
Jive
Tool Overview

April 07 :: Spring 2010

Demian Lessa <dlessa@buffalo.edu>



Jive :: Tool Overview

/

1 Motivation

2 Introduction to Jive

3 Jive in Action

4 Conclusion

April 07 Spring 2010



Jive :: Tool Overview

/

1 Motivation

2 Introduction to Jive

3 Jive in Action

4 Conclusion

April 07 Spring 2010



Jive :: Tool Overview

/

1 Motivation

2 Introduction to Jive

3 Jive in Action

4 Conclusion

April 07 Spring 2010



Jive :: Tool Overview

/

1 Motivation

2 Introduction to Jive

3 Jive in Action

4 Conclusion

April 07 Spring 2010



Jive :: Tool Overview

Motivation /

1 Motivation

2 Introduction to Jive

3 Jive in Action

4 Conclusion

April 07 Spring 2010



Jive :: Tool Overview

Motivation /

Traditional Debugging

Traditional? (e.g., gdb, dbx, WinDbg)

These debuggers are back-ends, i.e., do all heavy weight-lifting.

Supports a common debugging strategy: breakpoint, step-inspect loop.

What kind of program data and metadata is available?
How is it exposed for inspection?
How is it displayed?
TUI: limited, no complex information.
GUI: delegating to a debugger front-end. (e.g., ddd)

How is the temporal aspect of program state handled?
Only the current state of the program is available!

In summary:
Benefits: simplicity, familiarity.
Limitations: debugging is sequential/procedural in nature; limited visual
representation; no support for temporal aspects of the execution.

April 07 Spring 2010



Jive :: Tool Overview

Motivation /

Traditional Debugging

Traditional? (e.g., gdb, dbx, WinDbg)

These debuggers are back-ends, i.e., do all heavy weight-lifting.

Supports a common debugging strategy: breakpoint, step-inspect loop.
What kind of program data and metadata is available?

How is it exposed for inspection?
How is it displayed?
TUI: limited, no complex information.
GUI: delegating to a debugger front-end. (e.g., ddd)

How is the temporal aspect of program state handled?
Only the current state of the program is available!

In summary:
Benefits: simplicity, familiarity.
Limitations: debugging is sequential/procedural in nature; limited visual
representation; no support for temporal aspects of the execution.

April 07 Spring 2010



Jive :: Tool Overview

Motivation /

Traditional Debugging

Traditional? (e.g., gdb, dbx, WinDbg)

These debuggers are back-ends, i.e., do all heavy weight-lifting.

Supports a common debugging strategy: breakpoint, step-inspect loop.
What kind of program data and metadata is available?

How is it exposed for inspection?
How is it displayed?
TUI: limited, no complex information.
GUI: delegating to a debugger front-end. (e.g., ddd)

How is the temporal aspect of program state handled?
Only the current state of the program is available!

In summary:
Benefits: simplicity, familiarity.
Limitations: debugging is sequential/procedural in nature; limited visual
representation; no support for temporal aspects of the execution.

April 07 Spring 2010



Jive :: Tool Overview

Motivation /

Traditional Debugging

Traditional? (e.g., gdb, dbx, WinDbg)

These debuggers are back-ends, i.e., do all heavy weight-lifting.

Supports a common debugging strategy: breakpoint, step-inspect loop.
What kind of program data and metadata is available?

How is it exposed for inspection?
How is it displayed?
TUI: limited, no complex information.
GUI: delegating to a debugger front-end. (e.g., ddd)

How is the temporal aspect of program state handled?
Only the current state of the program is available!

In summary:
Benefits: simplicity, familiarity.
Limitations: debugging is sequential/procedural in nature; limited visual
representation; no support for temporal aspects of the execution.

April 07 Spring 2010



Jive :: Tool Overview

Motivation /

Figure: gdb Session in the Mac (from http://blog.timac.org/?p=118)

April 07 Spring 2010

http://blog.timac.org/?p=118


Jive :: Tool Overview

Introduction to Jive /

1 Motivation

2 Introduction to Jive

3 Jive in Action

4 Conclusion

April 07 Spring 2010



Jive :: Tool Overview

Introduction to Jive /

What is Jive?

Prototype tool for dynamic program analysis.

Jive supports:
Traditional debugging.
Forward and reverse stepping/skipping.
Query-based debugging (guided queries).
Visual debugging.

Target audience:
Software developers (Jive is a development tool).
Students and professors (Jive is a pedagogical tool).
Researchers (Jive is a research tool).

