.255
Class E (reserved):	240 to 255	0 to 255	0 to 255	1 to 254	128.0.0.0 to 247.255.255.255

Summary	Y
	ed several models of the
distribute	ed systems.
We also also in netwo	studied some important issues
	ed system models and
networki	ng concepts are fundamental such as Web Services and Gr
	we will be discussing in future