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Abstract

Dependency-directed reconsideration (DDR) is an efficient, anytime algorithm for performing the knowledge-

base optimizing operation of reconsideration in an implemented computational system.

Any computational system that stores and reasons with information must have some means for making

changes to that information. These changes include (1) adding new information, (2) changing existing in-

formation, and (3) removing information—which can be used to resolve contradictions (called consistency

maintenance). Many fields of computer science use revision techniques—examples include artificial intel-

ligence (AI), robotics, diagnosis, databases, security, and constraint satisfaction problems; and techniques

may be applicable across disciplines.

This research takes an AI approach by referring to data as beliefs, and it assumes that there is a distinction

between base beliefs (information that enters the system from some outside source) and derived beliefs

(information produced solely by reasoning from some set of base beliefs and dependent upon those base

beliefs). The belief state of such a system includes its currently believed base beliefs (its belief base) as well

as the base beliefs that have been disbelieved. Information is rarely entered into a system all at once, and

changing the order of the incoming information can alter the resulting state of the system in the case where

consistency maintenance is ongoing. Assuming that the optimal base is the base that would result from

deferring consistency maintenance until all incoming data is assimilated, any deviation from this optimal

base is a negative effect of operation order, and the resulting state is sub-optimal.

The two main contributions of this research are (1) the introduction and formalization of the hindsight,

xix



belief-base-optimizing operation of reconsideration and (2) the development of dependency-directed re-

consideration (DDR)—an efficient, anytime algorithm for performing reconsideration in an implemented

system.

Reconsideration optimizes the base of a sub-optimal belief state by eliminating the negative effects of

operation order. There no longer needs to be a choice between having a consistent base ready for reason-

ing and having an optimal base (by delaying consistency maintenance until all information is gathered).

Reconsideration also improves the performance of belief change operations for finite belief bases.

DDR optimizes an already consistent base by using a queue that contains a small, yet relevant, subset

of the removed base beliefs. Processing the beliefs on the queue in decreasing order of preference (or

credibility) results in the optimization of the base in a computationally friendly way: (1) a consistent base is

always available for reasoning; (2) DDR optimizes the most important parts of the base first; (3) the base is

always improving as DDR progresses; and (4) DDR can be performed in multiple stages that can interleave

with the addition of (and reasoning with) new information. A measure of confidence in an existing base can

be determined by the top element in the DDR queue—the lower its credibility, the higher the confidence in

the base. DDR works for monotonic logics, but it is not restricted to classical propositional logic or ideal

reasoning systems—it works for first-order predicate logic and relevance logics, and it works for systems

whose reasoning is not guaranteed to be complete.



Chapter 1

Introduction

1.1 Belief Change

It is an agent’s prerogative to change its mind. A person’s mind contains thoughts or beliefs, and those beliefs

must be able to be changed, updated, adjusted, corrected, or, in a word, revised. Likewise, many things can

be represented by a data set—such as the mind of a single agent, the beliefs of a group of agents, input from

sensors, a database for storing information, or a modeling of the world. How to represent these things in

a computational way is a continual challenge for knowledge engineers; but, whatever a set represents and

however its elements are constructed, there needs to be some means for revising those elements.

The general meaning of the term revision encompasses all types of changes to a data set:

1. adding new data to the set

2. changing existing data in the set

3. removing data from the set

These changes include altering the data in a set to eliminate contradictions, which occur when data conflict.

Many areas of computer science need data-revision techniques—examples include artificial intelligence,
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robotics, diagnosis, databases, security, and constraint satisfaction problems. Although the techniques used

to revise data might differ because of the method of representing the data and the data structure in which

they are stored, these differences can be superficial, and techniques from one area might be useful in other

areas and should be shared across disciplines.

The computational systems we use are becoming more and more complex. As a result, there is an issue

of how to represent information in a computer so that it can be recalled efficiently. This is addressed by the

research field of knowledge representation (KR). Systems can also manipulate their stored information to

produce new information, so KR is expanded to knowledge representation and reasoning (KR&R). Because

that body of knowledge can be used to devise plans of action for an embodied cognitive agent (or robot),

we see the field expand further to knowledge representation, reasoning, and action. Since there seems to be

no end to this expansion, I will settle on the KR&R designation to refer to any reasoning system that can

reason about and revise its information—regardless of the end goals of the system (e.g., controlling a robot,

advising troop deployment, system analysis, etc.).

Because I will be focusing on revising the beliefs in a KR&R system and comparing my revision tech-

niques with research performed by the belief-change community, I will typically refer to the general concept

of data revision as belief change.

1.2 Notation and Terminology

Before discussing the motivations for this research, I need to present some basic assumptions, notation, and

terminology.

For the majority of this dissertation, I will assume the KR&R system uses propositional logic whose

propositions are denoted by lowercase letters (p,q,r, . . .). The propositional language L is closed under the

truth functional connectives ¬, ∧, ∨,→, and↔.
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In actuality, the research presented will also work with more complex logics, such as first-order predicate

logic and relevance logic [Anderson & Belnap1975, Anderson, Belnap, & Dunn1992]—cf. Sections 3.3.3

(page 97) and 5.6 (page 208).

I will refer to propositions as beliefs, interchangeably. Sets of beliefs are denoted by uppercase letters

(A,B,C, . . .), and there will also be specific cases where uppercase letters are designated for other kinds of

sets or sequences. Since I will be discussing sets of beliefs, here is a brief review of the terminology I will

use:

• p ∈ A states that the belief p is an element of the set A (also referred to as, “p is in A”). Example:

r ∈ {p,q,r,s}.

• A⊆ B states that the set A is a subset of the set B: every element in A is also in B. Note that A may

be equivalent to B. Example: {1,3} ⊆ {1,2,3} ⊆ {1,2,3}.

• A ( B states that the set A is a proper subset of the set B: every element in A is also in B, and there

are elements in B that are not in A. Example: {1,3}( {1,2,3}, but {1,2,3} 6( {1,2,3}.

• A 6⊆ B states that the set A is not a subset of the set B: some element in A is not in B.

Example: {1,3} 6⊆ {1,2,5} 6⊆ {1,5}.

• B\A is the operation of set subtraction (also written as B−A) which results in the largest subset of

the set B that does not contain any elements that are in the set A. Note that elements of A that are not in

B have no effect on the outcome (i.e., A need not be a subset of B). Example: {1,2,3,4}\{1,3,5}=

{2,4}.

If p is true whenever the beliefs in A are true, then A entails p—denoted as A |= p. If p can be derived

(through a series of inference steps) from some set A, then it is said that A derives p—denoted as A ` p.

In a sound system, any belief that is derived is entailed. In a complete system, any belief that is entailed

can be derived.
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The deductive closure of the set A is written as Cn(A), and it is the set of all beliefs that are derivable

from A: Cn(A) =de f {p | A ` p}.

Some set A is consistent if A6 ` ⊥, where ⊥ denotes logical contradiction. In other words, A is consistent

if for every p ∈ Cn(A),¬p /∈ Cn(A), where ¬p is the negation of p, or “not p”. Note: For monotonic

logics, if A `⊥ and A⊆ A′, then A′ `⊥ . Similarly, if A 6 ` ⊥ and A′ ⊆ A, then A′ 6 ` ⊥ . If A `⊥, then A is

inconsistent.

Inconsistent sets are referred to as nogoods in the assumption-based truth maintenance system (ATMS)

literature [de Kleer1986, Forbus & de Kleer1993]. A kernel for p is, by definition, a set that minimally

derives the belief p [Hansson1999].

Definition 1.2.1 The set A is kernel for p (also called a p-kernel) if and only if A ` p and (∀A′ ( A) : A′ 6 `p.

There are two main approaches to belief revision that will be discussed in depth in Chapter 2: the

coherence approach and the foundations approach. The foundations approach to belief change [Doyle1979,

Gärdenfors1992, Hansson1993] distinguishes between (1) a finite set of beliefs called the belief base (where

the beliefs have independent standing) and (2) the set of derivable (non-base) beliefs—each requiring the

support of the base beliefs from which it is derived to be believed. The deductive closure of the base B is the

belief space [Martins & Shapiro1983] or theory [Alchourrón, Gärdenfors, & Makinson1985] of B, and it is

infinite.1 The foundations approach is also called base belief change.

In contrast to the foundations approach, where base beliefs support derived beliefs, the coherence ap-

proach [Alchourrón, Gärdenfors, & Makinson1985] to belief revision does not distinguish between a set of

base beliefs and beliefs that are derived through reasoning. All beliefs have equal status in the belief space,

and they can support each other. The coherence approach defines belief change in terms of the entire belief

1Some of the literature also refers to a theory as a belief set that is distinguished from a finite set of beliefs called a belief base.
I will not use this terminology, because I prefer to refer to a set of beliefs as a “set” or a “belief set” without the requirement that it
be deductively closed.
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space, which is a deductively closed set of beliefs (a theory). This set is infinite, which makes implementing

a coherence approach to belief change a challenge. Another term for the coherence approach is theory belief

change.