In summary:
Benefits: no need to re-execute to return to a previous state; visual model of program
execution (enhanced program understanding); declarative queries (higher
abstraction of the debugging tasks).
Limitations: trace overhead; incremental stepping/skipping back; scalability of
diagrams and search queries.

April 07 Spring 2010



Jive :: Tool Overview

Introduction to Jive /

What is Jive?

Prototype tool for dynamic program analysis.
Jive supports:

Traditional debugging.
Forward and reverse stepping/skipping.
Query-based debugging (guided queries).
Visual debugging.

Target audience:
Software developers (Jive is a development tool).
Students and professors (Jive is a pedagogical tool).
Researchers (Jive is a research tool).

In summary:
Benefits: no need to re-execute to return to a previous state; visual model of program
execution (enhanced program understanding); declarative queries (higher
abstraction of the debugging tasks).
Limitations: trace overhead; incremental stepping/skipping back; scalability of
diagrams and search queries.

April 07 Spring 2010



Jive :: Tool Overview

Introduction to Jive /

What is Jive?

Prototype tool for dynamic program analysis.
Jive supports:

Traditional debugging.
Forward and reverse stepping/skipping.
Query-based debugging (guided queries).
Visual debugging.

Target audience:
Software developers (Jive is a development tool).
Students and professors (Jive is a pedagogical tool).
Researchers (Jive is a research tool).

In summary:
Benefits: no need to re-execute to return to a previous state; visual model of program
execution (enhanced program understanding); declarative queries (higher
abstraction of the debugging tasks).
Limitations: trace overhead; incremental stepping/skipping back; scalability of
diagrams and search queries.

April 07 Spring 2010



Jive :: Tool Overview

Introduction to Jive /

What is Jive?

Prototype tool for dynamic program analysis.
Jive supports:

Traditional debugging.
Forward and reverse stepping/skipping.
Query-based debugging (guided queries).
Visual debugging.

Target audience:
Software developers (Jive is a development tool).
Students and professors (Jive is a pedagogical tool).
Researchers (Jive is a research tool).

In summary:
Benefits: no need to re-execute to return to a previous state; visual model of program
execution (enhanced program understanding); declarative queries (higher
abstraction of the debugging tasks).
Limitations: trace overhead; incremental stepping/skipping back; scalability of
diagrams and search queries.

April 07 Spring 2010



Jive :: Tool Overview

Introduction to Jive /

How Jive Works

Jive gathers data from a Java application running in debug mode.

Data is received in the form of debug event notifications.

Jive updates an event data model after every notification.

Derived models are updated (e.g., object and sequence models).

Views are updated (e.g., object and sequence diagrams).

April 07 Spring 2010



Jive :: Tool Overview

Introduction to Jive /

Technical Details

Java based implementation.

Debugger built on top of JPDA (Java Platform Debugger Architecture).

Decoupled architecture using the MVC pattern (Model-View-Controller).

Diagrams built on top of the Eclipse using GEF (Graphical Editing Framework).

In-memory, Java based data models and query primitives.

April 07 Spring 2010



Jive :: Tool Overview

Introduction to Jive /

Figure: JPDA Overview

April 07 Spring 2010



Jive :: Tool Overview

Introduction to Jive /

Figure: Jive Architecture Overview

April 07 Spring 2010



Jive :: Tool Overview

Introduction to Jive /

Figure: Jive Interaction with the Debuggee (via JDI)

April 07 Spring 2010



Jive :: Tool Overview

Jive in Action /

1 Motivation

2 Introduction to Jive

3 Jive in Action

4 Conclusion

April 07 Spring 2010



Jive :: Tool Overview

Jive in Action /

Figure: Dining Philosophers- Initial Setup

April 07 Spring 2010



Jive :: Tool Overview

Jive in Action /

Figure: Dining Philosophers- Philosopher.java

1 public class Philosopher implements Runnable {
2
3 public void run() {
4 while (true) {
5 Thread.sleep(Math.random() * grabDelay);
6 clearText();
7 rightStick.grab();
8 setIcon(RIGHTSPOONDUKE);
9

10 Thread.sleep(Math.random() * grabDelay);
11 leftStick.grab();
12 setIcon(BOTHSPOONSDUKE);
13
14 Thread.sleep(Math.random() * parent.grabDelay);
15 rightStick.release();
16 leftStick.release();
17 setIcon(HUNGRYDUKE);
18 setText("Mmmm!");
19
20 Thread.sleep(Math.random() * grabDelay * 4);
21 }
22 }
23 }

