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Traditional Debugging

o Traditional? (e.g., gdb, dbx, WinDbg)
o These debuggers are back-ends, i.e., do all heavy weight-lifting.
o Supports a common debugging strategy: breakpoint, step-inspect loop.
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Supports a common debugging strategy: breakpoint, step-inspect loop.
What kind of program data and metadata is available?

o How is it exposed for inspection?

o How is it displayed?

o TUI: limited, no complex information.

o GUI: delegating to a debugger front-end. (e.g., ddd)
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Traditional Debugging

o Traditional? (e.g., gdb, dbx, WinDbg)
These debuggers are back-ends, i.e., do all heavy weight-lifting.
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Supports a common debugging strategy: breakpoint, step-inspect loop.
What kind of program data and metadata is available?
o How is it exposed for inspection?
o How is it displayed?
o TUI: limited, no complex information.
o GUI: delegating to a debugger front-end. (e.g., ddd)
How is the temporal aspect of program state handled?
o Only the current state of the program is available!
o In summary:
o Benefits: simplicity, familiarity.
o Limitations: debugging is sequential/procedural in nature; limited visual
representation; no support for temporal aspects of the execution.
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Figure: gdb Session in the Mac (from http://blog.timac.org/?p=118)

800 ™ blogTest - Debugger Console (&S]
- -
10.5 | Debug | i386_~ " ,E) > 00 & > (= ra
Overview Build and Go Rur  Tasks Restart Continue Deactivate Clear Log

[Session started at 2008-08-08 00:
Loading program into debugger..
GNU gdb 6.3.50-20050815 (Apple version gdb-960) (Sun May 18 18:38:33 UTC 2008)
Copyright 2004 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying' to see the conditions.

There is absclutely no warranty for GDB. Type "show warranty” for details.

This GDB was configured as "i386-apple-darwin".tty /dev/ttys002

Program loaded.

sharedlibrary apply-load-rules all

run

[Switching to process 1931 local thread 0x2d03]

Running..

(gdb) break myFunction

Breakpoint 9 at 0xlc89: file /Users/poseidon/Desktop/blogTest/blogTest.m, line 9.
Current language: auto; currently objective-c
(gdb) condition 9 sFunctionCounter == 4

(gdb)

Continuing.

2008-08-08 00:36:54.161 blogTest[1931:813] function 1
2008-08-08 00:36:54.165 blogTest[1931:813] function 2
2008-08=08 00:36:54.167 blogTest[1931:813] function called: 3
2008-08-08 00:36:54.173 blogTest[1931:813) function called: 4
(gdb)

:39 +0200.]

‘CDB: Stopped at breakpoint 9 (hit count : 1) - 'Line:9" @ Succeeded
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o Prototype tool for dynamic program analysis.
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What is Jive?
o Prototype tool for dynamic program analysis.
o Jive supports:
o Traditional debugging.
o Forward and reverse stepping/skipping.
o Query-based debugging (guided queries).
o Visual debugging.
o Target audience:

o Software developers (Jive is a development tool).

o Students and professors (Jive is a pedagogical tool).

o Researchers (Jive is a research tool).

o In summary:

o Benefits: no need to re-execute to return to a previous state; visual model of program
execution (enhanced program understanding); declarative queries (higher
abstraction of the debugging tasks).

o Limitations: trace overhead; incremental stepping/skipping back; scalability of
diagrams and search queries.
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How Jive Works

o Jive gathers data from a Java application running in debug mode.
o Data is received in the form of debug event notifications.

o Jive updates an event data model after every notification.

o Derived models are updated (e.g., object and sequence models).

o Views are updated (e.g., object and sequence diagrams).
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Technical Details

o Java based implementation.

o

Debugger built on top of JPDA (Java Platform Debugger Architecture).
Decoupled architecture using the MVC pattern (Model-View-Controller).