Any implemented system must, inherently, manipulate and reason from a finite set of beliefs. These

beliefs can be some arbitrary finite representation of of a coherence theory (some A, where Cn(A) equals the

theory) as discussed in [Nebel1989], or they can represent the explicit core beliefs from which a cognitive

agent reasons, which follows the foundations approach. I feel that the latter is more accurate description of

the reasoning systems in use today—where information (input; base beliefs) is entered in to a system from

which further reasoning produces inferences (the derived beliefs). Errors in the inferences point to errors in

the input information (or, possibly, the reasoning algorithms). These core beliefs are typically referred to

as base beliefs, but they are also called hypotheses in [Martins & Shapiro1983, Martins & Shapiro1988]. I

will refer to them as base beliefs throughout this dissertation.

An implemented system may not be able to reason completely. This could be due to due to limitations

on time, logic, implementation, and/or memory. In this case, there may be derivable beliefs that have not,

yet, been derived. Explicit beliefs are the beliefs that an agent (or system) is aware of having. These include

the base beliefs, initially, as well as beliefs the agent has derived from those base beliefs. Implicit beliefs

are beliefs that are derivable from explicit beliefs, but have not, yet, been derived; thus, implicit beliefs

and explicit beliefs form two separate, non-intersecting sets whose union equals he deductive closure of the

base.2 Note that an explicit belief may be additionally derivable in some way that has not, yet, been detected

by the system. In this case, the belief is explicit, but it has an implicit derivation.

The difference between explicit and implicit beliefs can be seen in Figure 1.1—where the base B and

2We define these terms while choosing not to engage in the discussion that there are some implicit beliefs that do not follow
from other beliefs—beliefs that a person knows without being told or having to reason. Because those beliefs (if they truly exist)
would need to be explicit base beliefs in an implemented system, I merely distinguish between explicit and implicit beliefs.
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Figure 1.1: A diagram showing explicit vs. implicit beliefs. Explicit beliefs are the beliefs explicitly written
in the darkly shaded area consisting of the belief base B and the explicitly derived beliefs D: B∪D. The
implicit beliefs are any beliefs that would be in the lightly shaded area (and not in the darkly shaded area)
made up of Cn(B) \ (B∪D)—this set is infinite, so only a small subset is included in this diagram. In this
example, the system has discovered that the base belief c is also derivable; but, the only other belief it has
derived is g.

explicitly derived beliefs D are in the darkly shaded area, and the area for implicit beliefs is lightly shaded

inside Cn(B). I further refer to the makeup of a system (the details that define it, such as the current belief

base) as the state of the system—also called its belief state or knowledge state.

Implemented systems strive to be sound, but are rarely complete—only systems that have relatively small

bases and simple logics can hope for completeness. This dissertation centers on accepting that a system is

incomplete and being ready to adjust in the case where an increase in knowledge (either through acquiring

new knowledge or deriving new inferences) exposes decisions based on lesser knowledge as sub-optimal (in

hindsight).

A system that cannot reason completely cannot guarantee that a set A of base beliefs underlying some
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derived belief p is a p-kernel; because, it cannot guarantee that p is minimally derived from A (i.e. some

proper subset of A may implicitly derive p). However, any sets believed to minimally derive p are called p’s

origin sets [Martins & Shapiro1983, Martins & Shapiro1988]—e.g., if A explicitly derives p, and no A′ ( A

explicitly derives p, then A is an origin set for p.

A minimally inconsistent subset of a set A is a subset of A that is inconsistent and contains no proper

subset that is inconsistent: i.e., S is a minimally inconsistent subset of A if and only if S ⊆ A, S `⊥, and

(∀S′( S) : S′ 6 ` ⊥. Therefore, a minimally inconsistent set could also be called a⊥-kernel (or falsum-kernel).

A nogood is not necessarily minimal.

A base proposition (or belief) is “believed” if the system accepts it without need for derivational support

(considers it an asserted base belief; has it in the belief base). It becomes “disbelieved” if it is removed from

the base (unasserted); this is not the same as believing its negation. A derived belief p is “believed” (is in

the belief space) if it is derivable from the current base (i.e., only if there is some p-kernel in the current

base). A belief may be both a base belief and a derived belief.

Although I will introduce belief change operations in detail in the next chapter, I include a brief de-

scription of some key terminology here. Expansion is the operation of adding a belief (to a base or theory)

with no regard to consistency maintenance (essentially, the union of that belief with the existing beliefs—

followed by deductive closure if a theory). Contraction of a belief base or theory by some belief results in

the removal or elimination (also called the retraction) of that belief from the belief space—resulting in a

new set of beliefs from which the retracted belief is not derivable. Consolidation is an operation for remov-

ing existing contradictions from a belief base, resulting in a base that is a consistent subset of the original

base.

In this dissertation, the term “belief” does not refer to a weakened assertion or a non-fact—as opposed

to facts that might be designated as untouchable during operations of belief change. I assume that all beliefs
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are potentially removable (with the possible exception of tautologies) .

1.3 Motivations

1.3.1 Implementing KR&R Requires a Departure from the Ideal

As computers are used to store more and more information, there is a strong need to improve the way that

information is both represented and used. Whether modeling real world situations or concepts in an agent’s

mind, the information that is to be stored in (and reasoned about by) a computer must be converted into a

representation that is, in most cases, a simplified version of the information.

There are exceptions to the above statement. Storing a social security number (SSN) in a database, for

example, does not alter it in any way. But consider that a SSN may be just one of many items of data stored

in the database, and a set of that data (SSN, date of birth, name, address, etc.) represents a person. Even

though the SSN is accurately represented, the person is not—and cannot be—fully represented. So, we must

first accept that the representations of information cannot be perfect.

The next reality check is that the ways that computers are programmed to use this information are also

not perfect. Although there are many cases where computers can improve on the mental computations

of humans by manipulating information faster and more accurately than we can, there are also reasoning

techniques that humans use that cannot be (or have not yet been) captured in a KR&R system.

Even when the beneficial aspects of human reasoning are implemented in a computational system, that

implementation is a representation of the way that humans reason and inherently must be a simplification

of the process. If you doubt that, try writing down exactly how to ride a bike or cook a favorite recipe, then

observe someone following your directions. There will always be some subtle nuance of the process that

cannot be captured on paper. How much harder is it, then, to program the subtle ways that we reason—
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especially when we often are unaware of what we are doing, much less how we are doing it.

Just as a system cannot attain perfection when representing and reasoning with information, it may also

fall short of perfection when revising a collection (or set) of information—adding, changing, and removing

information, as well as detecting and dealing with contradictions.

The underlying motivation for this research is the goal of improving the performance of a real world,

non-ideal, implemented system. This required the development of new terminology to discern the subtle

differences in non-ideal states, new operations of belief change, and the development of an anytime algo-

rithm—an algorithmic design concept that is favored in implemented systems. The anytime algorithm was

introduced in [Dean & Boddy1988]; and the many aspects and benefits of an anytime algorithm will be dis-

cussed later (in Section 4.5.1)— though, essentially, it provides an ever-improving result as it progresses,

even if it does not run to completion.

1.3.2 Specific Observations Motivating this Research

Belief change research often assumes an ideal reasoning agent

Much of the research on belief change defines the belief change operations as they would be used by an

ideal agent – an agent that has an unlimited memory and is capable of instantaneous and perfect reasoning.

The belief change operations defined in such cases describe an ideal goal that a real-world (implemented)

system can strive to approach in spite of its limitations—limitations such as (1) reasoning takes time, (2)

memory is not infinite, and (3) the system’s reasoning capabilities may be imperfect.

Although these limitations prevent ideal reasoning, the terminology used when defining the ideal oper-

ations is not sensitive to these limitations. For example, the term “inconsistent” would apply equally to a

system whose belief space contains a known contradiction and a system that is unaware of some implicit

contradiction. There is a need for enhancing the terminology to encompass the more subtle states of a
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non-ideal system.

The Limited Effects of Removing a Belief

In many cases, humans change their minds without realizing how that change will affect their belief space.

In the specific case of removing some belief p (typically, because a stronger belief conflicted with it), there

may exist previously retracted beliefs that were removed solely because they conflicted with p. In hindsight,

the removal of p eliminates the need for the removal of those other beliefs, and they could possibly return

to the belief space without raising a contradiction.

The research in this dissertation formalizes and refines an algorithm for just this kind of hindsight repair.

It has a belief base optimizing effect that mimics the process of sending a jury to the jury room to review all

the information from a trial in order to produce an optimal decision on the case. This hindsight repair is also

closely related to the topics mentioned in the next two sections: adherence to the postulate of Recovery and

the negative effects of operation order.

Coherence vs. Foundations Theory and the Recovery Postulate

There are various postulates used to describe belief change operations for the two belief change approaches:

foundations and coherence. The coherence postulates presented in the most cited belief change reference,

[Alchourrón, Gärdenfors, & Makinson1985], also contain the most controversial postulate—the Recovery

postulate for contraction. Although these postulates will be discussed in detail in Chapter 2, I mention the

Recovery, because it motivates this research.

