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Abstract. LogaB is a family of logics of belief. It holds a middle ground
between the expressive, but prone to paradox, syntactical first-order the-
ories and the often inconvenient, but safe, modal approaches. In this
report, the syntax and semantics of LogaB are presented. LogaB is al-
gebraic in the sense that it is a language of only terms; there is no notion
of a formula, only proposition-denoting terms. The domain of propo-
sitions is taken to be a Boolean lattice, which renders classical truth
conditions and definitions of consequence and validity theorems about
LogaB structures. LogaB is shown to be sufficiently expressive to ac-
commodate complex patterns of reasoning about belief while remaining
paradox-free. A number of results are proved regarding paradoxical self-
reference. They are shown to strengthen previous results, and to point
to possible new approaches to circumventing paradoxes in syntactical
theories of belief.

1 Introduction

Belief is usually viewed as a relation between a believing agent and a believed
entity, typically a proposition or a sentence. Logics of belief come in two main
flavors: the modal and the syntactical. Modal approaches [1-4, for instance] rep-
resent belief by a modal operator and employ some version of possible-worlds
semantics. Syntactical theories [5-9, for instance] employ self-referential first-
order languages, where belief is represented by a (typically) dyadic predicate
of agents and sentences of the language. The semantics is standard Tarskian se-
mantics, but complications arise due to the need to employ theories of arithmetic
or string manipulation. On one hand, first-order logics are more expressive and
more well-understood than their modal rivals. On the other hand, a result by
Thomason [10] (following a similar result by Montague for the case of knowl-
edge [11]) shows that, assuming some desirable properties of belief, first-order
doxastic theories are paradoxical, whereas modal ones are not.

In this paper, I present LogaB, a family of algebraic logics of belief. Log4B is
algebraic in the sense that it only contains terms, algebraically constructed from
function symbols. No sentences are included in a Log4B language. Instead, there
are terms of a distinguished syntactic type that are taken to denote propositions.
The inclusion of propositions in the ontology, though non-standard, has been
suggested by a few authors [6,12, for instance]. I refer the reader to Shapiro’s
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article [12] for arguments in favor of adopting this approach in the representation
of propositional attitudes in artificial intelligence. It turns out that, in addition
to Shapiro’s arguments, recognizing propositions as first-class inhabitants of our
ontology has the additional benefit of avoiding the doxastic paradoxes referred
to above. In particular, Log4B holds a middle ground between modal and first-
order syntactical theories of belief. On one hand, it is almost as expressive as
the first-order theories; on the other hand, it is weak just enough to avoid the
paradoxes to which those theories are susceptible.

Chalupsky and Shapiro [13] present a logic of belief, SL, based on Shapiro’s
proposal. LogaB and SL differ in several important respects. Chiefly among
these is that SL is fully-intensional; it adopts an excessively fine-grained repre-
sentation of propositions [13, p. 168] and has no room for notions of truth, logical
consequence, and validity.! Log4B is much closer in spirit to standard exten-
sional first-order theories. In the Log4B ontology, propositions are structured in
a Boolean lattice. This gives us, almost for free, all standard truth conditions,
standard notions of consequence and validity, and an individuation of proposi-
tions that is neither too fine-grained, nor too coarse-grained, for a doxastic logic.?
Moreover, Chalupsky and Shapiro are primarily concerned with simulative belief
ascription, and include no mention of doxastic paradoxes of self-reference.

The paper is organized as follows. In Section 2, the syntax and semantics of
LogsB are presented. Section 3 shows how an account of truth may be associ-
ated with the otherwise truth-independent semantics of Log4B. Proof theory is
briefly discussed in Section 4. Section 5 analyzes the notion of belief in terms of
properties of Log4B semantic structures. In Section 6, the expressivity of Log4B
is demonstrated by showing how notions of common and distributed belief (cf.
[2]) may be accounted for. Results pertaining to paradoxes of self-reference are
presented in Section 7: We (i) show that LogaB is not susceptible to paradox,
(ii) strengthen a previous result of Bolander’s [9], and (iii) point out possible new
approaches to circumventing paradox in syntactical theories. For completeness,
an appendix includes relevant background on Boolean algebra.

2 LogaB Languages

LogaB is a class of languages that share a common core of logical symbols and
differ in a signature of non-logical symbols. A Log,B language is a set of terms
partitioned into two base syntactic types, op and o;. Intuitively, op is the set
of terms denoting propositions and o; is the set of terms denoting anything
else. A distinguished subset o4 of o7 comprises agent-denoting terms. In more
specialized uses of Log4B, the set o; may be further partitioned into more fine-
grained syntactic types. For example, in a temporal setting, we can have a type
for time-, state-, or event-denoting terms.

! Which is just fine for the purposes of Chalupsky and Shapiro in [13].