©

©

Diagrams built on top of the Eclipse using GEF (Graphical Editing Framework).
o In-memory, Java based data models and query primitives.
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Figure: JPDA Overview
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Figure: Jive Architecture Overview
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Figure: Jive Interaction with the Debuggee (via JDI)
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Figure: Dining Philosophers- Initial Setup
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Figure: Dining Philosophers- Philosopher.java

1 | public class Philosopher implements Runnable {
2
3 | public void run() {
4 while (true) {
5 Thread.sleep(Math.random() * grabDelay);
6 clearText();
7 rightStick.grab();
8 setlcon(RIGHTSPOONDUKE);
9
10 Thread.sleep(Math.random() * grabDelay);
11 leftStick.grab();
12 setlcon(BOTHSPOONSDUKE);
13

14 Thread.sleep(Math.random() * parent.grabDelay);
15 rightStick.release();

16 leftStick.release();

17 setlcon(HUNGRYDUKE);

18 setText("Mmmm!");

20 Thread.sleep(Math.random() * grabDelay * 4);
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Figure: Dining Philosophers- Chopstick.java

1 | public class Chopstick {
2
3 | Thread holder = null;
4
5 | public synchronized void grab() throws InterruptedException {
6
7 while (holder != null)
8 wait();
9 holder = Thread.currentThread();
10| }
11
12 | public synchronized void release() {
13
14 holder = null;
15 notify();
16 | }
17
18 | public synchronized void releaselfMine() {
19
20 if (holder == Thread.currentThread())
21 holder = null;
22 notify();
23 | }
24 |}

April 07 Spring 2010



Jive :: Tool Overview

L.Jive in Action /

Figure: Dining Philosophers- Object Diagram (Collapsed)
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Figure: Dining Philosophers- Object Diagram (Expanded)
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Figure: Dining Philosophers- Interacting
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Figure: Dining Philosophers- Sequence Diagram (Interacting)
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Figure: Dining Philosophers- Deadlocked
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Figure: Dining Philosophers- Sequence Diagram (Deadlocked)
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Table: Dining Philosophers- Event Log Snippet

Thread-2 448 Call Event target = Chopstick:1#grab:5, actuals = [], caller = Philosopher:1#run:1

Thread-2 449 EOS Event file = DiningPhilosophersDemo.java, line = 327

Thread-2 450 EOS Event file = DiningPhilosophersDemo.java, line = 329

Thread-2 451 Assign Event context = Chopstick:1, variable = holder, value = java.lang.Thread
name=Thread-2, id=136)

Thread-2 452 EOS Event file = DiningPhilosophersDemo.java, line = 330

Thread-2 454 EOS Event file = DiningPhilosophersDemo.java, line = 293

Thread-2 453 Return Event returner = Chopstick:1#grab:5, value = <void>

Thread-2 455 EOS Event file = DiningPhilosophersDemo.java, line = 295

Thread-3 456 EOS Event file = DiningPhilosophersDemo.java, line = 296

Thread-3 457 Call Event target = Chopstick:1#grab:6, actuals = [], caller = Philosopher:2#run:2

Thread-3 458 EOS Event file = DiningPhilosophersDemo.java, line = 327

Thread-3 459 EOS Event file = DiningPhilosophersDemo.java, line = 328

Thread-4 460 EOS Event file = DiningPhilosophersDemo.java, line = 296

Thread-4 461 Call Event target = Chopstick:2#grab:7, actuals = [], caller = Philosopher:3#run:3

Thread-4 462 EOS Event file = DiningPhilosophersDemo.java, line = 327

Thread-4 463 EOS Event file = DiningPhilosophersDemo.java, line = 328

Thread-6 464 EOS Event file = DiningPhilosophersDemo.java, line = 296

Thread-6 465 Call Event target = Chopstick:4#grab:8, actuals = [], caller = Philosopher:5#run:5

Thread-6 466 EOS Event file = DiningPhilosophersDemo.java, line = 327

Thread-6 467 EOS Event file = DiningPhilosophersDemo.java, line = 328

il07 Spring 2010



Jive :: Tool Overview

LJive in Action /
Screencast 1 Screencast 2
@ Plugin Configuration @ Object Model
@ Jive Perspective @ Sequence Model
@ Jive Views @ Event Log (exporting)
@ Debugging with Jive @ Guided Search
@ Object and Sequence Diagrams @ Viewing Search Results
@ Sequence Diagram Actions
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Status of Jive

o Open source.
o Hosted at Google Code.
o Actively developed.

©

Open to new developers.

©

Current version supports Eclipse 3.5/Java 1.6.
o Legacy version supports Eclipse 3.4/Java 1.5.
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