
Enterprise Computing: An Overview 1

1/14/2004 B. Ramamurthy 1

Enterprise Computing: An
Overview

B. Ramamurthy

1/14/2004 B. Ramamurthy 2

Introduction
In this lecture we will trace through all the important
developments leading to enterprise computing.
During this process I will review many fundamental
concepts such as object-oriented principles and
request-reply model, distributed objects, remote
method invocations, Java technology etc.
Your task is to identify the concepts that you further
need to study and work on them in the next two
weeks.
Those who are familiar with any of the concepts,
share your experiences with the students in the class.

1/14/2004 B. Ramamurthy 3

Topics of Discussion
Object-Orientation (OO) Principles
Unified Modeling Language (UML)
Beyond objects
Enterprise systems
Middleware
J2EE Components and Application Model

1/14/2004 B. Ramamurthy 4

Object-Oriented Principles (OOP)

OOP

Encapsulation
(class)
-- Information Hiding
-- Separation of

Interface and Implementation
-- Standardization
-- Access Control mechanisms

(private /public)

Inheritance
-- Hierarchy
-- Reusability
-- Extensibility
-- Expressive power
-- Reflects many
real-world problems

Polymorphism
--Many forms of
same function

-- Runtime Binding
-- Abstract Classes
-- Interfaces
-- Uniformity

1/14/2004 B. Ramamurthy 5

Why OO paradigm?

OO Models let you structure your thoughts.
Convenient for large software development
Systematic approach to analyzing large problems
Reuse through classes and inheritance
Supports Application programmer Interface (API)
concept
Standardization (standard interface)
Facilitates security , protection and access control

1/14/2004 B. Ramamurthy 6

Unified Modeling Language
The Unified Modeling Language™ (UML) was developed jointly by Grady
Booch, Ivar Jacobson, and Jim Rumbaugh with contributions from other
leading methodologists, software vendors, and many users. The UML
provides the application modeling language for:

•Business process modeling/ Requirement Analysis with use cases.
•Static Design with Class modeling and object modeling.
•Dynamic Design with sequence, collaboration and activity diagrams.
•Component modeling.
•Distribution and deployment modeling.

•See
http://www.rational.com/uml/resources/whitepapers/index.jsp
http://www.cetus-links.org/oo_uml.html

Enterprise Computing: An Overview 2

1/14/2004 B. Ramamurthy 7

Phases of System Development
Requirement Analysis

Functionality users require from the system
Use case model

OO Analysis
Discovering classes and relationships
UML class diagram

OO Design
Result of Analysis expanded into technical solution
Sequence diagram, state diagram, etc.
Results in detailed specs for the coding phase

Implementation (Programming/coding)
Models are converted into code

Testing
Unit tests, integration tests, system tests and acceptance tests.

1/14/2004 B. Ramamurthy 8

Use-Case Modeling

In use-case modeling, the system is looked upon as a black box
whose boundaries are defined by its functionality to external
stimulus.
The actual description of the use-case is usually given in plain
text. A popular notation promoted by UML is the stick figure
notation.
We will look into the details of text representation later. Both
visual and text representation are needed for a complete view.
A use-case model represents the use-case view of the system. A
use-case view of a system may consist of many use case
diagrams.
An use-case diagram shows (the system), the actors, the use-
cases and the relationship among them.

1/14/2004 B. Ramamurthy 9

Components of Use Case Model

The components of a use case model
are:

Use cases
Actors
System Modeled
Stimulus

System Name

name

Use-case

1/14/2004 B. Ramamurthy 10

System

As a part of the use-case modeling, the
boundaries of the system are developed.
System in the use-case diagram is a box with
the name appearing on the top.
Defining a system is an attempt to define the
catalog of terms and definitions at an early
stage of the development of a business
model.