2 The use of Boolean lattices may be seen as an application of the Boolean-valued
models of set theory [14], or an extension of the mereology-based algebraic semantics
of Link to the domain of propositions [15].
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2.1 Syntax

As is customary in type-theoretical treatments, an alphabet of Log 4B is made up
of a set of syncategorematic punctuation symbols and a set of denoting symbols
each from a set o of syntactic types. The set o is the smallest set containing all
of the following types.

1. ap.
2. or.
3. 11 — 7o, for 1y € {op,0r} and 5 € 0.

Intuitively, 7, — 7o is the syntactic type of function symbols that take a single
argument of type op or o7 and produce a functional term of type 72. Given the
restriction of the first argument of function symbols to base types, Log4B is, in
a sense, a first-order language.

A LogaB alphabet is a union of four disjoint sets: Q UZE U X U A. The set
Q, the signature of the language, is a non-empty set of constant and function
symbols. Each symbol in the signature has a designated syntactic type from o
and a designated adicity. (As usual, constants may be viewed as 0-adic function
symbols.). © is what distinguishes one LogsB language from another.

The set & = {x;,a;,p;}ien is a countably infinite set of variables, where
T; € 01,a; € 0a,and p; € op, for i € N. X is a set of syncategorematic symbols,
including the comma, various matching pairs of brackets and parentheses, and
the symbol V. The set A is the set of logical symbols of LogaB, defined as the
union of the following sets.

1. {-}Cop—o0p
2. {\,V} Cop — 0p —o0p
3. {B}Coy —0op—o0p

A LogaB language with signature 2 is denoted by Lq. It is the smallest set
of terms formed according to the following rules, where ¢ and ¢; (i € N) are terms
in LQ.

— ZCLg

— ¢ € Lg, where ¢ € Q is a constant symbol.

— f(t1,...,tn) € Lo, where f € Qisof type 1y — ... — 7, —> 7 and ¢, is
of type 7;.

— =t € Lg, where t € op.

— (tl ®t2) € Lg, where ® € {/\,\/} and t1,ts € op.

— Vz(t) € L, where z € Z and t € op.

— B(t1,t2) € Lg, where t1 € 04 and t5 € op.

As usual, terms involving =, <, and 3 may be introduced as abbreviations in
the standard way.
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2.2 Semantics

The basic ingredient of the LogsB semantic apparatus is the notion of a Log4B
structure.

Definition 1 A LogaB structure is a triple & = (D, 21, b), where

— D, the domain of discourse, is a set with two disjoint, non-empty, countable
subsets P and A.
= (P,+,-,—, L, T) is a complete, non-degenerate Boolean algebra.

—b:AXxP —P.

Intuitively, the domain D is partitioned by a set of propositions P, structured
as a Boolean lattice, and a set of individuals P, among which at least one agent
in the set A of agents.? These stand in correspondence to the syntactic sorts of
LogaB. In what follows, we let D,, = P, D,, = P, and D,, = A.

Definition 2 Let Lo be a LogaB language. A valuation V of Lq is a pair
(6,vq), where & is a LogaB structure; and vq is a function that assigns to
each constant of sort T in Q an element of D, and to each n-adic (n > 1)

function symbol f € Q of sort m — ... — T, — T an n-adic function
n

’UQ(f) : >< 'D.,-i — DT.
i=1

Definition 3 Let Lo be a LogaB language and let V be a valuation of Lgq.
For a variable assignment v= : E — D, where, for every i € N, v=(x;) € P,
v=(a;) € A, and v=(p;) € P, an interpretation of the terms of Lq is given by a
function [-]V:v=:

— [z]V= = vz(z), forx e =
— [e]¥V= = vq(c), for a constant c €
= [fts,..., tn)]V= = 'UQ( NtV =, .. [ta]V =), for an n-adic (n > 1)
function symbol f €
[(t2 A t2)]V0= = [[tl]]v = o] v=
[(t1 v £2)]V 0= = [[tl]]v = [tV
=[] = [t
[Vz()]V""= = [Taep. [t]V-v=le/2] where a is of sort T, v=[a/x])(x) = a, and
vsla/z(y) = vsla/x](y) for every y #
= [B(t1,t2)]V*= = b([t1]V*=, [t2] V=)

In LogaB, logical consequence is defined in pure algebraic terms without
alluding to the notion of truth. This is achieved using the natural partial order
< associated with 2. (See the appendix for details.)

3 1 will have nothing much to say about the contentious issue of what propositions
really are. I take propositions at least to be abstract particulars that are distinct
from sentences or terms denoting them.
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Definition 4 Let Lo be a LogaB language. For every ¢ € op and ' C op, ¢
is a logical consequence of T, denoted T |= ¢, if, for every Lq valuation V and
LogaB wvariable assignment vz, H[[W]]V’”E < [o]Y=.

el

By the above definition, and the algebraic properties of &, we can easily
verify the validity of the following typical examples of logical consequence:

{ondtEo{otEovi{o=v.ot Ev{llEo{o} T

In the appendix it is shown that = has the distinctive properties of classical
Tarskian logical consequence.