The Recovery postulate states that if an operation to retract some belief p is immediately followed by an

operation of expansion by p, then the belief space existing prior to those two operation should be contained

in the belief space that results from the two operations. Essentially, it says that expansion by a belief should
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undo the contraction by that same belief—in the sense that any beliefs removed from the theory due to the

contraction are returned to the theory. The new theory is a proper superset of the original theory only if the

belief being added in expansion was not in the original theory.

There are two key elements that are both needed for a system’s adherence to Recovery. One is that

the contraction operation remove as little as possible to achieve the retraction—e.g., removing all beliefs

would be one way to perform contraction, but it would be too extreme a reduction of the belief space. The

second requirement is deductive closure both before and after the belief change operations—and this is why

Recovery holds for theory contraction of the coherence approach but not for the belief base contraction used

in the foundations approach.

The background needed for an example of this is too extensive for this chapter. There is a full discussion

of the controversy surrounding the Recovery postulate and a defense of Recovery are presented in Chapter

2, Section 2.3. I feel that the foundations approach would benefit from an improved adherence to Recovery.

Non-prioritized Addition and the Effects of Operation Order

A majority of the belief-change literature requires prioritized addition—where a belief added to a base or

theory (along with attention to consistency maintenance) is required to survive the addition and be in the

resulting belief space; the belief being added has the highest priority. Prioritized-addition is fine for recency-

dependent information, where the most recent information rules out all contradictory information (example:

the traffic light is red vs. the light is green). In this case, operation order is essential to obtaining the correct

belief space.

Recency-dependence has multiple levels of granularity, however, and there are cases where prioritized-

addition is inappropriate. One example is when information is collected from multiple sources with varying

credibilities, and the order the information enters the system has no relationship to the credibility of the
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source. In this case, non-prioritized addition would be more appropriate—where information is retained

based on its credibility (more so than its recency), and new information that conflicts with existing beliefs is

not guaranteed to be in the newly revised belief space. The system might choose to disallow the acceptance

of some weaker new belief—preferring, instead, to retain the conflicting beliefs that are considered more

credible and thus maintain its current belief space (although, depending on the system, the belief state might

change to reflect that the new information was considered and rejected).

It would seem that the order of the addition operations should not affect the outcome of the belief

space—the more credible beliefs should survive, and the less credible are disbelieved. However, this is not

true. In the case of base theory change with consistency maintenance, the lack of adherence to the Recovery

postulate results in the order of non-prioritized additions affecting the makeup of the resulting base. If one

considers all the possible ways to re-order incoming information and the various bases that would result

from the different input orders, then, typically, one or more of the resulting bases are preferred over the

others. Therefore, the less preferred bases are sub-optimal.

I refer to this kind of sub-optimality as a negative effect of operation order. Improving adherence to

Recovery goes hand in hand with eliminating the negative effects of operation order.

1.4 Research Contributions

Contributions of this research include:

• The introduction, definition and formalization of the operation of reconsideration —an operation of

hindsight, belief base optimization

• An analysis of how reconsideration offers an aspect of Recovery for belief bases

• A discussion of how reconsideration eliminates the negative effects of the order of non-prioritized

belief change operations
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• An efficient, anytime algorithm called dependency-directed reconsideration (DDR) that can be used

to implement reconsideration in a truth maintenance system

• An expression of DDR as a constraint satisfaction problem

• A formalization of a non-ideal belief space called a deductively open belief space (DOBS) along with

the terminology that applies to a DOBS

• An discussion of how DDR can be applied to a DOBS

• A data structure and algorithm that allows a computationally efficient way to maintain a collection

of minimal sets—useful for maintaining a collection of origin sets for an individual belief as well as

maintaining the collection of minimal nogoods in a set of beliefs.

A Deductively Open Belief Space—A Brief Introduction to Dispel Misconceptions

Although Chapter 5 provides a complete formalization of a deductively open belief space (DOBS), I briefly

discuss it here, to insure that the reader does not assume that a DOBS is merely a belief base. It is distinctly

different from a base.

First presented in [Johnson & Shapiro2000a] and later refined in [Johnson & Shapiro2001], a DOBS is

a belief space that is by definition not guaranteed to be deductively closed. It contains some core set of

beliefs (a belief base) and the beliefs that have been derived from them so far—this recognizes the fact that

reasoning takes time. For example, a DOBS might include the beliefs p and p→q without the derivable

proposition q.

Although a DOBS is defined in terms of the foundations approach to belief change with a set of core

base beliefs, there is a marked difference between the concept of a DOBS and that of a belief base. Any

belief base has a belief space that is its deductive closure. By contrast, a DOBS is a finite belief space that

is made up of only explicit beliefs (both base beliefs and explicitly derived beliefs); and this DOBS can
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increase in size when additional deductions add to its set of explicitly derived beliefs. This increase in the

number of beliefs in a DOBS can happen even as the base remains unchanged, because the set of explicitly

derived beliefs is increasing in size as the system reasons from its base.

However, the DOBS for some belief base B does form a finite set of beliefs whose deductive closure is

the same as the deductive closure of B, itself—thus, technically, both the DOBS and B are belief bases for

the same deductively closed belief space. As stated before, I favor Hansson’s description of a belief base,

however, as referring to some core set of beliefs which are asserted with independent standing—as opposed

to any finite set of beliefs whose closure is a predetermined belief space [Nebel1989]. Therefore, I do not

refer to the DOBS, itself, as a belief base. See [Hansson1999] for a more complete discussion of various

belief base approaches.

1.5 Dissertation Outline

The remainder of this dissertation gradually builds a formalization for a knowledge state that can perform re-

consideration using the algorithm for dependency-directed reconsideration (DDR). After introducing related

work in Chapter 2, I define reconsideration and DDR in Chapters 3 and 4. Chapter 5 includes a formaliza-

tion of the DOBS and discusses how DDR can be applied to a DOBS. An extended case study is presented

in Chapter 6 that illustrates the anytime features of DDR when performed on a DOBS. Chapters 7 and 8

contain conclusions and future research topics, respectively.

The proofs for the theorems in Chapter 4 are extensive, and most of them are located in the Appendix.

There is also an index provided to assist with recalling terminology that is used across several chapters.
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Chapter 2

Background and Related Work

2.1 Introduction

2.1.1 Purpose of This Chapter

This chapter introduces the background and related research that this dissertation will build upon or be

compared to. This includes a discussion of the extensive terminology used by belief change researchers and

how I will be using that terminology in this dissertation. It also includes a brief overview of belief change

systems which will be mentioned in later chapters.

2.1.2 Belief Change vs. Belief Revision

There are many terms used to describe the research field that encompasses the theories of how collections

of beliefs should be maintained. I referred to two of these terms in Chapter 1: theory belief change and

base belief change, the distinguishing parts being a deductively closed set of beliefs, called a “theory,” and

a finite set of beliefs, called a “base”.

This field has been commonly referred to as the field of “belief revision” (often abbreviated as BR).
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However, there is also a specific belief change operation called “revision” (which I will discuss later in

this chapter), and this leads to potential confusion when discussing a belief revision operator that is not

“revision”.

Other work in this field refers to BR as the field of ”belief change” or research about “knowledge in

flux”. I will use the term “belief change” to describe the overall concept of any operation that changes the

state of the beliefs. Unfortunately, the abbreviation “BC” is never used in the literature. Therefore, I will use

“BR” as the abbreviation for “belief change”—knowing that it is not ambiguous with the specific operation

of “revision”.

2.1.3 Merging Factions of Belief Change

When belief change research was in its early stages, there were two distinct research groups working on

belief change theories: philosophers (of which [Alchourrón, Gärdenfors, & Makinson1985] is the most ref-

erenced work) and computer scientists—most notably the truth maintenance system (or TMS) researchers

[McAllester1978, Doyle1979, Martins & Shapiro1983, de Kleer1986]. Differences between these groups

were easy to see in their early years, and might at first glance be distinguished by the terms theoretical vs.

implementation. This would be dangerous, however, because it incorrectly implies that the philosophers’

theories could not be implemented and that the computer science implementations had no theory behind

them.

Hansson makes a better distinction in [Hansson1991a] when he refers to belief change research as using

“sentential representations” for beliefs, and then divides these representations into the two categories of

“pure” vs. “composite”. Beliefs in pure representations are solitary entities, whereas beliefs in the composite

representations were each paired with additional information. The AGM field of research (named for the

1985 paper of Carlos E. Alchourrón, Peter Gärdenfors, and David Makinson) falls into the pure category.
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I present the basics of their work in this chapter along with other relevant work with pure sentential belief

base representations [Hansson1991a, Hansson1999, Williams & Sims2000, Wassermann1999], and I refer

to this collection of researchers as the “AGM/Base” research group.