1/14/2004 B. Ramamurthy 11

Actors
An actor is something or someone that
interacts with the system.
Actor communicates with the system by
sending and receiving messages.
An actor provides the stimulus to activate an
use case.
Message sent by an actor may result in more
messages to actors and to use cases.
Actors can be ranked: primary and
secondary; passive and active.
Actor is a role not an individual instance.

1/14/2004 B. Ramamurthy 12

Finding Actors

The actors of a system can be identified by
answering a number of questions:

Who will use the functionality of the system?
Who will maintain the system?
What devices does the system need to handle?
What other system does this system need to
interact?
Who or what has interest in the results of this
system?

Enterprise Computing: An Overview 3

1/14/2004 B. Ramamurthy 13

Use Cases
A use case in UML is defined as a set of sequences of
actions a system performs that yield an observable
result of value to a particular actor.
Actions can involve communicating with number of
actors as well as performing calculations and work
inside the system.
A use case

is always initiated by an actor.
provides a value to an actor.
must always be connected to at least one actor.
must be a complete description.

Example?
1/14/2004 B. Ramamurthy 14

Finding Use Cases

For each actor ask these questions:
Which functions does the actor require from the
system?
What does the actor need to do?
Could the actor’s work be simplified or made
efficient by new functions in the system?
What events are needed in the system?
What are the problems with the existing systems?
What are the inputs and outputs of the system?

1/14/2004 B. Ramamurthy 15

Classes
OO paradigm supports the view that a system
is made up of objects interacting by message
passing.
Classes represent collection of objects of the
same type.
An object is an instance of a class.
A class is defined by its properties and its
behaviors.
A class diagram describes the static view of a
system in terms of classes and relationships
among the classes.

1/14/2004 B. Ramamurthy 16

Discovering Classes

Underline the nouns in a problem statement.
Using the problem context and general
knowledge about the problem domain decide
on the important nouns.
Design and implement classes to represent
the nouns.
Underline the verbs. Verbs related to a class
may represent the behavior of the class.
You can also discover the classes from the
use case diagram.

1/14/2004 B. Ramamurthy 17

Designing Classes
A class represents a class of objects.
A class contains the data declarations (“parts”) and
methods (“behaviors” or “capabilities”).

OO Design:
Class properties or characteristics are answers to “What is
it made of?” (It has a ____, ____, etc.)
Behaviors, capabilities or operations are answers to “What
can it do?” (verbs in the problem)

1/14/2004 B. Ramamurthy 18

Classes are Blueprints

A class defines the general nature of a collection of
objects of the same type.
The process creating an object from a class is called
instantiation.
Every object is an instance of a particular class.
There can be many instances of objects from the
same class possible with different values for data.
A class structure implements encapsulation as well as
access control: private, public, protected.

Enterprise Computing: An Overview 4

1/14/2004 B. Ramamurthy 19

Class Diagram : Automobile
Automobile

public:
seat
seatBelt
accelerator

private:
sparkPlugs
gear

protected:
gloveCompartment

public:
startEngine
brake

protected: transmission
private: fuelInjection

1/14/2004 B. Ramamurthy 20

Automobile Class Using
Rational Rose Tool

Automobile
seat
seatBelt
acceleratorPedal
sparkPlugs
gear
gloveCompartment

startEngine()
brake()
transmission()
fuelInjection()

1/14/2004 B. Ramamurthy 21

On to implementation

You may define the methods of the
class using sequence diagram and state
diagram.
Using these diagrams you can code the
application.

1/14/2004 B. Ramamurthy 22

Beyond Objects

Issues: Basic object-technology could not
fulfill the promises such as reusability and
interoperability fully in the context internet
and enterprise level applications. Deployment
was still a major problem and as a result
portability and mobility are impaired.
Solution: Middleware
Common Object Request Broker Architecture
(CORBA), Java 2 Enterprise Edition, .NET,
computation grid

1/14/2004 B. Ramamurthy 23

Enterprise Systems

An enterprise is a very large organization.
An enterprise system is a distributed system
involving many large organizations.
An example: AT&T, inktomi, amazon.com, UPS,
and users operating in a supply chain model,
make up an enterprise system.
Inter .com ….