Proposition 1 Let Lg be a LogaB language with ¢ € Lg and T'; A C Lg.

1. If p €T, then T = ¢.
2. IfT' = ¢ and T C A, then A | ¢.

3. IfT =Y and TU{¢Y} = ¢, thenT [ ¢.

Definition 5 Let Lg be a LogaB language. For every ¢, € op, ¢ is logically
equivalent to v, denoted ¢ = 1, if, for every Lq valuation ¥V and LogaB variable
assignment vz, [¢]V:'2 = []YV"=. ¢ is logically valid if [¢]V"= = T, for every
Lq valuation V and LogaB variable assignment v=.

Again, all the standard logical equivalences are valid in our system as a direct
corollary to the properties of Boolean algebras. Thus, for example, ¢ A ¥ and
¥ A ¢ are two different terms denoting the same proposition, and, hence, are
logically equivalent.

3 Truth

As is clear from the previous section, the semantics of Log4B has no place for
a notion of truth. While we can happily accommodate the standard semantic
relations of consequence and equivalence and the property of logical validity, our
semantic apparatus has nothing to say about truth. But perhaps this is fine; for
truth in the world and the language we use to describe that world and to carry
out reasoning about it are not necessarily dependent.

However, it seems that we should at least provide truth conditions for op
terms of a Log 4B language. In standard Tarskian semantics, truth conditions of
propositions are part of the definition of the interpretation of the language (Def-
inition 3, in our case). We, however, seem to need more. What we need is what
I shall call a world structure—a structure describing exactly which propositions
in a Log4B structure are true in the world.

Definition 6 For every LogaB structure & = (D, %, b), a bivalent world struc-
ture Wa (&) is a countably-complete ultrafilter of A.*

4 For the definition of ultrafilters, check the appendix. In future work, n-valent world
structures are to be considered.
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Intuitively, the world structure 22(&) comprises the set of propositions that
are true. Members of the corresponding maximal ideal 202(S) are the false
propositions.

In what follows, a bivalent model of a Log4aB language Lq, is a triple Mg =
(W2(6),V, v=), where Wa(6) is a bivalent world structure, ¥V = (S, vq) is an
Lq valuation, and vzs is a LogsB variable assignment.

Definition 7 Let Lg be a LogaB language. A op-term ¢ € Lq is true in a
bivalent model Mo = (Wo (&), V, v=), denoted Truea,(9), if [¢]Y7= € Wa(S).
Otherwise, ¢ is false in Ma, denoted Falsep, ().

With a bivalent world structure, a LogaB logic satisfies the laws of bivalence,
excluded-middle, and non-contradiction.

Proposition 2 Let Lg be a LogaB language with a bivalent model Mso. For
every ¢ € op the following is true.

1. Truep,(¢) or Falsep,(d)
2. Truep, (@) or Truep,(—¢)
3. It is not the case that both True,(¢) and Truep,(—¢)

The classical truth conditions for compound propositions follow from the
above definition.

Proposition 3 Let Lo be a LogaB language with a bivalent model Mo =
(W2(6),V,v=) and let ¢, € op and x € T.

Truepnm, (—@) if and only if Falsea, ().

— Truepm, (¢ AY) if and only if Truea, () and Truep, ().

Truepm, (¢ V ) if and only if Truea,(P) or Truep, (V).

Truem, (Va(e)) if and only if True g (¢), for all b € Dy, where M () is
identical to Ma(¢) with ve replaced by vs[b/x].

Typically, Proposition 3 is given as the definition of truth conditions. In our
system, the definition is given by membership in some ultrafilter of the under-
lying Boolean algebra of propositions. Now, one might suspect that there is
something unsatisfying about the current state of affairs. For, whereas Propo-
sition 3 provides the classical truth conditions for compound propositions, it is
silent about atomic ones. The only thing that we have to say about the truth
conditions of atomic propositions is said in Definition 7. But, according to this
definition, an atomic propositional term such as Dog(fido) is true if the propo-
sition it denotes is true—something that is determined by fiat. This does not
seem to explain much if compared to the classical assignment of truth based on
Fido’s membership in the extension of the predicate Dog.

Nevertheless, the membership test for atomic propositions features, albeit in
a slightly different guise, in our semantics. Given a structure &, the semantics
of a LogaB symbol like Dog is a function from individuals to propositions that
those individuals are dogs. However, a model M (including a world structure



LogaB: An Algebraic Logic of Belief 7

for &) gives rise to a derived function from individuals to truth values, roughly
Truep o vo(Dog). But this is clearly the characteristic function of the classical
set of dogs provided by a Tarskian model. Thus, whatever notion of meaning
is provided by classical semantics is also inherent in our algebraic semantics. In
addition, we seem to provide a level of meaning (the proposition), independent
of a world structure, which is not explicitly available in classical theories.

