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Traditional Debugging

Traditional? (e.g., gdb, dbx, WinDbg)

These debuggers are back-ends, i.e., do all heavy weight-lifting.

Supports a common debugging strategy: breakpoint, step-inspect loop.

What kind of program data and metadata is available?
How is it exposed for inspection?
How is it displayed?
TUI: limited, no complex information.
GUI: delegating to a debugger front-end. (e.g., ddd)

How is the temporal aspect of program state handled?
Only the current state of the program is available!

In summary:
Benefits: simplicity, familiarity.
Limitations: debugging is sequential/procedural in nature; limited visual
representation; no support for temporal aspects of the execution.
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Figure: gdb Session in the Mac (from http://blog.timac.org/?p=118)
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What is Jive?

Prototype tool for dynamic program analysis.

Jive supports:
Traditional debugging.
Forward and reverse stepping/skipping.
Query-based debugging (guided queries).
Visual debugging.

Target audience:
Software developers (Jive is a development tool).
Students and professors (Jive is a pedagogical tool).
Researchers (Jive is a research tool).

In summary:
Benefits: no need to re-execute to return to a previous state; visual model of program
execution (enhanced program understanding); declarative queries (higher
abstraction of the debugging tasks).
Limitations: trace overhead; incremental stepping/skipping back; scalability of
diagrams and search queries.
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How Jive Works

Jive gathers data from a Java application running in debug mode.

Data is received in the form of debug event notifications.

Jive updates an event data model after every notification.

Derived models are updated (e.g., object and sequence models).

Views are updated (e.g., object and sequence diagrams).
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Technical Details

Java based implementation.

Debugger built on top of JPDA (Java Platform Debugger Architecture).

Decoupled architecture using the MVC pattern (Model-View-Controller).

Diagrams built on top of the Eclipse using GEF (Graphical Editing Framework).

In-memory, Java based data models and query primitives.
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Figure: JPDA Overview
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Figure: Jive Architecture Overview
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Figure: Jive Interaction with the Debuggee (via JDI)
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Figure: Dining Philosophers- Initial Setup
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Figure: Dining Philosophers- Philosopher.java

1 public class Philosopher implements Runnable {
2
3 public void run() {
4 while (true) {
5 Thread.sleep(Math.random() * grabDelay);
6 clearText();
7 rightStick.grab();
8 setIcon(RIGHTSPOONDUKE);
9

10 Thread.sleep(Math.random() * grabDelay);
11 leftStick.grab();
12 setIcon(BOTHSPOONSDUKE);
13
14 Thread.sleep(Math.random() * parent.grabDelay);
15 rightStick.release();
16 leftStick.release();
17 setIcon(HUNGRYDUKE);
18 setText("Mmmm!");
19
20 Thread.sleep(Math.random() * grabDelay * 4);
21 }
22 }
23 }
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Figure: Dining Philosophers- Chopstick.java

1 public class Chopstick {
2
3 Thread holder = null;
4
5 public synchronized void grab() throws InterruptedException {
6
7 while (holder != null)
8 wait();
9 holder = Thread.currentThread();

10 }
11
12 public synchronized void release() {
13
14 holder = null;
15 notify();
16 }
17
18 public synchronized void releaseIfMine() {
19
20 if (holder == Thread.currentThread())
21 holder = null;
22 notify();
23 }
24 }
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Figure: Dining Philosophers- Object Diagram (Collapsed)
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Figure: Dining Philosophers- Object Diagram (Expanded)
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Figure: Dining Philosophers- Interacting
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Figure: Dining Philosophers- Sequence Diagram (Interacting)
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Figure: Dining Philosophers- Deadlocked
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Figure: Dining Philosophers- Sequence Diagram (Deadlocked)
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Table: Dining Philosophers- Event Log Snippet

Thread Event Type Details
Thread-2 448 Call Event target = Chopstick:1#grab:5, actuals = [], caller = Philosopher:1#run:1
Thread-2 449 EOS Event file = DiningPhilosophersDemo.java, line = 327
Thread-2 450 EOS Event file = DiningPhilosophersDemo.java, line = 329
Thread-2 451 Assign Event context = Chopstick:1, variable = holder, value = java.lang.Thread

name=Thread-2, id=136)
Thread-2 452 EOS Event file = DiningPhilosophersDemo.java, line = 330
Thread-2 454 EOS Event file = DiningPhilosophersDemo.java, line = 293
Thread-2 453 Return Event returner = Chopstick:1#grab:5, value = <void>
Thread-2 455 EOS Event file = DiningPhilosophersDemo.java, line = 295
Thread-3 456 EOS Event file = DiningPhilosophersDemo.java, line = 296
Thread-3 457 Call Event target = Chopstick:1#grab:6, actuals = [], caller = Philosopher:2#run:2
Thread-3 458 EOS Event file = DiningPhilosophersDemo.java, line = 327
Thread-3 459 EOS Event file = DiningPhilosophersDemo.java, line = 328
Thread-4 460 EOS Event file = DiningPhilosophersDemo.java, line = 296
Thread-4 461 Call Event target = Chopstick:2#grab:7, actuals = [], caller = Philosopher:3#run:3
Thread-4 462 EOS Event file = DiningPhilosophersDemo.java, line = 327
Thread-4 463 EOS Event file = DiningPhilosophersDemo.java, line = 328
Thread-6 464 EOS Event file = DiningPhilosophersDemo.java, line = 296
Thread-6 465 Call Event target = Chopstick:4#grab:8, actuals = [], caller = Philosopher:5#run:5
Thread-6 466 EOS Event file = DiningPhilosophersDemo.java, line = 327
Thread-6 467 EOS Event file = DiningPhilosophersDemo.java, line = 328

April 07 Spring 2010



Jive :: Tool Overview

Jive in Action /

Screencast 1

Plugin Configuration

Jive Perspective

Jive Views

Debugging with Jive

Object and Sequence Diagrams

Sequence Diagram Actions

Screencast 2

Object Model

Sequence Model

Event Log (exporting)

Guided Search

Viewing Search Results

April 07 Spring 2010

http://www.cse.buffalo.edu/jive/screencasts/jive-basics-1.mpeg
http://www.cse.buffalo.edu/jive/screencasts/jive-basics-2.mpeg


Jive :: Tool Overview

Conclusion /

1 Motivation

2 Introduction to Jive

3 Jive in Action

4 Conclusion

April 07 Spring 2010



Jive :: Tool Overview

Conclusion /

Status of Jive

Open source.

Hosted at Google Code.

Actively developed.

Open to new developers.

Current version supports Eclipse 3.5/Java 1.6.

Legacy version supports Eclipse 3.4/Java 1.5.
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