April 07 Spring 2010



Jive :: Tool Overview

Jive in Action /

Figure: Dining Philosophers- Chopstick.java

1 public class Chopstick {
2
3 Thread holder = null;
4
5 public synchronized void grab() throws InterruptedException {
6
7 while (holder != null)
8 wait();
9 holder = Thread.currentThread();

10 }
11
12 public synchronized void release() {
13
14 holder = null;
15 notify();
16 }
17
18 public synchronized void releaseIfMine() {
19
20 if (holder == Thread.currentThread())
21 holder = null;
22 notify();
23 }
24 }

April 07 Spring 2010



Jive :: Tool Overview

Jive in Action /

Figure: Dining Philosophers- Object Diagram (Collapsed)

April 07 Spring 2010



Jive :: Tool Overview

Jive in Action /

Figure: Dining Philosophers- Object Diagram (Expanded)

April 07 Spring 2010



Jive :: Tool Overview

Jive in Action /

Figure: Dining Philosophers- Interacting

April 07 Spring 2010



Jive :: Tool Overview

Jive in Action /

Figure: Dining Philosophers- Sequence Diagram (Interacting)

April 07 Spring 2010



Jive :: Tool Overview

Jive in Action /

Figure: Dining Philosophers- Deadlocked

April 07 Spring 2010



Jive :: Tool Overview

Jive in Action /

Figure: Dining Philosophers- Sequence Diagram (Deadlocked)

April 07 Spring 2010



Jive :: Tool Overview

Jive in Action /

Table: Dining Philosophers- Event Log Snippet

Thread Event Type Details
Thread-2 448 Call Event target = Chopstick:1#grab:5, actuals = [], caller = Philosopher:1#run:1
Thread-2 449 EOS Event file = DiningPhilosophersDemo.java, line = 327
Thread-2 450 EOS Event file = DiningPhilosophersDemo.java, line = 329
Thread-2 451 Assign Event context = Chopstick:1, variable = holder, value = java.lang.Thread

name=Thread-2, id=136)
Thread-2 452 EOS Event file = DiningPhilosophersDemo.java, line = 330
Thread-2 454 EOS Event file = DiningPhilosophersDemo.java, line = 293
Thread-2 453 Return Event returner = Chopstick:1#grab:5, value = <void>
Thread-2 455 EOS Event file = DiningPhilosophersDemo.java, line = 295
Thread-3 456 EOS Event file = DiningPhilosophersDemo.java, line = 296
Thread-3 457 Call Event target = Chopstick:1#grab:6, actuals = [], caller = Philosopher:2#run:2
Thread-3 458 EOS Event file = DiningPhilosophersDemo.java, line = 327
Thread-3 459 EOS Event file = DiningPhilosophersDemo.java, line = 328
Thread-4 460 EOS Event file = DiningPhilosophersDemo.java, line = 296
Thread-4 461 Call Event target = Chopstick:2#grab:7, actuals = [], caller = Philosopher:3#run:3
Thread-4 462 EOS Event file = DiningPhilosophersDemo.java, line = 327
Thread-4 463 EOS Event file = DiningPhilosophersDemo.java, line = 328
Thread-6 464 EOS Event file = DiningPhilosophersDemo.java, line = 296
Thread-6 465 Call Event target = Chopstick:4#grab:8, actuals = [], caller = Philosopher:5#run:5
Thread-6 466 EOS Event file = DiningPhilosophersDemo.java, line = 327
Thread-6 467 EOS Event file = DiningPhilosophersDemo.java, line = 328

April 07 Spring 2010



Jive :: Tool Overview

Jive in Action /

Screencast 1

Plugin Configuration

Jive Perspective

Jive Views

Debugging with Jive

Object and Sequence Diagrams

Sequence Diagram Actions

Screencast 2

Object Model

Sequence Model

Event Log (exporting)

Guided Search

Viewing Search Results

April 07 Spring 2010

http://www.cse.buffalo.edu/jive/screencasts/jive-basics-1.mpeg
http://www.cse.buffalo.edu/jive/screencasts/jive-basics-2.mpeg


Jive :: Tool Overview

Conclusion /

1 Motivation

2 Introduction to Jive

3 Jive in Action

4 Conclusion

April 07 Spring 2010



Jive :: Tool Overview

Conclusion /

Status of Jive

Open source.

Hosted at Google Code.

Actively developed.

Open to new developers.

Current version supports Eclipse 3.5/Java 1.6.

Legacy version supports Eclipse 3.4/Java 1.5.

April 07 Spring 2010


	Motivation
	Introduction to Jive
	Jive in Action
	Conclusion