4 Proof Theory

Our proof theory assumes a (possibly empty) finite knowledge base K C op
and an inference canon. I will take the inference canon to be a set of Fitch-style
natural deduction rules of inference. Such rules come in two forms:

r r,A

— and —

Y ¢

where ¢ € op, I' is a finite subset of op-terms, and A is a finite set of items
of the form T'; F ¢;, T; U {t¢);} C op. As usual, the first form is interpreted as
follows: If I' C K, then ¢ may be added to K. For the second form, if I' C K and
1; is derivable by the rules of inference with I'; as the knowledge base, for every
I'; F; € A, then ¢ may be added to K. The notion of derivation is given the
standard definition in terms of a finite sequence of justified o,-terms that ends
with the derived expression. I will have nothing more to say about the proof
theory here, but any system of Fitch-style natural deduction that is sound and
complete for first-order logic will also be sound and complete for LogaB. I will
also not commit myself to any particular set of rules or axiom schema for belief
at this point, but Sections 5 and 7 present a thorough discussion of what the
possibilities are.

5 Properties of Belief

Given the Log4B semantics presented so far, our notion of belief, beside being
a relation between agents and propositions, is otherwise totally unconstrained.
Although flexibility is a virtue, we may still want our notion of belief to have
certain reasonable properties. In what follows, I list some of these.

Definition 8 Let & = (D, b) be a LogaB structure.

1. © is injective if b is injective.

2. & is non-trivial if Range(b)NWa(S) L {T}, for every bivalent world struc-
ture Wa(6).

3. & is meet-distributive if b(a,p - q) = b(a,p) - b(a,q), for every p,q € P,
ac A.

4. 6 is join-distributive if b(a,p) + b(a,q) = b(a,p + q), for every p,q € P,
a€ A

5. G is consistent if for every (a,p) € A X P, b(a,—p) < —b(a,p).
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6. A pair (a,p) € A X P is an autoepistemic pair if —b(a,p) < b(a, —p). & is
autoepistemic if every (a,p) € A X P is an autoepistemic pair.

7. & is positively- (negatively-) introspective if, for every (a,p) € A x P,
q <b(a,q), for ¢ =0(a,p) (respectively, —b(a,p)).

8. & is faithful if, for every (a,p) € A x P, b(a,b(a,p)) < b(a,p).?

For injection, the intuition is that the proposition that a believes p is different
from the proposition that b believes ¢, unless a = b and p = ¢. This property
is, in general, absent for other D-valued functions. For example, the father of
John may be identical to the father of Mary, and the proposition that John is
a sibling of Mary may be identical to the proposition that Mary is a sibling of
John. Note, however, that full injection may lead to awkward structures in the
presence of other properties. For example, if & is both positively-introspective
and faithful, then b(a,p) = b(a, b(a,p)), for any (a,p) € A x P. Injection implies
that p = b(a,p), which trivializes the whole notion of belief. Careful definition
of b is, thus, recommended to avoid such anomalies.%

A trivial structure is one for which some world structure only admits either
non-believing agents (practically, automata), or agents that believe only what
they are bound to believe. While it might not seem reasonable to assume that
T € Range(b), we do not rule out this possibility. For example, someone might
argue that b(a, T) = T, mirroring the rule of necessity in modal doxastic logic: It
is logically valid to believe what is logically valid. Also, sometimes the condition
of conceit, b(a, —b(a,p) + p) = T, is advisable (cf. [1,10]).” Nevertheless, this
will not be very useful in the absence of non-trivial beliefs.

Meet-distributivity is a strong condition that implies logical omniscience (cf.
Observation 1 below). In general, this property should not be tolerated if we
would like to account for realistic agents. The same applies to join-distributivity.
Typically, only one direction of join-distributivity is desirable, namely b(p) +
b(q) < b(p+¢q). Unfortunately, this direction is equivalent to logical omniscience.
Better than meet- and join-distributivity, a syntactic version involving A and V
instead of - and + is preferred.®

The above properties of belief are not independent. The following observation
lists some dependencies that will turn out to be important in Section 7.

Observation 1 Let & = (D,2,b) be a LogaB structure.

1. If & is meet-distributive (join-distributive) and p < q, for p,q € P, then
b(a, p) < b(a,q), for any a' € A.
2. If G is autoepistemic, consistent, and meet-distributive, then it is join-distributive.

® The label “faithful” is inspired by [16].

5 In their fully-intensional logic, Chalupsky and Shapiro [13] avoid these anomalies by
refraining from making any assumptions about belief, including positive introspec-
tion and faithfulness.

" The label “conceit” is due to [17].

8 In that case, our B will behave similar to Levesque’s modality of explicit belief [3,
p. 201].
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3. If G is consistent and negatively-introspective, then it is faithful.

4. If & is autoepistemic, consistent, positively-introspective, and meet-distributive
then it is negatively-introspective.

5. If G is autoepistemic and faithful, then it is negatively-introspective.

6 Expressivity

How expressive is Log4B? As expected, it is more expressive than modal the-
ories of belief. In particular, we can quantify over beliefs, which allows us, for
example, to limit properties like introspection to any intensionally characterized
set of agents. To demonstrate the expressivity of LogsB, consider the following
example.

