: Enterprise Computing: An
Overview

B. Ramamurthy

1/14/2004 B. Ramamurthy

Introduction

€ In this lecture we will trace through all the important
developments leading to enterprise computing.

During this process I will review many fundamental
concepts such as object-oriented principles and
request-reply model, distributed objects, remote
method invocations, Java technology etc.

Your task is to identify the concepts that you further
need to study and work on them in the next two
weeks.

Those who are familiar with any of the concepts,
share your experiences with the students in the class.

1/14/2004 B. Ramamurthy 2

‘Topics of Discussion

Object-Orientation (OO) Principles

Unified Modeling Language (UML)

Beyond objects

@ Enterprise systems

Middleware

J2EE Components and Application Model

1/14/2004 B. Ramamurthy

Object-Oriented Principles (OOP)

oor
Encapsulati Inheritance Polymorphism
(class) -- Hierarchy -- Many forms of
-4 Information Hiding -- Reusability same function
-- Separation of -- Extensibility -- Runtime Binding

-- Access Control mechanisms

Interface and Implementation|

Standardization

(private /public)

-- Expressive power
-- Reflects many
real-world problems

-- Abstract Classes
-- Interfaces
-- Uniformity

1/14/2004

B. Ramamurthy

‘Why OO paradigm?

OO0 Models let you structure your thoughts.

Convenient for large software development

4 Systematic approach to analyzing large problems

Reuse through classes and inheritance

@ Supports Application programmer Interface (API)
concept

Standardization (standard interface)

Facilitates security , protection and access control

1/14/2004 B. Ramamurthy

“Unified Modeling Language

" The Unified Modeling Language™ (UML) was developed jointly by Grady

Booch, Ivar Jacobson, and Jim Rumbaugh with contributions from other
leading methodologists, software vendors, and many users. The UML
provides the application modeling language for:

*Business process modeling/ Requirement Analysis with use cases.
«Static Design with Class modeling and object modeling.
*Dynamic Design with sequence, collaboration and activity diagrams.

*Component modeling.

«Distribution and deployment modeling.

*See

http://www.rational.com/uml/resources/whitepapers/index.jsp
http://www.cetus-links.org/oo uml.html

1/14/2004

B. Ramamurthy

Phases of System Development

4 Requirement Analysis
= Functionality users require from the system
= Use case model
00 Analysis
= Discovering classes and relationships
= UML class diagram
4 00 Design
= Result of Analysis expanded into technical solution
= Sequence diagram, state diagram, etc.
= Results in detailed specs for the coding phase
Implementation (Programming/coding)
= Models are converted into code
Testing
= Unit tests, integration tests, system tests and acceptance tests.

*®

&

R

1/14/2004 B. Ramamurthy 7

Use-Case Modeling

4 In use-case modeling, the system is looked upon as a black box
whose boundaries are defined by its functionality to external
stimulus.

4 The actual description of the use-case is usually given in plain
text. A popular notation promoted by UML is the stick figure
notation.

We will look into the details of text representation later. Both
visual and text representation are needed for a complete view.

A use-case model represents the use-case view of the system. A

use-case view of a system may consist of many use case

diagrams.

An use-case diagram shows (the system), the actors, the use-

cases and the relationship among them.

&

1/14/2004 B. Ramamurthy 8

Components of Use Case Model

#The components of a use case model
are:
= Use cases Teas
= Actors % System Name
= System Modeled
= Stimulus

1/14/2004 B. Ramamurthy 9

System

@ As a part of the use-case modeling, the
boundaries of the system are developed.

System in the use-case diagram is a box with
the name appearing on the top.

Defining a system is an attempt to define the
catalog of terms and definitions at an early
stage of the development of a business
model.

1/14/2004 B. Ramamurthy 10

Actors

An actor is something or someone that
interacts with the system.

Actor communicates with the system by
sending and receiving messages.

An actor provides the stimulus to activate an
use case.

