Jive

Tool Overview

April 07 :: Spring 2010

Demian Lessa <dlessa@buffalo.edu>

Jive :: Tool Overview
/

@ Motivation

il 07 Spring 2010

Jive :: Tool Overview
/

@ Motivation

@ Introduction to Jive

April 07 Spring 2010

Jive :: Tool Overview
/

@ Motivation
@ Introduction to Jive

© Jive in Action

107 Spring 2010

Jive :: Tool Overview
/

@ Motivation
@ Introduction to Jive
© Jive in Action

@ Conclusion

107 Spring 2010

Jive :: Tool Overview
L Motivation /

@ Motivation

(g

Jive :: Tool Overview
L Motivation /

Traditional Debugging

o Traditional? (e.g., gdb, dbx, WinDbg)
o These debuggers are back-ends, i.e., do all heavy weight-lifting.
o Supports a common debugging strategy: breakpoint, step-inspect loop.

April 07 Spring 2010

Jive :: Tool Overview

LMotivation/
Traditional Debugging

o Traditional? (e.g., gdb, dbx, WinDbg)
These debuggers are back-ends, i.e., do all heavy weight-lifting.

©

©

Supports a common debugging strategy: breakpoint, step-inspect loop.
What kind of program data and metadata is available?

o How is it exposed for inspection?

o How is it displayed?

o TUI: limited, no complex information.

o GUI: delegating to a debugger front-end. (e.g., ddd)

©

April 07 Spring 2010

Jive :: Tool Overview
L Motivation /

Traditional Debugging

o Traditional? (e.g., gdb, dbx, WinDbg)
These debuggers are back-ends, i.e., do all heavy weight-lifting.

©

©

Supports a common debugging strategy: breakpoint, step-inspect loop.
What kind of program data and metadata is available?

o How is it exposed for inspection?

o How is it displayed?

o TUI: limited, no complex information.

o GUI: delegating to a debugger front-end. (e.g., ddd)
How is the temporal aspect of program state handled?

o Only the current state of the program is available!

©

©

April 07 Spring 2010

Jive :: Tool Overview

LMotivation/
Traditional Debugging

o Traditional? (e.g., gdb, dbx, WinDbg)
These debuggers are back-ends, i.e., do all heavy weight-lifting.

©

©

Supports a common debugging strategy: breakpoint, step-inspect loop.
What kind of program data and metadata is available?
o How is it exposed for inspection?
o How is it displayed?
o TUI: limited, no complex information.
o GUI: delegating to a debugger front-end. (e.g., ddd)
How is the temporal aspect of program state handled?
o Only the current state of the program is available!
o In summary:
o Benefits: simplicity, familiarity.
o Limitations: debugging is sequential/procedural in nature; limited visual
representation; no support for temporal aspects of the execution.

©

©

April 07 Spring 2010

Jive :: Tool Overview

L Motivation /

Figure: gdb Session in the Mac (from http://blog.timac.org/?p=118)

800 ™ blogTest - Debugger Console (&S]
- -
10.5 | Debug | i386_~ " ,E) > 00 & > (= ra
Overview Build and Go Rur Tasks Restart Continue Deactivate Clear Log

[Session started at 2008-08-08 00:
Loading program into debugger..
GNU gdb 6.3.50-20050815 (Apple version gdb-960) (Sun May 18 18:38:33 UTC 2008)
Copyright 2004 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying' to see the conditions.

There is absclutely no warranty for GDB. Type "show warranty” for details.

This GDB was configured as "i386-apple-darwin".tty /dev/ttys002

Program loaded.

sharedlibrary apply-load-rules all

run

[Switching to process 1931 local thread 0x2d03]

Running..

(gdb) break myFunction

Breakpoint 9 at 0xlc89: file /Users/poseidon/Desktop/blogTest/blogTest.m, line 9.
Current language: auto; currently objective-c
(gdb) condition 9 sFunctionCounter == 4

(gdb)

Continuing.