Regarding the composite group, Hansson divided it into two further categories: “probabilistic” and

“track-keeping”. The early research on TMSs falls into the latter category, because each belief is paired with

the justifications for [McAllester1978, Doyle1979] or origins of [Martins & Shapiro1983, de Kleer1986]

that belief—the reasons for having that belief. This was a way of keeping track of the derivation history of

a belief.

The probabilistic group pairs each belief (including both base beliefs and derived beliefs) with a quanti-

tative measure of the likelihood of whether the belief is true or accurate. Probabilistic belief change research

will not be discussed in this dissertation.

This dissertation achieves a partial merging of the AGM/Base and TMS factions by

1. presenting an operation for Base belief change that allows an improved adherence to AGM theory

constraints;

2. providing an anytime1 algorithm to implement into a TMS the operation mentioned in (1) and that

improves the belief change performance of the TMS to more closely adhere to the AGM/Base con-

straints;

3. providing a formalization for an implemented KR&R system along with additional terminology that

can be used to:

• alter the guidelines and constraints that were developed for ideal agent belief change (from the

AGM/Base group) in order to formalize implementable guidelines and constraints for belief

1The many aspects and benefits of an anytime algorithm will be discussed later (in Section 4.5.1), but it provides an ever-
improving result as it progresses—even if it does not run to completion.
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change by non-ideal reasoning agents;

• provide additional ways to describe and compare implemented systems that differ in ways that

cannot be described using the ideal agent terminology of the traditional AGM/Base research.

2.1.4 Agents: Ideal vs. Resource-Bounded

Belief change research has produced many theories on how to perform belief change operations, but they

always have to consider the reasoning agent—i.e., the theories need to take into account the reasoning

abilities and limitations of the reasoning system. Some key qualities of a reasoning system are completeness

and soundness.

• Sound reasoning insures that any belief that is derived from a set of beliefs is truly entailed by those

beliefs. This is fairly straightforward in a monotonic system.

• Complete reasoning insures that any belief that is entailed by a set of beliefs (A) is derivable from that

set. This becomes computationally expensive or impossible as the set A increases in size or as the

logic becomes more complex (e.g., FOPL with functions).

.

When working with pure theory, researchers can assume an ideal agent—one that can reason soundly.

completely, and instantly, and has infinite space for retaining beliefs. This type of agent can consider the

deductive closure of a set of beliefs whenever it has to determine the consistency of that set or remove beliefs

to maintain consistency.

In a real-world implementation, resources are limited—agents take time to reason, and their memory

space is finite. The theoretical deductive closure of a set is usually infinite, so a resource-bounded agent

[Wassermann1999] cannot consider the deductive closure. Reasoning in an implemented system also takes

time, so the system is likely to have implicit beliefs it is not yet aware of.
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For this dissertation, I am not examining an agent’s limits of logical ability [Wassermann1999] as another

factor contributing to some implicit but unknown inconsistency. However, regarding implemented KR&R

systems, I do recognize that the theoretical logic (as described by a system designer) and the logical abilities

of the system (as they have been implemented) might differ—with the latter falling short of the ideal design.

This is a prime example of why even the most simple KR&R system cannot guarantee correct information

at all times.

2.2 AGM/Base Research

2.2.1 Foundations and Coherence Approaches

Implemented systems typically follow a foundations approach [Doyle1979, Gärdenfors1992, Hansson1993]

where the belief space is made up of a base set of beliefs, which are self-supporting (i.e., they are asserted

without having to be derived), and beliefs derived from (i.e., supported by) those base beliefs. Belief change

operations alter the presence of beliefs in the base set (e.g., beliefs are added to and/or removed from the

base), and the derived beliefs that lose their support are no longer believed.

By contrast, a coherence approach [Alchourrón, Gärdenfors, & Makinson1985] allows previously de-

rived beliefs to remain as long as they are not responsible for an inconsistency, even if their support is lost.

Simplistically, the belief “responsible” for an inconsistency is the belief that should be chosen for retraction

to resolve that inconsistency. Although belief maintenance is much more complicated than that, the focus of

this dissertation is to improve belief change results in a non-ideal system, based on the information it already

has, rather than focusing on which beliefs should be removed to maintain consistency. Although our DOBS

formalization follows the foundations approach, I offer a coherence version of the DOBS in Section 5.2.2

that would allow a coherence approach to DOBS belief change.
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In the following subsections, I discuss some belief change integrity constraints and the rationality pos-

tulates for various belief change operations. The belief change operations discussed are expansion, contrac-

tion, revision, kernel-contraction, kernel consolidation, and kernel semi-revision. As an overview:

• expansion is the addition of a belief to an existing set of beliefs with no attempt to maintain consis-

tency;

• contraction is the removal of a belief from a set of beliefs (including its closure);

• revision is a form of addition combined with consistency maintenance;

• consolidation is an operation on a finite set of beliefs that eliminates inconsistency.

Note that any form of inconsistency elimination or avoidance may require the contraction of one or more

beliefs that are involved in deriving the inconsistency; so expansion is the only operation that is guaranteed

not to include the removal (or contraction) of some belief.

2.2.2 Integrity Constraints for Belief Change Operations on a Knowledge Space

Gärdenfors and Rott [1995] list four integrity constraints (paraphrased below) for a deductively closed

knowledge space (a.k.a. theory) undergoing belief change:

1. a knowledge space should be kept consistent whenever possible;

2. if a proposition can be derived from the beliefs in the knowledge space, then it should be included in

that knowledge space;

3. there should be a minimal loss of information during belief change;

4. if some beliefs are considered more important or entrenched than others, then any belief change

operation that removes beliefs should remove the least important ones.
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These constraints are the basic guidelines for belief change in the AGM/Base research. Constraint 1

clearly suggests that inconsistencies should be avoided. Constraint 2 favors deductive closure and com-

plete reasoning—everything entailed by a set should be in that set. Constraint 3 reminds us that any beliefs

removed to insure consistency should be directly related to some inconsistency—if unconnected to an in-

consistency, a belief should remain in the base. Constraint 4 suggests removing weaker or less credible

beliefs rather than those that are more credible (if given the choice).

How to satisfy both Constraints 3 and 4 is an ongoing debate. A typical consideration is what to do

when many weak beliefs overrule a single, more credible (up till now, that is) belief.

These constraints are discussed in more detail in Chapter 5, which introduces the formalization of a

DOBS, and are altered for use as guidelines for a DOBS system and for implementing automated belief

revision in an implemented KR&R system.

2.2.3 AGM Operations: Expansion, Contraction, and Revision

The AGM belief change operations (expansion, consolidation, and revision) are performed on a deductively

closed knowledge space (also called a theory) K. Therefore, K = Cn(K).

Expansion

The belief space K expanded by the proposition p is written as K+p and defined as K+p =de f Cn(K∪{p}).

Note that the resulting space can be inconsistent, and (for classical logic) all inconsistent belief spaces

for some given language are identical—consisting of the set of all possible formulas in that language, due to

deductive closure. Inconsistent belief spaces are indistinguishable due to their deductive closure—they are

the same belief space: K⊥ = L . Therefore, all theory belief change operations are focused on preventing
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inconsistency whenever possible.

Contraction

The belief change operation of contraction is not directly defined but, instead, is constrained by rationality

postulates. For contraction of a belief space K, by the proposition p (written as K–p), the six basic AGM

postulates are [Alchourrón, Gärdenfors, & Makinson1985]:

(K–1) K–p is a belief space Closure

(K–2) K–p⊆ K Inclusion

(K–3) If p /∈ K, then K–p = K Vacuity

(K–4) If not ` p, then p /∈ K–p Success

(K–5) K ⊆ (K–p)+ p Recovery

(K–6) If ` p↔ q, then K–p = K–q Extensionality

K–1 states that the result of contraction is a deductively closed belief space.

K–2 states that no new beliefs are added as a result of contraction of a belief space—the belief space

resulting from contraction is included in (i.e., is a subset of) the original belief space.

K–3 states that contracting a belief space by some belief that is not in the belief space should result in no

change to that belief space.

K–4 states that contracting a belief space by some belief p should result in a belief space that does not

entail p, provided that p is not a tautology.

K–5 states that any beliefs lost (i.e., that become disbelieved) due to contraction by a belief can be recovered

(i.e., returned to the belief space) through a subsequent expansion by that same belief.
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K–6 states that if, for two beliefs, p and q, neither can exist in a belief space without the other, then the

belief space resulting from contraction by one of the beliefs (p) is equal to the belief space resulting

from contraction by the other belief (q).

Recovery (K–5) is the most controversial of the contraction postulates. Although adherence to Recovery

is not necessarily unwanted, the argument concerns whether it should be a primary constraint of a contraction

operation. A detailed discussion of the Recovery postulate is presented in Section 2.3.