Ezample 1. In [2], the authors describe a proposition to be common knowledge
for a group of agents if all agents in the group know it, all agents in the group
know that all agents in the group know it, etc. In the modal framework adopted
in [2], the authors had to introduce a new modal operator (actually, a class
thereof, one operator for each possible group) to capture this notion of common
knowledge. In Log4B, we can make use of our ability to quantify over propo-
sitions in order to represent the corresponding notion of common belief. If our
group of agents is intensionally characterized by G, we first introduce a non-
logical function symbol B¢, which is akin to the reflexive transitive closure of
B (viewed relationally):

vp [Bg (p:p)]
Va,p [Bg(p, B(a,p)) & G(a)]
vp,¢,m [Ba(p,q) ABglg,r) = Ba(p,r)]
Common belief (CB) can be defined as follows.

CBg(p) =aet Ya [G(a) = Vq B (p,q) = B(a,q)]]

In [2], the related notion of distributed knowledge characterizes those proposi-
tions that are implied by the collective knowledge of a group. Again, the authors
introduced a new modal operator to model distributed knowledge. In LogaB, we
need a non-logical function symbol capturing the collective beliefs of the group:

BY(p)  Ja[G(a) AB(a,p)] V 3¢, 7[BE(g) ABL() A (p & (g A1)
We may now define distributive belief as follows.
DB (p) =aet 3¢ [Ba(q) A (¢ = p)]
O

Though more expressive than modal theories, LogsB is, in a certain sense,
less expressive than syntactical first-order theories. In particular, LogaB lan-
guages are not self referential.
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7 Self-Reference

Results of Montague [11] and Thomason [10] show that a first-order treatment
of epistemic modalities (respectively, knowledge and belief) yield inconsistent
systems. Of course, it is a particular mix of assumptions about the modalities
that gives rise to inconsistencies. The inconsistencies appear as paradoxes of
self-reference, akin to the famous Liar paradox. How does our system fair in
this regard? Interestingly, our system is immune to such paradoxes for the same
reason why it is not a classical first-order logic. Let me explain. First-order dox-
astic theories are syntactical, they include a dyadic belief predicate (akin to our
functional B) whose first argument is an agent-denoting term and whose second
argument is a term that denotes a formula of the same language. It is this ability
of the language to refer to its own syntactic structures that makes such theories
syntactical. However, such ability does not come for free; there are, in general,
two methods to achieve syntacticity. The first is to equip the language with
an axiomatization of arithmetic and denote formulas of the language by their
Godel numbers [18, 9, for instance]. The second is to provide the language with
systematic means to manipulate strings, together with devices for substitution,
quotation, and un-quotation [7, for instance].

In syntactical theories, we can have formulas that refer to themselves. For
example, a formula P(71237) may have as its Godel number the very same 123,
encoded by the string "123™. In fact, the diagonalization lemma (see [19, for
example]) states that, in a syntactical first-order theory, there is a formula ¢ such
that ¢ < p("¢") is a theorem, for any (possibly complex) monadic predicate p.
Note that ¢ < p("¢7) is a theorem—we have no way of avoiding it—not just a
sentence generated by the grammar of the language. It is this result that leads
to doxastic paradoxes, when p is Az.—B(«, z) and B is the belief predicate.

As demonstrated by several authors [20,8,21], it is the syntacticity of a
system that is the catalyst for paradox, not whether it is first-order or modal.
Interestingly, Log4B, which has all the advantages that a first-order doxastic
theory has over a modal one (see Section 6), is not syntactical. There is no way for
a Log B language to refer to its own terms. In particular, no op term can refer
to itself, since, tout court, the proper-substring relation is irreflexive. Granted,
we can write expressions such as ¢ < —-B(a, ¢) (or even ¢ = =B(a, ¢)); we can
have such expressions in our knowledge base; and, with a certain notorious suite
of assumptions on B, we shall get a contradiction. But this inconsistency is an
inconsistency of the knowledge base, not a natural product of our proof theory:
paradoxical, self-referential expressions are not theorems of our logic.

Now, the immunity of LogsB to paradox is clearly rooted in its relative
expressive weakness, compared to syntactical theories, when it comes to rep-
resenting its own syntax. However, syntactical theories have almost exclusively
been employed to account for the propositional attitudes, which a LogaB ap-
proach seems to effectively accommodate. Perlis [7, 8] argues that languages with
self-reference are essential for commonsense reasoning in general. I might have
something to say about this, but that is a story for another day.
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Notwithstanding Log4B’s immunity to paradox, we can certainly construct
LogaB structures in which, for some p € P, p = —b(a,p). Such structures will
be incompatible with some of the properties in Definition 8. Syntactically, this
means that (knowledge-base) inconsistency looms given ¢ < B(a, ¢) and specific
axiomatizations of belief. In what follows, we prove several results, indicating
exactly when that happens. We start with the following two useful lemmas.”