2008-08-08 00:36:54.161 blogTest[1931:813] function 1
2008-08-08 00:36:54.165 blogTest[1931:813] function 2
2008-08=08 00:36:54.167 blogTest[1931:813] function called: 3
2008-08-08 00:36:54.173 blogTest[1931:813) function called: 4
(gdb)

:39 +0200.]

‘CDB: Stopped at breakpoint 9 (hit count : 1) - 'Line:9" @ Succeeded

07 Spring 2010

http://blog.timac.org/?p=118

Jive :: Tool Overview

L Introduction to Jive /

@ Introduction to Jive

April 07 Spring 2010

Jive :: Tool Overview

L Introduction to Jive /

What is Jive?

o Prototype tool for dynamic program analysis.

April 07 Spring 2010

Jive :: Tool Overview

L Introduction to Jive /

What is Jive?

o Prototype tool for dynamic program analysis.
o Jive supports:

o Traditional debugging.

o Forward and reverse stepping/skipping.

o Query-based debugging (guided queries).
o Visual debugging.

April 07 Spring 2010

Jive :: Tool Overview

L Introduction to Jive /

What is Jive?

o Prototype tool for dynamic program analysis.
o Jive supports:
o Traditional debugging.
o Forward and reverse stepping/skipping.
o Query-based debugging (guided queries).
o Visual debugging.
o Target audience:
o Software developers (Jive is a development tool).
o Students and professors (Jive is a pedagogical tool).
o Researchers (Jive is a research tool).

April 07 Spring 2010

Jive :: Tool Overview

L Introduction to Jive /

What is Jive?
o Prototype tool for dynamic program analysis.
o Jive supports:
o Traditional debugging.
o Forward and reverse stepping/skipping.
o Query-based debugging (guided queries).
o Visual debugging.
o Target audience:

o Software developers (Jive is a development tool).

o Students and professors (Jive is a pedagogical tool).

o Researchers (Jive is a research tool).

o In summary:

o Benefits: no need to re-execute to return to a previous state; visual model of program
execution (enhanced program understanding); declarative queries (higher
abstraction of the debugging tasks).

o Limitations: trace overhead; incremental stepping/skipping back; scalability of
diagrams and search queries.

April 07 Spring 2010

Jive :: Tool Overview

L Introduction to Jive /

How Jive Works

o Jive gathers data from a Java application running in debug mode.
o Data is received in the form of debug event notifications.

o Jive updates an event data model after every notification.

o Derived models are updated (e.g., object and sequence models).

o Views are updated (e.g., object and sequence diagrams).

April 07 Spring 2010

Jive :: Tool Overview

L Introduction to Jive /

Technical Details

o Java based implementation.

o

Debugger built on top of JPDA (Java Platform Debugger Architecture).
Decoupled architecture using the MVC pattern (Model-View-Controller).

©

©

Diagrams built on top of the Eclipse using GEF (Graphical Editing Framework).
o In-memory, Java based data models and query primitives.

April 07 Spring 2010

Jive :: Tool Overview

L Introduction to Jive /

Figure: JPDA Overview

Debugger
Back-End

Debugger
Front-End

(native)

JVMTI

] ' Debugger JVM
Debuggee JVM

Back-End Front-End

Spring 2010

Jive :: Tool Overview

L Introduction to Jive /

Figure: Jive Architecture Overview

debuggee
Ul updates

JIVE Ul and
Debuggee Ul

JPDA Debugger

debugger
responses

debugger
requests

queries
and updates

JIVE Controller _JIVE
notifications

JIVE Data Model

JIVE event
requests

query
results

notifications

JDI JDI event
requests

JDI Adapter

April 07 Spring 2010

Jive :: Tool Overview

L Introduction to Jive /

Figure: Jive Interaction with the Debuggee (via JDI)

JIVE
create Debuggee

]--- -1

... event suspend
adapter notification '
controller dispatching .
model and view updates ,
resume '
I
.
:
H
L. Bvent suspend