Revision

The belief change operation of revision is not directly defined. Like contraction, it is constrained by ra-

tionality postulates. The six basic AGM postulates for revision of a belief space K, by the proposition p

(written as K∗p) are [Alchourrón, Gärdenfors, & Makinson1985]:

(K∗1) K∗p is a belief space Closure

(K∗2) p ∈ K∗p Success

(K∗3) K∗p⊆ K+p Expansion 1

(K∗4) If ¬p /∈ K, then K+p⊆ K∗p Expansion 2

(K∗5) K∗p = K⊥ only if ` ¬p. Consistency preservation

(K∗6) If ` p↔ q, then K∗p = K∗q Extensionality

K∗1 states that the result of revision is a deductively closed belief space.

K∗2 states that revision by a belief results in a belief space that contains that belief.

K∗3 states that expansion of K by some belief p results in a superset of the belief space resulting from

revision of K by p.
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K∗4 states that revision of K by a belief (p) that is not inconsistent with K results in a superset of the belief

space resulting from expanding K by p.

K∗5 states that revision of K by some belief p results in a consistent belief space unless p, itself, is

inconsistent.

K∗6 states that if, for two beliefs, p and q, neither can exist in a belief space without the other, then the

belief space resulting from revising K by one belief (p) is equal to the belief space resulting from

revising K by the other belief (q).

Note that the operation of AGM revision requires that the belief being added must be contained in the

resulting belief space. This has prompted the belief change community to refer to this form of addition as

prioritized revision—where the new belief has highest priority (i.e., it must survive any operation to retain

consistency, even if it is itself inconsistent), and the remaining beliefs may be ordered (or not) as long as that

ordering does not place any of them above the incoming belief. By contrast, non-prioritized belief change

[Hansson1999] does not mean that beliefs are not ordered in any way, but merely that highest priority is not

always assigned to an incoming belief. I present some of Hansson’s non-prioritized belief change operations

later—cf. page 31.

The inter-relation between revision and contraction is shown by the following two well-known identities:

• K∗p = (K–¬p)+ p Levi Identity

• (K–p) = K∗¬p∩K Harper Identity

The Levi Identity shows that revision by p is equivalent to contraction by ¬p followed by expansion by

p. This is called internal revision and will be contrasted with external revision later in this chapter (cf.

page 28). The Harper Identity shows that contraction by p can be achieved by revising a theory by ¬p and

then removing any beliefs that were not in the original theory. These identities are named after Isaac Levi

and William Harper, respectively, but no citations accompany them in the literature.
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2.2.4 Hansson’s Postulates for Expansion, Contraction, and Revision, of a Belief Base

Hansson [1991a,1993,1999] proposes AGM-style postulates that can apply to belief base revision, where

a belief space BS is revised by performing a belief change operation on some finite belief base H, where

Cn(H) = BS. Per the foundations approach recommended by Hansson and used by the TMS researchers,

I assume that this base is not just some arbitrary base whose closure is BS. I assume it is the basis for the

construction of the belief space BS.

Hansson’s postulates were originally written for contraction and revision of a belief base by a set of

propositions. Below are rewritten versions, altered for contraction (and revision) of a belief base, H, by

a proposition p (as done in [Gärdenfors & Rott1995]), where Z is a set of propositions in L and q is a

proposition in L .

Though expansion can be directly defined, contraction and revision are constrained by postulates. I

present a brief, though incomplete, description here to aid in understanding the postulates below. Contraction

of H by p (H–p) includes removing elements of H to form H ′ such that the belief space for H ′—(Cn(H ′))—

no longer contains p. Revision of H by p (H∗p) means adding p to H to form H ′ such that p ∈ H ′ and H ′

is consistent (if possible)—this may require removing beliefs so that H \H ′ 6= /0.

Expansion

Expansion for a belief base is similar to that for a theory without the deductive closure. The belief base H

expanded by the proposition p would be written as H+p =de f H ∪{p}.

Note that the resulting base can be inconsistent. However, unlike a deductively closed belief space, it is

possible to distinguish between finite belief bases that are inconsistent. The closure of an expanded base is

equivalent to the closure of its belief space: If Cn(H) = K, then Cn(H + p) = K + p.
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Contraction

Contraction of a belief base H by a proposition p (H–p):

(H–1) H–p⊆ H Inclusion

(H–2) If not ` p, then p /∈Cn(H–p) Success

(H–3) If q∈H\H–p, then there is some H ′ such that H–p⊆H ′⊆H and p /∈Cn(H ′), but p∈Cn(H ′∪{q})

Relevance

(H–4) If it holds for all subsets H ′ of H that p /∈ Cn(H ′) if and only if q /∈ Cn(H ′), then H–p = H–q

Uniformity

(H–5) If not ` p and each element of Z implies p, then H–p = (H ∪Z)–p Redundancy

H–1 states that the base resulting from a contraction is a subset of the original base.

H–2 states that contracting a belief base by some belief p should result in a belief base that does not entail

p, provided that p is not a tautology.

H–3 states that any belief removed during a contraction operation must contribute in some way to the

derivation of that belief.

H–4 states that if, for two beliefs, p and q, neither can exist in the closure of a subset of the base without

the other, then the belief base resulting from contraction by one of the beliefs (p) is equal to the belief

base resulting from contraction by the other belief (q).

H–5 states that, as long as p is not a tautology, any set Z made up of beliefs that entail p can be added

to the base before contracting by p, and the result will be the same as contraction performed without

adding Z (all the beliefs in Z will be removed from the base).
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Base contraction cannot adhere to Recovery. As mentioned before, a detailed discussion of the Recov-

ery postulate is presented in Section 2.3. The research presented in this dissertation includes an alternate

Recovery formulation that belief change operations for bases adhere to in more preferred situations. This

formulation and the discussion of base belief change adherence is presented in Section 3.3.

Revision

Revision of a belief base H by the proposition p (H∗p whose belief space is Cn(H∗p)):

(H∗0) If not ` ¬p, then H∗p is consistent. Consistency

(H∗1) H∗p⊆ H ∪{p} Inclusion

(H∗2) If q∈H\H∗p, then there is some H’ such that H∗p⊆H ′ ⊆H∪{p}, H ′ is consistent, and H ′∪{q}

is inconsistent Relevance

(H∗3) p ∈Cn(H∗p) Success

(H∗4) If for all H ′⊆H, H ′+ p is inconsistent if and only if H ′+q is inconsistent, then H∩H∗p = H∩H∗q

Uniformity

(H∗5) If not ` ¬p and each formula in Z is logically inconsistent with p, then H∗p = (H ∪Z)∗p

Redundancy

H∗0 states that, as long as ¬p is not a tautology, revision by p will produce a consistent base.

H∗1 states that expansion of the base H by some belief p results in a superset of the belief base resulting

from revision of H by p.

H∗2 states that any belief removed during revision of H by a belief p must contribute in some way to an

inconsistency derivable from H expanded by p.
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H∗3 states that revision by a belief results in a belief base that contains that belief.

H∗4 states that if, for two beliefs, p and q, any subset of the current base is inconsistent when expanded by

p if and only if it is also inconsistent when expanded by q, then the belief base resulting from revision

by p and the belief base resulting from revision by q share the same elements of the original base (i.e.,

the beliefs removed to maintain consistency when revising by p are the same beliefs as those removed

when revising by q).

H∗5 states that, as long as p is not a tautology, any set Z made up of beliefs that are logically inconsistent

with p can be added to the base before revising by p, and the result will be the same as revision

performed without adding Z (all the beliefs in Z will be removed from the base).

Base revision can also conform to the Levi Identity: H∗p = (H–¬p)+ p. As with theory revision, this

is referred to as internal revision (cf. page 24). As can be seen from H∗3, this is also a form of prioritized

revision.

Additionally, base revision can be constructed so that to conform with a reversed version of the Levi

Identity: H∗p = (H + p)–¬p [Hansson1993]. This is called external revision. Reversing the Levi Identity

does not work for deductively closed belief spaces, because, if the expansion process makes the space

inconsistent, the result is K⊥.

2.2.5 Hansson’s Belief Base Postulates for Belief Change Operations Using Kernels

This section briefly reviews the belief change operations of kernel contraction, kernel consolidation, and

kernel semi-revision of a finite belief base B [Hansson1994, Hansson1999].

Kernel Contraction

The kernel contraction [Hansson1994] of a base B by a belief p is written as B ∼ p.
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For this dissertation, B ∼ p is the kernel contraction of the belief base B by p (retraction of p from B)

and, although constrained by several postulates, is basically the base resulting from the removal of at least

one element from each p-kernel (def 1.2.1 on page 4) in B—unless p ∈ Cn( /0), in which case B ∼ p = B.

Selecting which elements of the p-kernels to remove is done by a decision function that is called an incision

function because it determines what p-kernel elements will be “cut out” of the existing base to achieve the

retraction of p.