Lemma 1. If G is a consistent, positively-introspective LogaB structure, then
p= —b(a,p) impliesp =T for every (a,p) € A X P.

Proof. Suppose that p = —b(a,p). By cousistency, b(a,—b(a,p)) = b(a,p) <
—b(a, b(a,p)). On the other hand, by positive introspection, b(a, p) < b(a, b(a,p)).
It follows that, b(a,p) < —b(a,b(a,p))-b(a,b(a,p)) = L. Thus, b(a,p) = L and,
hence, p = T (by the definition of < and B7.1 in the appendix). ad

Lemma 2. If & is a negatively-introspective LogaB structure, thenp = —b(a, p)
implies p = L for every (a,p) € A X P.

Proof. Assume that p = —b(a,p). It follows from negative introspection that
—b(a,p) < b(a,—b(a,p)). Then —b(a, p) < b(a, p), and, consequently, —b(a,p) =
p = L (by the definition of < and B5.2 in the appendix). a0

Our first theorem is a variant of Theorem 4.7 in [9, p. 76], where the inconsistency
result of Thomason [10] is regenerated by trading conceit (b(a, —b(a,p)+p) =T)
for the more subjective negative introspection.

Theorem 1. If& is a consistent, positively-, and negatively-introspective Log,B
structure, then there is no (a,p) € A X P such that p = —b(a,p).

Proof. Assume (a,p) € A x P such that p = —b(a,p). By Lemma 1, p=T. By
Lemma 2, p = 1. Consequently, | = T, which is impossible since the algebra 2
is non-degenerate. O

The following theorem shows that positive introspection is not responsible,
after all, for the inconsistency.

Theorem 2. If G is a consistent, negatively-introspective, and meet-distributive
LogaB structure, then there is no (a,p) € A X P such that p = —b(a,p).

Proof. Assume (a,p) € A x P such that p = —b(a, p). By negative introspection
and Lemma 2, p = L. Consequently, b(a,p) = b(a, L) = T. Now, let ¢ € P be
an arbitrary proposition. Since L = g - —¢, it follows that b(a,q- —¢q) = T. By
meet-distributivity, b(a,q-—q) = b(a, q) - b(a, —q). By consistency, b(a,q-—q) <
b(a,q) - —b(a,q) = L, which is impossible since 2 is non-degenerate. O

Even though we require & to be meet-distributive, the direction of meet-
distributivity actually used in the proof (b(a,p-q) < b(a,p) - b(a,q)) is provably
equivalent to logical omniscience (p < ¢ implies b(a,p) < b(a, ¢)). Logical omni-
science is already a property of the systems of both Thomason [10] and Bolander

9 Strictly speaking, standard results pertain to sentences, not propositions. But see
[22] for a discussion of how such results extend to propositions.
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[9]. Hence, the above result is a strengthening of Bolander’s in that it shows that
negative-introspection, consistency, and omniscience are sufficient—without pos-
itive introspection—to regenerate Thomason’s paradox. In addition, the result
also shows that negative introspection is problematic enough to induce an in-
consistency if it replaces Thomason’s conceit and positive introspection.

But, while negative introspection is rightly incriminated by the above re-
sult, it certainly is not necessary for the inconsistency. The following theorem
shows that replacing negative-introspection with the less controversial property
of faithfulness gives rise to inconsistency when a non-pervasive version of au-
toepistemology is enforced.!?

Theorem 3. If G is a consistent, positively-introspective, and faithful LogaB
structure, then there is no autoepistemic pair (a,p) such that p = —b(a,p).

Proof. Assume there is an autoepistemic pair (a,p) € A x P such that p =
—b(a,p). By Lemma 1, p = —b(a,p) = T. Since (a,p) is an autoepistemic
pair, —b(a,p) < b(a,—p) = b(a, b(a,p)). By faithfulness and transitivity of <,
T = —b(a,p) < b(a,p) = L. Consequently, L = T, which is impossible since the
algebra 2l is non-degenerate. a

In the spirit of [23], we present the following non-theorem, demonstrating the
necessity of autoepistemology for the above result.

Non-Theorem 1 If G is a consistent, positively-introspective, and faithful Log,B
structure, then there is no (a,p) € A x P such that p = —b(a,p).
Counterexample 1. Let Srwo = (D,,2,,b,). Take D, = {a, L, T}, A, =
(L, T}H+,,—,L,T), and Range(b,) = {L}. Srwo is trivially consistent.
In addition, it is both positively-introspective and faithful, since b,(a,p) =
b,(a,b,(a,p)) = L for p € P. In this structure, T = —L = —b,(a, T).