'
adapter notification '
controller dispatching '
model and view updates H
'

resume

Jive :: Tool Overview

Jive in Action /

© Jive in Action

(g

Jive :: Tool Overview

ve in Actio

Figure: Dining Philosophers- Initial Setup

B BEE
Duko Pythagoduke
Dukimedes Dukrates
Arisduktle
start
1000 milliseconds

il07 Spring 2

Jive :: Tool Overview

LJive in Action /

Figure: Dining Philosophers- Philosopher.java

1 | public class Philosopher implements Runnable {
2
3 | public void run() {
4 while (true) {
5 Thread.sleep(Math.random() * grabDelay);
6 clearText();
7 rightStick.grab();
8 setlcon(RIGHTSPOONDUKE);
9
10 Thread.sleep(Math.random() * grabDelay);
11 leftStick.grab();
12 setlcon(BOTHSPOONSDUKE);
13

14 Thread.sleep(Math.random() * parent.grabDelay);
15 rightStick.release();

16 leftStick.release();

17 setlcon(HUNGRYDUKE);

18 setText("Mmmm!");

20 Thread.sleep(Math.random() * grabDelay * 4);

April 07 Spring 2010

Jive :: Tool Overview

LJive in Action /

Figure: Dining Philosophers- Chopstick.java

1 | public class Chopstick {
2
3 | Thread holder = null;
4
5 | public synchronized void grab() throws InterruptedException {
6
7 while (holder != null)
8 wait();
9 holder = Thread.currentThread();
10| }
11
12 | public synchronized void release() {
13
14 holder = null;
15 notify();
16 | }
17
18 | public synchronized void releaselfMine() {
19
20 if (holder == Thread.currentThread())
21 holder = null;
22 notify();
23 | }
24 |}

April 07 Spring 2010

Jive :: Tool Overview

L.Jive in Action /

Figure: Dining Philosophers- Object Diagram (Collapsed)

[Object Diagram £

DiningPhilosophersDemo [Java Application) /ustfjavalidk1.6.0_18/binjava (Apr 6, 2010 9:25:51 AM)
[© object

H@ Component \e Chopstick]

© JFrame
[© DiningPhilosophersDemo)
1

@, DiningPhilosophersDemo$1:1] @, Philosopher:1]

[© JComponent

© JLabel
© Philosopher]

@, Philosopher:2

@, Philosophers)

&, Philosopher:3| [Philosopher:4|
[@run3] - -v -
|

I -

S
|

[@ Chopstick:s|“

® grab:10]

% Chopstick:l

@ grab:6]

o BiringPhilosophersDemo:l]® |G, Chopstick.
]

@® grab:7|

Jive :: Tool Overview

LJive in Action /

Figure: Dining Philosophers- Object Diagram (Expanded)

= Object Diagram £ m &8
D [3ava Application] /dkL6.0_16/binjava (Mar 2, 2010 8:10.04 PV)

T — o [Tobkas | [RobEs | [| (o]
I | Ecomporents | [comporencs]| |[Focomponens]| |[Tcomporens |
— | II
| comaners || |Rocammmera || |[®commmers || || cemmmere ||
scomponeniz @ scompanens 2 @ scomprents
JLabel:1 @, JLabel:2 @, JLabel:3 [® aLabela [®, Jabel:s
@, Phiesopmer] % hosogher @ PHiosopher [orhiiosoprer
‘ —)
7 = "
Ruoiee o Somega @ oot Toonslae
[@: Chopsticks] opstick1]| ||, Comporentt 1 | chepsiera]| & Chopstiges] @ chapstickd
——— @ conainers % Bz

April Spring 20

Jive :: Tool Overview

Jive in Action /

Figure: Dining Philosophers- Interacting

BE]E]

i

L
M A
4

Mmmmi

stop/ reset

1000 milliseconds

il07 Spring 2

Jive :: Tool Overview

ve in Actio

Figure: Dining Philosophers- Sequence Diagram (Interacting)

s |® & | (G s (& hopsta] (& Gropsices] [& Piopterz] (& chopsie) & priosapters) [crapcks] [Pisahr] [&chopeta] [&priopters]

b
b3
grabs
a7
b
aabs_
reiensed
reeaset
a1
iease
eiease:n
easey
reease
release:s
relase 10,