The postulates constraining kernel contraction are formalized in Hansson’s theorem on kernel contrac-

tion:

Theorem 2.2.1 [Hansson1994] The operator ∼ for B is a kernel contraction if and only if it satisfies:

1. If 6 `p, then B ∼ p 6 `p; (Success)

2. B ∼ p⊆ B; (Inclusion)

3. If q ∈ B and q 6∈ B ∼ p, then (∃B′) : B′ ⊆ B, B′ 6 `p and B′∪{q} ` p; (Core-retainment)

4. (∀B′ ⊆ B): If B′ ` p if and only if B′ ` q, then B ∼ p = B ∼ q. (Uniformity)

This theorem says that the kernel contraction of B by p results in a subset of B (Inclusion) that cannot

derive p, unless p is a tautology (Success). Additionally, any beliefs removed must be elements of a p-kernel

(Core-retainment), thus the core beliefs in B that do not contribute to the derivation of p must remain in the

base after contraction is performed. The Core-retainment postulate is similar to the Relevance postulate for

base contraction discussed in Section 2.2.4. Inclusion and Success are identical to those for base contraction.

Uniformity states that an incision function should base its selection of beliefs to be removed on the

choices available and should be consistent whenever presented with those same choices.

Example 2.2.2 Given B = {r,r → q∧ p}, there are three possible results of B ∼ p and the same three

possible results for B ∼ q: {r} or {r→ q∧ p} or {}. Uniformity says that given these choices, the incision
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function should not make a different choice for B ∼ p than it does for B ∼ q. The case where B ∼ p = {r}

and B ∼ q = {r→ q∧ p} violates Uniformity.

Uniformity for kernel contraction is identical to the Uniformity postulate for base contraction discussed

in Section 2.2.4 and is similar in concept (though not identical) to the AGM Extensionality postulate dis-

cussed in Section 2.2.3.

Kernel Consolidation

Consolidation [Hansson1994] is the elimination of any inconsistency and is defined for belief bases only.

Recall that, for deductive closure in classical logic, any inconsistent belief theory is K⊥, making incon-

sistency removal a non-issue—theory belief change operations focus on preventing inconsistencies from

occurring.

B! —the kernel consolidation of B [Hansson1994]—is the removal of at least one element from each

⊥-kernel2 in B s.t. B! ⊆ B and B!6 ` ⊥. This means that kernel consolidation is the kernel contraction of an

inconsistency (B! = B ∼⊥, where ∼ is the operation of kernel contraction), also referred to as contraction by

falsum, so it adheres to the same postulates as kernel contraction (except that Uniformity is not applicable).

However, specific postulates are mentioned in Hansson’s kernel consolidation theorem:

Theorem 2.2.3 [Hansson1997] An operation “!” is an operation of kernel consolidation if and only if for

all sets B of sentences:

1. B! is consistent; (Consistency)

2. B!⊆ B; (Inclusion)

3. If q ∈ B and q 6∈ B!, then (∃B′) : B′ ⊆ B, B′ 6 ` ⊥ and B′∪{q} `⊥. (Core-retainment)

2Recall from Section 1.2, page 1.2 that a ⊥-kernel is a minimally inconsistent set.
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The Consistency postulate for consolidation is equivalent to the kernel contraction postulate of Suc-

cess: Cn(B!)6 ` ⊥. Inclusion and Core-Retainment are the same as for kernel contraction.

Kernel Semi-Revision

The belief change operation of kernel semi-revision [Hansson1997] is a form of non-prioritized belief

change. This is in contrast to prioritized belief revision of B by a (B∗a), where the belief currently being

added is given highest priority, until the next prioritized addition, and which must adhere to the Success

postulate: a ∈ (B ∗ a)—cf. page 24. With semi-revision, if the incoming belief raises an inconsistency,

the KR&R system can choose whether to (1) reject the incoming belief or (2) accept it and remove some

previously held base belief(s) to obtain consistency.

The kernel semi-revision of the base B by the belief a is written as B +! a , and it is defined as B +! a

=de f (B+a)! , which is equivalent to (B∪{a})! . The operation +! is an operator of kernel semi-revision

IFF [Hansson1997]

1. Cn(B+! a)6 ` ⊥ (Strong Consistency)

2. B+! a ⊆ B+a (Inclusion)

3. p ∈ (B\B+! a),⇒ (∃X) : X ⊆ B+a, Cn(X)6 ` ⊥, and Cn(X + p) `⊥ (Core-retainment)

4. (B+a)+! a = B+! a (Pre-expansion)

5. If p,q ∈ B, then B+! p = B+! q (Internal Exchange)

The key concept is that B +! a is equivalent to (B + a)!—expansion by a followed by consolidation—

where the consolidation operation might actually remove a. The first three postulates follow directly from

those for consolidation. Note: Strong Consistency also insures that any inconsistency previously existing

in B, whether related to the incoming belief or not, will also be resolved by semi-revision. Regarding Pre-

expansion, since (B + a)+! a = ((B + a)+ a)! (by definition), and ((B + a)+ a) = ((B∪{a})∪{a}) =
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(B∪{a}) = B + a, then (B + a)+! a = (B + a)! = B +! a. Lastly, Internal Exchange is obvious when

considering that B +! p = B +! q is equivalent to (B + p)! = (B + q)! which is equivalent to B! = B! ,

because p,q ∈ B.

Kernel semi-revision is not possible for deductively closed belief spaces, because the initial expansion

might result in the inconsistent set K⊥. Note that N⊥ = L .

2.2.6 Wassermann’s Resource-Bounded Theories

Wassermann’s formalization for “resource-bounded belief revision” is described theoretically in her Ph.D.

Thesis [Wassermann1999], and specifically deals with the issue of resource-boundedness. Wassermann

defines the concept of “embedded local change”— the belief set being altered during some belief change

operation using some proposition p should be some subset of the full base of beliefs that is relevant to

p (i.e., the elements in the set have some relation to p). This relation could be syntactic, logical, etc., but

unrelated propositions should not be considered during the belief change operation. As an example, p would

be related to the belief p→ q, and this would result in q also being related to p, though more distantly.

Wassermann also gives an anytime algorithm for determining this subset of beliefs—selecting beliefs

that are related by determining those closely related and gradually finding those that are more distantly

related. The longer the algorithm runs, the more distantly related the beliefs that are added to the set. After

this set is determined, however, the belief change operation must still be performed.

If the set is small enough (and assuming a simple logic like classical logic), traditional belief change

operations (ideal operations) can be used successfully. The anytime algorithm can be stopped whenever

the set reaches some predetermined maximum limit (to deal with resource limitations regarding memory or

computation time). This means that “related” elements outside the selected set are unaffected by the belief

change operation.
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The research focus is on issues that must be addressed in order to perform AGM/Base belief change on

a non-ideal KR&R implementation. Although the goals for this research share similarities with ours, the

approach is different and will be compared in Chapter 4 (cf. page 170).

2.2.7 Belief Liberation

Basic Belief Liberation Notation

In this section, I summarize σ-liberation [Booth et al.2005].

Belief Liberation operations assume a linear sequence (chain) of beliefs which is called σ = p1, . . . , pn.3

The sequence is ordered by recency, where p1 is the most recent information4 the agent has received (and

has highest preference), and the notation [[σ]] is the set of all the sentences appearing in σ.

A Belief Sequence Relative to K

In [Booth et al.2005], the ordering of σ is used to form the preferred maximal consistent subset of [[σ]]

iteratively by defining the following: (1) B0(σ) = /0. (2) for each i = 0,1, . . . ,n− 1: if Bi(σ)+ p(i+1) 6 ` ⊥,

then B(i+1)(σ) = Bi(σ) + p(i+1), otherwise B(i+1)(σ) = Bi(σ). That is, each belief—from most recent to

least—is added to the base only if it does not raise an inconsistency.

Definition 2.2.4 [Booth et al.2005] Let K be a theory and σ = p1, . . . , pn a belief sequence. We say σ is a

belief sequence relative to K iff K = Cn(Bn(σ)).

3This sequence is also used in [Chopra, Georgatos, & Parikh2001].
4I have reversed the ordering from that presented in [Booth et al.2005] to avoid superficial differences when comparing their

preference ordering with ours in future chapters. I have adjusted the definitions accordingly.
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Removing a Belief q from K

In [Booth et al.2005] the operation of removing the belief q is defined using the following: (1) B0(σ,q) =

/0. (2) for each i = 0,1, . . . ,n− 1: if Bi(σ,q) + pi+1 6 `q, then B(i+1)(σ,q) = Bi(σ,q) + p(i+1), otherwise

B(i+1)(σ,q) = Bi(σ,q). Note that “Bn(σ) = Bn(σ,⊥) and Bn(σ,q) is the set-inclusion maximal amongst the

subsets of [[σ]] that do not imply q.” [Booth et al.2005]

Given a belief sequence σ relative to K, σ is used to define an operation ∼σ for K such that K ∼σ q

represents the result of removing q from K [Booth et al.2005]: K ∼σ q = Cn(Bn(σ,q)) if q 6∈ Cn( /0),

otherwise K ∼σ q = K.

Definition 2.2.5 [Booth et al.2005] Let K be a belief theory and ∼ be an operator for K. Then ∼ is a

σ-liberation operator (for K) iff ∼=∼σ for some belief sequence σ relative to K.