Message sent by an actor may result in more
messages to actors and to use cases.

Actors can be ranked: primary and
secondary; passive and active.

Actor is a role not an individual instance.

1/14/2004 B. Ramamurthy 11

'Finding Actors

The actors of a system can be identified by
answering a number of questions:

Who will use the functionality of the system?

Who will maintain the system?

What devices does the system need to handle?

What other system does this system need to

interact?
= Who or what has interest in the results of this
system?
1/14/2004 B. Ramamurthy 12

Use Cases

% A use case in UML is defined as a set of sequences of
actions a system performs that yield an observable
result of value to a particular actor.

Actions can involve communicating with number of
actors as well as performing calculations and work
inside the system.

A use case

= is always initiated by an actor.

= provides a value to an actor.

= must always be connected to at least one actor.
= must be a complete description.

@ Example?

1/14/2004 B. Ramamurthy 13

'Finding Use Cases

@ For each actor ask these questions:

Which functions does the actor require from the
system?

What does the actor need to do?

Could the actor’s work be simplified or made
efficient by new functions in the system?

What events are needed in the system?
What are the problems with the existing systems?
What are the inputs and outputs of the system?

1/14/2004 B. Ramamurthy 14

Classes

00 paradigm supports the view that a system
is made up of objects interacting by message
passing.

Classes represent collection of objects of the
same type.

An object is an instance of a class.

A class is defined by its properties and its
behaviors.

A class diagram describes the static view of a
system in terms of classes and relationships
among the classes.

1/14/2004 B. Ramamurthy 15

Discovering Classes

Underline the nouns in a problem statement.

Using the problem context and general
knowledge about the problem domain decide
on the important nouns.

Design and implement classes to represent
the nouns.

Underline the verbs. Verbs related to a class
may represent the behavior of the class.

@ You can also discover the classes from the
use case diagram.

1/14/2004 B. Ramamurthy 16

Designing Classes

A class represents a class of objects.
A class contains the data declarations (“parts”) and
methods (“behaviors” or “capabilities”).

0O Design:
#|Class properties or characteristics are answers to “What is
it made of?” (It has a ; , etc.)

Behaviors, capabilities or operations are answers to “What
can it do?” (verbs in the problem)

1/14/2004 B. Ramamurthy 17

Classes are Blueprints

A class defines the general nature of a collection of
objects of the same type.

The process creating an object from a class is called
instantiation.

4 Every object is an instance of a particular class.

There can be many instances of objects from the
same class possible with different values for data.

A class structure implements encapsulation as well as
access control: private, public, protected.

1/14/2004 B. Ramamurthy 18

Class Diagram : Automobile

Automobile

public:
seat
seatBelt
accelerator
private:
sparkPlugs
gear
protected:
gloveCompartment
public:
startEngine
brake
protected: transmission

1/14/2004 ~ " B. Ramamurthy 19

Automobile Class Using
“Rational Rose Tool

Automobile

gseat

seatBelt

gacceleratorPedal
&sparkPlugs
&sgear
EgloveCompartment

YstartEngine()

Sbrake()
Ftransmission()
@hfuelinjection()

1/14/2004 B. Ramamurthy 20

-On to implementation

#You may define the methods of the
class using sequence diagram and state
diagram.

#Using these diagrams you can code the
application.

1/14/2004 B. Ramamurthy 21

Beyond Objects

Issues: Basic object-technology could not
fulfill the promises such as reusability and
interoperability fully in the context internet
and enterprise level applications. Deployment
was still a major problem and as a result
portability and mobility are impaired.

Solution: Middleware

Common Object Request Broker Architecture
(CORBA), Java 2 Enterprise Edition, .NET,
computation grid

1/14/2004 B. Ramamurthy 22

Enterprise Systems

@ An enterprise is a very large organization.

@ An enterprise system is a distributed system
involving many large organizations.

An example: AT&T, inktomi, amazon.com, UPS,
and users operating in a supply chain model,
make up an enterprise system.