Our first counterexample, though falsifies the non-theorem, constructs a
rather trivial structure. Our second example is more general.
Counterexample 2. Consider two disjoint sets P = {p1,...,p,} and Q =
{q1,...,qn} of propositions. Let Ap = (P’,+,-,—, L, T) and Ap = (@', +,-, —, L, T)
be the Boolean algebras generated by P and @), respectively, and let A, =
(PUQ),+,-,—, L, T) be the Boolean algebra generated by P U Q. Take i to
be an isomorphism from Ap to Ag, where i(p;) = ¢; for p; € P. Now, define
Srso = {a} U (PUQ), Ay, bi), where b; is defined as follows.

1 ifaze{l,T}
i(z) ifxe PP\{L,T}
bi(a,z)=¢ax fze@ \{L T}
z Her=y0oz where @ € {-,+},ye P\ {L, T},
and z € Q' \{L, T}

It could be shown, by induction on the structure of x, that b; is well-defined.
We now show that it satisfies the conditions stated in the non-theorem. First,

!0 Faithfulness is a theorem of Thomason’s system [10]. Hence, the following result is,
in a sense, a strengthening of Thomason’s.
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consider consistency. The case of L and T is similar to Counterexample 1. For
p € PP\{L, T}, bi(a,—p) = i(—p) = —i(p) = —bi(a,p). For ¢ € Q" \ {L, T},
bi(a,—q) = —q¢ = —bi(a,q). Forx = y-z,withy € P\{L, T}and z € Q"\{L, T},
bi(a, —z) = bi(a,—y + —2) = —z = —bi(a,y - z). Similarly for z = y + z. Note
that, not only is & consistent, but it is also the case that every pair (a,z) €
Ax (PUQ) \{L, T} is autoepistemic.

Similar to Counterexample 1, b;(a,z) = bi(a, bi(a, x)), for z € {L, T}. Oth-
erwise, bi(a,z) € @ \ {T} and is, hence, identical to bi(a, bi(a,x)). Thus, & is
both positively-introspective and faithful. Finally, similar to Counterexample 1,
note that T = —L = —b;i(a, T). O

In the LogsaB structure G;so of Counterexample 2, all propositions, except
the paradoxical one, are autoepistemic and satisfy the negative introspection
schema. In addition, &;g0 is almost meet-distributive (and join-distributive),
which means that it almost satisfies logical omniscience (cf. Observation 1).
Thus, not only have we shown that consistency, positive-introspection, and faith-
fulness are tolerant to the p = —b(a, p) possibility, but we have also shown that
the tolerance persists even in the presence of a high degree of logical omniscience.
We are pretty close to Thomason’s system.

It should be clear that &;50 could be varied along different dimensions. We
may allow multiple agents, where instead of the single set ), we have a fam-
ily of sets indexed by .A. Omniscience may also be avoided by constructing the
isomorphism differently. For example, instead of standing in 1-1 correspondence
to the set P, @) can be defined to correspond 1-1 to the elements of the algebra
generated by P. We may also construct a structure in which we are more con-
servative about which propositions are autoepistemic. One way to achieve this
is to change the definition of b such that b(a,—p) = —b(a,p) - AE(p), where
AE(p) = T only for some p € P (those that are intuitively autoepistemic). Note
that this definition of b maintains the property of consistency.

Theorem 3 and Non-theorem 1 tell us the following: For consistent, positively-
introspective, and faithful (and almost omniscient) structures, a pair (a,p) will
satisfy p = —b(a, p) if and only if it is not autoepistemic. What is interesting here
is that the offensive property—autoepistemology—is one that naturally applies
only to select propositions (and agents) by fiat. For example, whereas my having
a brother is plausibly autoepistemic, my first-grade teacher’s being asleep right
now is clearly not. Thus, if pressed, we may deem a proposition p, such that
p = —b(a,p), non-autoepistemic. Now, while it might be easy to semantically
implement this decree (and to perhaps philosophically justify it), it is not im-
mediately clear how we can syntactically enforce it. But the results obtained in
[23, 18, 9] give us some hope. Based on purely syntactic properties, we may be
able to quarantine some op terms which are believed to give rise to paradoxi-
cal self-reference. Unlike [23, 18, 9], where the recommendation is to suspend the
application of all doxastic schema on the quarantined expressions, we only need
to make sure that we do not label any of them as autoepistemic. We, thus, get
the full force of rational belief (for example, consistency, positive introspection,
faithfulness), and the limited application of negative introspection to the au-
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toepistemic agent-proposition pairs (cf. Observation 1). The exact ramifications
of this result for syntactical theories is to be explored in future work.

8 Conclusions

By admitting propositions as first-class individuals in our ontology, we achieve
two things: (i) the expressivity and semantic simplicity of first-order doxastic
theories and (ii) the consistency and syntactic simplicity of rival modal theories.
I hope I have managed to convince the reader of the above claim through the
presentation of LogsB. No paradoxical self-referential propositional term is a
theorem of LogaB, but results of Thomason’s and Bolander’s feature as condi-
tions of incompatibility of certain properties of LogsB’s semantics structures.
This leads to one direction of future work: How may the results presented here
(in particular those pertaining to the interrelations among autoepistemology,
faithfulness, conceit, and negative introspection) be applied to syntactical theo-
ries in order to avoid paradox, while minimally sacrificing the pervasive adoption
of desirable properties of belief?