Example [Booth et al.2005]. Suppose K = Cn(p∧q) and let σ = p→ q, p,¬p∧¬q be the belief sequence

relative to K — where ¬p∧¬q was originally blocked from inclusion in B3(σ) by the inclusion of the

more recent (and more preferred) belief p. Suppose we wish to remove p. We must first compute B3(σ, p).

We have B0(σ, p) = /0, B1(σ, p) = {p→ q} = B2(σ, p), and B3(σ, p) = {p→ q,¬p∧¬q}. Hence K ∼σ

p = Cn(B3(σ, p)) = Cn(¬p∧¬q) Note how, when determining B2(σ, p), p is nullified, which leads to the

reinstatement, or liberation, of ¬p∧¬q.

Additional Belief Liberation Terminology

To assist in later discussions, I refer to the theory associated with σ as Kσ.

Additionally, I define σ-addition (adding a belief to σ) as follows: σ + p is adding the belief p to the

sequence σ = p1, . . . , pn to produce the new sequence σ1 = p, p1, . . . , pn.5

5This is also the technique described in [Chopra, Georgatos, & Parikh2001]—though, again, I have reversed the order.
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This research is even closer to the work in this dissertation than the research done by Wassermann. The

key differences will be discussed in detail in Chapter 3.

2.3 Recovery

Theory Contraction Adheres to Recovery

The Recovery postulate for theory6 contraction [Alchourrón, Gärdenfors, & Makinson1985] states that for

a theory K and a belief p, K ⊆ (K–p)+ p, where K–p is theory contraction, and K + p =de f Cn(K ∪{p}),

theory expansion7 (to review, see Section 2.2.3).

Example 2.3.1 Let K =Cn({s,d}). Avoiding logically equivalent beliefs, K = {s,d,s∧d,s∨d,s→ d,d→

s,s↔ d,s∨¬s}.8 Assuming minimal change: K–(s∨ d) would be {s→ d,d → s,s↔ d,s∨¬s}. (K–

(s∨d))+(s∨d) = Cn({s→ d,d→ s,s↔ d,s∨¬s}∪{s∨d}) = Cn({s∨d,s→ d,d→ s,s↔ d,s∨¬s})—

and this closure is equivalent to K.9 Therefore, K ⊆Cn((K–(s∨d))+(s∨d)).

Recovery holds for belief theories, because classical logic closure requires that (∀p,q ∈ K) : p→ q is

also in K. This enables Recovery to hold for belief theories, and it is the missing ingredient for belief base

contraction adhering to Recovery.

Base Contraction Does Not Adhere to Recovery

Recovery for a belief base B and the belief p is written: B⊆Cn((B ∼ p)+ p) and is called Base-Recovery.

An even more rigid version of recovery for bases is B⊆ ((B ∼ p)+ p), and I call that Strict Base Recovery.

6Recall that a theory is a deductively closed set of beliefs: K = Cn(K)
7Theory expansion is specifically not defined as K + p =de f K∪{p}. Theory expansion results in a new theory.
8Note that this assumes that s and d are the only atomic sentences in L . If, for example, e ∈ L , then other beliefs would also be

in Cn(K)—such as s∨ e,s∨¬e, etc. My thanks to Sven Hansson for pointing this out.
9This is because {s,d,s∧d} ⊆Cn{s∨d,s↔ d}.
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For kernel contraction of bases that are not logically closed (but are assumed to be consistent), I divide

the possible belief bases into four cases for examining whether Recovery holds:

1. If p ∈Cn(B) ∧ p 6∈Cn(B\{p}), then B ∼ p = B\{p} and (B ∼ p)+ p = B. So, Recovery holds.

2. If p ∈Cn(B\{p}, then Recovery is not guaranteed to hold (see example below)

3. If p 6∈Cn(B) and B+ p6 ` ⊥, then B ∼ p = B. (B ∼ p)+ p = B∪{p}. So, Recovery holds.

4. If p 6∈Cn(B) and B+ p `⊥, then Recovery holds vacuously, because (B ∼ p)+ p is inconsistent.

Note that cases 1, 3, and 4, actually adhere to the stricter and more impressive Strict Base Recovery. The

only case that does not adhere to Recovery is case 2:

Example 2.3.2 Given the belief base B = {s,d}, B ∼ (s∨ d) = {}. (B ∼ (s∨ d)) + (s∨ d) = {(s∨ d)}.

{s,d} 6⊆ {(s∨d)} Therefore, B 6⊆Cn((B ∼ (s∨d))+(s∨d)).10

However, for any finite base B that is not logically closed, (∀p 6∈Cn(B\{p})): B ∼ p = B\{p}. Therefore,

(∀p 6∈Cn(B\{p})): B⊆ ((B ∼ p)+ p). This statement covers all three of the recovery-adhering cases (1,3,

and 4) mentioned above. In other words, for contraction by p, Strict Base Recovery does hold for a belief

base whose set of p-kernels is either {} or {{p}}, regardless of whether p is consistent with the base or not.

I assume the operation of selecting the beliefs to be removed from a base B during the operation of

kernel contraction is performed by a global incision function [Hansson1999] guided by minimal change.

An incision function is a function that determines which beliefs should be removed during the operations of

kernel contraction and kernel consolidation. A local incision function is associated with a single base; once

it is used to change the base, it can no longer be used, because it is not defined for the new base. A global

incision function is applicable to all bases and can be used in a series of belief change operations (referred

10This example comes from the Cleopatra’s children example introduced in [Hansson1991b] and discussed later.
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to in the literature as iterated belief revision or iterated belief change).11

As seen in case 2, above, Recovery does not hold for kernel contraction when elements of a p-kernel

in B are retracted during the retraction of p, but are not returned as a result of the expansion by p followed

by deductive closure. Not only do these base beliefs remain removed from the base, but derived beliefs that

depend on them are also not recovered into the belief space.

Example Given the base B = {s,d,s→ q}, B ∼ s∨d = {s→ q}, and (B ∼ s∨d)+ s∨d = {s∨d,s→ q}.

Neither s nor d is recovered as individual base beliefs, and the derivable belief q is also not recovered in the

belief space (i.e., its implicit presence in the belief space is not recovered). I feel the assertion of s∨d means

that its earlier retraction was, in hindsight, not valid for this current state, so all effects of that retraction

should be undone.

General Support of Recovery

There are various criticisms of Recovery in the literature (see [Hansson1999] and [Williams1994a] for dis-

cussions and further references). I address these criticisms below, but state my general argument here. My

defense of Recovery is predicated on the fact that the recovered beliefs were at one time in the base as

base beliefs. The recovery of those previously retracted base beliefs should occur whenever the reason that

caused them to be removed is, itself, removed (or invalidated). In this case, the previously retracted beliefs

should be returned to the base, specifically because they were base beliefs and the reason for disbelieving

them no longer exists. However, this return hinges on the verification that no alternative and stronger reason

for the continued removal of these beliefs has been introduced into the system. It seems reasonable that

taking something away and then returning it should recover the original state—even for belief bases. And,

11The research regarding iterated belief change is expansive. In this case, the key concept it that any decision function for per-
forming belief change on some knowledge state KS1 must be independent of that specific knowledge state (i.e., global). Otherwise,
once the knowledge state is changed to become KS2, the decision function can no longer be used to perform belief change on the
new knowledge state. This topic is discussed in more detail in Section 4.5.4.
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although expansion is not a true “undoing” of contraction, I choose to address the general discontentment

with Recovery as a whole.

Criticisms of Recovery

The general argument is that Recovery is not as important a contraction postulate as the other postulates

presented by the AGM research, and I understand that argument. But, adhering to Recovery is nice, if

possible.

Arguments both for and against Recovery follow a typical pattern:

1. A believes some set of beliefs B; and S is a subset of B.

2. Some new highly credible evidence forces contraction by a belief p that is derivable from each element

in S, therefore S∩Cn(B ∼ p) = /0.

3. New information (more credible than the evidence in (2)) returns p to A’s beliefs.

4. Pro-Recovery arguments then discuss why S should return to the belief space. Anti-Recovery argu-

ments state how Recovery indicates that all elements in S should return, but they then point out how

some element in S seems strange to believe merely as a result of the information coming in at step (3).

The agent had some reason to have faith in those beliefs in step (1). Their retraction was due to the (in

hindsight) erroneous evidence in step (2); so it is not unreasonable to have faith in those beliefs at (4) once

the “error” in (2) is discovered.

Table 2.3 shows the beliefs of the agent A in two anti-Recovery arguments from [Hansson1991b].

The anti-Recovery argument regarding Cleopatra’s children has several troubling issues.