Jive :: Tool Overview
L.Jive in Action /

Figure: Dining Philosophers- Deadlocked

BE]E]

i

stop/ reset

1000 milliseconds

Spring 2010

Jive

Tool Overview

ve in Actio

Figure: Dining Philosophers- Sequence Diagram (Deadlocked)

mainy

iy

aconperiomed
sinehiososhers

| (G s (& hopsta] (& Gropsices] [& Piopterz] (& chopsie) & priosapters) [crapcks] [Pisahr] [&chopeta] [&priopters]

— nnz

w3
gy
ez
gabs
b

b3

w7
b

arabg
10

rns.

Jive :: Tool Overview

ve in Actio

Table: Dining Philosophers- Event Log Snippet

Thread-2 448 Call Event target = Chopstick:1#grab:5, actuals = [], caller = Philosopher:1#run:1

Thread-2 449 EOS Event file = DiningPhilosophersDemo.java, line = 327

Thread-2 450 EOS Event file = DiningPhilosophersDemo.java, line = 329

Thread-2 451 Assign Event context = Chopstick:1, variable = holder, value = java.lang.Thread
name=Thread-2, id=136)

Thread-2 452 EOS Event file = DiningPhilosophersDemo.java, line = 330

Thread-2 454 EOS Event file = DiningPhilosophersDemo.java, line = 293

Thread-2 453 Return Event returner = Chopstick:1#grab:5, value = <void>

Thread-2 455 EOS Event file = DiningPhilosophersDemo.java, line = 295

Thread-3 456 EOS Event file = DiningPhilosophersDemo.java, line = 296

Thread-3 457 Call Event target = Chopstick:1#grab:6, actuals = [], caller = Philosopher:2#run:2

Thread-3 458 EOS Event file = DiningPhilosophersDemo.java, line = 327

Thread-3 459 EOS Event file = DiningPhilosophersDemo.java, line = 328

Thread-4 460 EOS Event file = DiningPhilosophersDemo.java, line = 296

Thread-4 461 Call Event target = Chopstick:2#grab:7, actuals = [], caller = Philosopher:3#run:3

Thread-4 462 EOS Event file = DiningPhilosophersDemo.java, line = 327

Thread-4 463 EOS Event file = DiningPhilosophersDemo.java, line = 328

Thread-6 464 EOS Event file = DiningPhilosophersDemo.java, line = 296

Thread-6 465 Call Event target = Chopstick:4#grab:8, actuals = [], caller = Philosopher:5#run:5

Thread-6 466 EOS Event file = DiningPhilosophersDemo.java, line = 327

Thread-6 467 EOS Event file = DiningPhilosophersDemo.java, line = 328

il07 Spring 2010

Jive :: Tool Overview

LJive in Action /
Screencast 1 Screencast 2
@ Plugin Configuration @ Object Model
@ Jive Perspective @ Sequence Model
@ Jive Views @ Event Log (exporting)
@ Debugging with Jive @ Guided Search
@ Object and Sequence Diagrams @ Viewing Search Results
@ Sequence Diagram Actions

April 07 Spring 2010

http://www.cse.buffalo.edu/jive/screencasts/jive-basics-1.mpeg
http://www.cse.buffalo.edu/jive/screencasts/jive-basics-2.mpeg

Jive :: Tool Overview
LConclusi /

@ Conclusion

(g

Jive :: Tool Overview

L Conclusion /

Status of Jive

o Open source.
o Hosted at Google Code.
o Actively developed.

©

Open to new developers.

©

Current version supports Eclipse 3.5/Java 1.6.
o Legacy version supports Eclipse 3.4/Java 1.5.

April 07 Spring 2010

	Motivation
	Introduction to Jive
	Jive in Action
	Conclusion