Other directions for future research include developing similar algebraic ac-
counts for other propositional attitudes, notably knowledge (within a LogaK
framework). Also, as pointed out earlier, non-bivalent world structures of LogsB
may be studied. In particular, a trivalent world structure, corresponding to a
three-valued logic, may be defined as a filter (as opposed to an ultrafilter) of
the underlying Boolean algebra. Similarly, a quad-valent world structure could
be defined as a filter-ideal pair. Connections of such systems to existing many-
valued logics (for example, [24, 25]) are then to be systematically studied.
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Appendix: Boolean Algebra

For the sake of completeness, I hereafter present some basic results about Boolean
algebra that are relevant to the development of Log4B. The presentation is based
primarily on [27]. All proofs are omitted for limitations of space; the interested
reader may consult [27] or any standard text on the topic.

A Boolean algebra is a sextuple B = (B,+,-,—, L, T) where B is a non-

empty set and {1, T} C B. B is closed under the two binary operators + and -
and the unary operator —. The operators satisfy the following conditions.
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Bl.l: a+b=b+a (Commutativity)
B1.2: a-b=b-a

B2.1: a+(b+¢)=(a+b)+c (Associativity)
B2.2: a-(b-¢)=(a-b)-c

B3.1: a+(a-b)=a (Absorption)
B3.2: a-(a+b)=a

B4.1: a-(b+¢)=(a-b)+(a-¢) (Distribution)
B5.1: a+—a=T (Complements)
B52: a-—a=1

The following properties of Boolean algebras immediately follow.

B4.2: a+(b-¢)=(a+b):(a+c)
B6.1: a-a=a

B6.2: a4+a=a

B71: a-1 =1

B7.2: a4+ T=T

BS8: a-T=a+L=a

B9: —(—a)=a

B10.1: —( )

B10.2: — (a+b) = (—a) - (-b)

A Boolean algebra B = (B,+,.,—, L, T) is complete if, for every A C B,
Yowcaa € Band [[,.4a € B. B is degenerate if L = T, otherwise, it is non-
degenerate. Elements of B are partially-ordered by the relation <, where a < b
if and only if @ - b = a. By B3.1 and B3.2, it follows that a < b if and only if
a+b=0b.

A filter of ®B is a subset F' of B such that

Fl. TeF
F2. a,b€ F impliesa-be F
F3. ae Fanda<bimply be F

F'is an wltrafilter of B if it is maximal with respect to not including L. The
following properties of ultrafilters follow from the definitions.

F4. For every a € B, exactly one of a and —a belong to F.
F5. For every a,b€ B,a+b¢c Fifand only ifa € Forbe F.

Moreover, F'is countably-complete if it satisfies

F6. For every A C F, if A is countable, then H ac k.
acA
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To illustrate the relevance of the above properties of Boolean algebras to

LogaB, I present proofs for Propositions 1 and 3. (Proposition 2 follows imme-
diately from F4.)

Proof of Proposition 1.

1. Suppose that ¢ € I'. Then, for every Lg valuation V and LogaB variable

assignment vz, 1_[[['y]]v’”E =( H [v]Y:'=) - [¢]V*=. By B2.2 and B6.1,

yer ¢F#vED
(IID1=) - 1e1= = IT 017 (@e1"= - [o1V=) = [T 1=
~yel ¢pF#v€eD ~el’

Hence, T' = ¢.
Suppose that T' = ¢ and T' C A. Thus, there is a set I such that A =T UT”
and T'NTY = @. By B1.2 and B2.2,

([T - 1= = (T] 1) - ([T D) - [0
[ J<PAN vy er ~yel
Since I' = ¢, it follows that
(H [[ﬂ]\),v;) . [[¢]]V,1;5 — ( H [[,y/]]v,vg) . (H[[V]]V,vg) — H Héﬂ\/,q;g
dEA vy el yel’ dEA
Hence, A = ¢.
Suppose I'' = ¢ and T'U {9} = ¢. By definition of |=,

(TP - 1= < [
But, since T = 9,
[I017*= = (JI017=) - )= < [o]”=

yel’ ~el

Hence, T' = ¢. O

Proof of Proposition 3.

1.

Truep, (—¢) iff —[¢]V:'= € Wa (&) iff [p]V'= & W2(S) (by F4) iff Falser, (o).

2. Truea, (¢ A ) iff [¢]V7= - [W]V7= € Wa(6) iff [¢]""= € W2(6) and

[¥]V"v= € W2(S) (by F2 and F3) iff Truep, (¢) and Truepq, ().
Trueap, (¢ V ) iff [¢]V0= + [¢]V'0= € Wa(6) iff [¢]¥V'= € Wa(S) or
[v]V:v= € W2(S) (by F5) iff Truea,(¢) or True, ().

Similar to the case of A, using F6 instead of F2. O