Inter .com ...

1/14/2004 B. Ramamurthy 23

Evolution of Computing
Systems 4

Enterprise
Systems

1/14/2004 B. Ramamurthy 24

Distributed System as an
Enterprise System

¢ There are many problems in using traditional distributed
system model for enterprise computing. Look at

A Note on Distributing Computing” by Jim Waldo, Geoff
Wyant, Ann Wollarth and Sam Kendall of Sun labs.

- current distributed system paradigm works well for small
systems dealing with single address space but fails very
badly for dynamically changing global address spaces.

We have seen advances in code mobility, data mobility,etc.
But the distributed system architecture/principles are yet
to evolve in any significant way.

Focus on distribution.

1/14/2004 B. Ramamurthy 25

Issues in Enterprise Systems @4
ABRUCATION

Easeofuse

Uniform interface

Design and development effort

Flexibility

Rapid Application
Development (RAD)

Response time Definition of a Model =5}
5 R Distribution =
“e'n‘ﬂ end-to-end QoS | Return of Investment Scalabilit =
= | User Interface Total Cost of ca‘ability =
Ownership Availability)
Design to Production Load Balancing
Time Security
Interoperability
Server Power
BUSINESS

Requirements for Enterprise
Computing
Accommodate changes gracefully - scalability,
‘ dynamic reconfiguration
Maintain high availability at all times

Offer good performance in terms of response
time and end-to-end “Q0OS”

Dependability and fault tolerance
@ Simplicity
& ...

1/14/2004 B. Ramamurthy 27

Enabling Technology o

server server

client

A
“desktop” !

middleware

4 middleware
AN

Middleware (as defined by
NSF)

' @ Middleware refers to the software which is
common to multiple applications and builds on th
network transport services to enable ready
development of new applications and network
services.

4 Middleware typically includes a set of components
such as resources and services that can be utilized
by applications either individually or in various
subsets.

= Examples of services: Security, Directory and naming,
end-to-end quality of service, support for mobile code.

4 OMG’'s CORBA defines a middleware standard.

J2EE Java 2 enterprise edition is a middleware
specification.

#,/Gompute grid is middleware framework. 2

Component Technology

4 We need an application architecture that works well
in the new E-commerce age.

@ Pro?rammer productivity, cost-effective
deployment, rapid time to market, seamless
integration, application portability, scalability,
security are some of the challenges that component
technology tries to address head on.

Enterprise Java Beans is Sun’s server component
model that (frovides portability across application
servers, and supports complex systems features
such as transactions, security, etc. on behalf of the
application components.

EJB is a specification provided by Sun and many
third party vendors have products compliant with
this specification: BEA systems, IONA, IBM, Oracle.

1/14/2004 B. Ramamurthy 30

‘Two-tier applications

Presentation
Logic

Business
Logic

&

1/14/2004 B. Ramamurthy 31

‘Three-tier Applications

Presentation

Logi 1 :
ogic Business ?
Logic @ “aEass

1/14/2004 B. Ramamurthy 32

J2EE Application Programming Model
for Web-based applications

Web Service Business Logic

Web Container

Web -
Web || || Application || | (Enterprise
client ava Bean

EJB container

1/14/2004 B. Ramamurthy 3

3

J2EE Application Programming Model
for Three-tier Applications

Business Logic

EJB container

Enterprise
ava Bean

Application
Container

Presentation |. |
Components

1/14/2004 B. Ramamurthy 34

J2EE Application Programming Model
for Web-based Applets

Web Service Business Logic
Web EJB container
Browser Container

nterprise
Java Beans

Web
Applp# /eD
\—T interned | APplication |k—+

1/14/2004 B. Ramamurthy

35

J2EE Application Model

Study the introduction and the
application model detailed in the
discussion at the following URL:

= Introduction to J2EE

= Application Model
= Components of J2EE

1/14/2004 B. Ramamurthy 36