1/14/2004 B. Ramamurthy 24

Evolution of Computing
Systems

Centralized
Systems

Distributed Systems

Client

/Server Systems

Enterprise
Systems

Enterprise Computing: An Overview 5

1/14/2004 B. Ramamurthy 25

Distributed System as an
Enterprise System

There are many problems in using traditional distributed
system model for enterprise computing. Look at

“A Note on Distributing Computing” by Jim Waldo, Geoff
Wyant, Ann Wollarth and Sam Kendall of Sun labs.

-- current distributed system paradigm works well for small
systems dealing with single address space but fails very
badly for dynamically changing global address spaces.

We have seen advances in code mobility, data mobility,etc.
But the distributed system architecture/principles are yet
to evolve in any significant way.
Focus on distribution.

Issues in Enterprise Systems

Return of Investment
Total Cost of
Ownership
Design to Production

Time

Response time
end-to-end QoS
User Interface

Ease of use
Uniform interface
Design and development effort
Flexibility
Rapid Application

Development (RAD) Definition of a Model
Distribution
Scalability
Availability
Load Balancing
Security
Interoperability
Server Power

1/14/2004 B. Ramamurthy 27

Requirements for Enterprise
Computing
Accommodate changes gracefully - scalability,
dynamic reconfiguration
Maintain high availability at all times
Offer good performance in terms of response
time and end-to-end “QOS”
Dependability and fault tolerance
Simplicity
….

28

Enabling Technology

“network”

client

server

middleware middleware

client

server

“desktop”

1/14/2004 B. Ramamurthy 29

Middleware (as defined by
NSF)

Middleware refers to the software which is
common to multiple applications and builds on the
network transport services to enable ready
development of new applications and network
services.
Middleware typically includes a set of components
such as resources and services that can be utilized
by applications either individually or in various
subsets.

Examples of services: Security, Directory and naming,
end-to-end quality of service, support for mobile code.

OMG’s CORBA defines a middleware standard.
J2EE Java 2 enterprise edition is a middleware
specification.
Compute grid is middleware framework. 1/14/2004 B. Ramamurthy 30

Component Technology
We need an application architecture that works well
in the new E-commerce age.
Programmer productivity, cost-effective
deployment, rapid time to market, seamless
integration, application portability, scalability,
security are some of the challenges that component
technology tries to address head on.
Enterprise Java Beans is Sun’s server component
model that provides portability across application
servers, and supports complex systems features
such as transactions, security, etc. on behalf of the
application components.
EJB is a specification provided by Sun and many
third party vendors have products compliant with
this specification: BEA systems, IONA, IBM, Oracle.

Enterprise Computing: An Overview 6

1/14/2004 B. Ramamurthy 31

Two-tier applications

Presentation
Logic

Business
Logic Database

Server

1/14/2004 B. Ramamurthy 32

Three-tier Applications

Presentation
Logic

Business
Logic Database

Server

1/14/2004 B. Ramamurthy 33

J2EE Application Programming Model
for Web-based applications

Web
client

Web
Application

Database
Server

Enterprise
Java Beans

EJB containerWeb Container

Business LogicWeb Service

1/14/2004 B. Ramamurthy 34

J2EE Application Programming Model
for Three-tier Applications

Presentation
Components Database

Server

Enterprise
Java Beans

EJB containerApplication
Container

Business Logic

1/14/2004 B. Ramamurthy 35

J2EE Application Programming Model
for Web-based Applets

Database
Server

Enterprise
Java Beans

EJB container

Web
Application

Web
Container

Business LogicWeb Service

Applet

Browser

internet

1/14/2004 B. Ramamurthy 36

J2EE Application Model

Study the introduction and the
application model detailed in the
discussion at the following URL:

Introduction to J2EE
Application Model
Components of J2EE