1. There is an assumption that information from a historical novel is not suitable for a belief base. If

the novel had seemed totally fictional, A would not have believed s and d in the first place, so the

information in the novel must have some credibility. As recommended in [Rapaport & Shapiro1995],
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Cleopatra’s Children George the Criminal

1. “Cleopatra had a son.” (s) “George is a criminal.” (c)
“Cleopatra had a daughter.” (d) “George is a mass-murderer.” (m)

B1C = {s,d} B1G = {c,m}

2. The source of s and d was a historical novel, “George is not a criminal.” ¬c
so A decides she had no children, at all. m→ c, so m 6∈ B2G

B2C = B1C ∼ (s∨d) = {} B2G = (B1G ∼ c)+¬c = {¬c}

3. “Cleopatra had a child.” (s∨d) “George is a shoplifter.” (x)
B3C = B2C +(s∨d) = {s∨d} x→ c, so c replaces ¬c; Recovery would return m
Recovery would return s and d B3G = (B3G + x) = {x,c}

4. Why believe Cleopatra has a son and a Why believe George is a mass-murderer
daughter just because “she had a child”? just because he is a shoplifter?

Table 2.1: The belief changes and reasonings made during two classic anti-Recovery arguments. Row 4
gives the “reason” that Recovery seems counter-intuitive. These reasons are addressed in the text.

a reasonable way to deal with texts that contain some fiction and some truth is for an agent to believe

information from novels when necessary (when the agent finds that information to be useful for some

real world reasoning), unless or until there exists some more credible reason to doubt it.12

2. When discounting the information from the novel, it should have been removed in the same syntax in

which it was entered: by retracting s and d separately.

3. The semantics behind ”Cleopatra had a child.” are ambiguous: if it means that she had exactly one

child, then A should add ((s∨ d)∧¬(s∧ d)) to the base and Recovery is not an issue; if it means

that she is merely not childless, then the historical novel was, at the very least, “half-right” regarding

discussion of her children, so why not give it the benefit of the doubt (barring any contradictory

evidence) and return both s and d to the belief space?

12This approach was adopted, as discussed in [Rapaport & Shapiro1995], to implement a cognitive agent that could “read”
fiction. They state, this “allows us. . . to learn from narratives—indeed, to understand the real world in terms of narratives.”
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Regarding the criminal example, the argument is that it seems strange to force A to believe George is

a mass-murdered just because he is a shoplifter. However, the original reason to believe George is a mass-

murder still exists (as far as we know), and there is no longer the presence of more credible information

refuting it. The uneasy feeling we get when looking at this example comes from “shoplifter” being so far

from “mass-murder” along the spectrum of “criminal”. Change “shoplifter” to “kidnapper” and “mass-

murderer” to “killer”. Now Recovery seems less strange. Sometimes intuition does not follow logical

reasoning, and I hope that one use for implemented computational reasoners will be to alert humans to

contradictions between logic and intuition. It is possible that much of human intuition is merely reasoning

from a set of subconscious rules; if true, exposing the contradictions between logic and intuition will expose

those rules, and the humans can either add them to the system’s rule set, or make a revision within their

human minds.

Pro-Recovery Examples

For every anti-Recovery argument, there are examples that support the postulate of Recovery.

Battle Scenario: Pro-Recovery Example Consider a war scenario where two sources give conflict-

ing information. Source-1 says that Country-A is planning to attack Country-B and Country-C: (p =

HasPlanAttack(A,B) ∧ HasPlanAttack(A,C)). Source-2 (considered more reliable that Source-1) says

that Country-A and Country-B are allies: (q = Ally(A,B)), where Ally is symmetric (i.e., Ally(A,B)⇔

Ally(B,A)).

There are two rules that are considered more credible than either p or q:

• [Rule-1] A country does not plan to attack its allies: ∀(x,y) : Ally(x,y)→¬(HasPlanAttack(x,y)).

• [Rule-2] No country attacks another without a plan: ∀(x,y) : Attack(x,y)→ HasPlanAttack(x,y).

Therefore, there is a contradiction (arising from Rule-1 and q conflicting with p), and consistency mainte-
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nance forces the removal of the weaker base belief p.13

When Country-A actually does attack Country-B (Attack(A,B)), then that information combines with

Rule-2 to generate the belief HasPlanAttack(A,B) which conflicts with Rule-1 and belief q. Since the attack

and the two rules are considered more credible than belief q, the contradiction forces the retraction of q.

When q is removed, it seems intuitive to make the following changes:

1. The information from Source-1 (p) should be recovered (re-inserted) back into the base. (Recovery)

2. Country-C should prepare for a possible attack from Country-A.

Altered Cleopatra: Pro-Recovery Example Now, consider a pro-Recovery version of Hansson’s Cleopa-

tra example.

1. I believe for some reason (currently not recalled) that Cleopatra had a son (s) and also that Cleopatra

had a daughter (d). My current belief base regarding this topic is B1 = {s,d}.

2. Then a dinner companion states, with an air of expertise, that Cleopatra was childless. Because of

this, I add ¬(s∨ d) to my base (contracting it by s∨ d for consistency maintenance): B2 = (B1 ∼

(s∨d))+¬(s∨d) = {¬(s∨d)}.

3. Curious, upon returning home, I query the internet for more information on Cleopatra and discover

numerous websites referring to her as a mother. So, I return the removed belief (s∨d) to my base at a

stronger position than the information added in (2), and consolidate: B3i = (B2 +(s∨d))! = {s∨d}.

4. If Recovery held for bases, s and d would also return to the base (or at least the belief space). Having

these two beliefs return to the actual base, not just the belief space, seems intuitively correct to me,

because the reason for their removal was the (seemingly) erroneous belief (introduced in step 2) that

Cleopatra had no children. With that removed, whatever reason prompted me to believe s and d still

13In this example, I assume that p is considered weaker than q, because its source is the weaker source.
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exists (as far as I know) to justify that belief. And, now, there is no longer any contradiction to block

those beliefs. So, s and d should both return to my set of base beliefs.

This is a good place to mention the issue of the granularity of base beliefs. One could argue that the

belief ¬(s∨d) inserted in step (2) was not really a base belief, but a belief derived from other base beliefs

— “experts are credible”, “someone sounding like an expert is an expert”, “we should believe what credible

people say”, etc. But these “base beliefs” are also derived from even more basic beliefs, and we have

wandered onto a slippery slope. For the purpose of this dissertation, I will assume on faith that a base belief

is, simply, just that: a base belief.

2.4 TMS Research

2.4.1 Introduction

A truth maintenance system (TMS) stores the reasons for belief derivations for later recall — to avoid repeat-

ing derivations and to retrieve derivation information. It is this storing the reasons that underlie the derivation

of a belief that prompted Hansson to refer to TMS research as a “track-keeping” subset of the “composite”

sentential representations research group [Hansson1991a]. This section discusses and compares the differ-

ences between (1) a justification-based truth maintenance system (JTMS) as presented in [Doyle1979] and

(2) an assumption-based truth maintenance system (ATMS) as described in [de Kleer1986, Martins1983,

Martins & Shapiro1988]. Both systems follow a foundations approach to belief revision [Hansson1993].

This means that they distinguish derived beliefs [Hansson1999] from base beliefs—base beliefs being the

core beliefs, which have independent standing. In this approach, a derived belief that loses its support (the

reasoning by which it was derived) is no longer believed.

There is also a brief explanation of a logic-based TMS (LTMS) and an incremental TMS (ITMS)—two
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progressively altered versions of a JTMS (cf. Sections 2.4.5 and 2.4.6, respectively). These systems differ

in many aspects, but the general method of storage, maintenance and retrieval of derivation information will

be the primary focus of discussion. Since the LTMS and ITMS are derivations of the JTMS, our discussion

will eventually be reduced to comparing and contrasting the benefits of JTMS vs. ATMS systems.

The central issue being considered is how to store and maintain a record of the supports (or reasons)

for each derived belief. Accessing a belief’s supports is necessary to determine (1) whether it is currently

believed—to avoid repeating derivations, (2) if it might be believed under specified circumstances, (3) why

it is currently believed, and (4) how the base beliefs might be altered to remove that belief. Essentially, the

appropriate TMS system to choose depends on the application to which it will be applied.

2.4.2 Terminology

For the purpose of this dissertation, I am assuming a monotonic KR&R system that needs to perform truth

maintenance. Most TMSs separate the TMS from the problem solver to simplify the algorithms for each.

One exception is the SNePS system, where the inference engine and ATMS-style belief maintenance system

are integrated [Shapiro & The SNePS Implementation Group2004, Martins & Shapiro1988].

The KR&R system can reason about the beliefs in the knowledge base—which are also referred to as

propositions. These do not reflect the difference between facts, guesses, suppositions, etc. Beliefs that are

asserted (by the user) to be true with independent standing (i.e., they do not depend on any other belief) are

called base beliefs (also called hypotheses or assumptions). This core set of beliefs is called the belief base.

These base beliefs can be removed (or retracted) by the TMS.14

The base beliefs unioned with the beliefs known to be derived from them make up the belief space

14Although the TMS literature differentiates between a premise (which is always believed and cannot be removed) and an
assumption (which is retractable), this simple alteration to either system is not worth discussing here.
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[Martins & Shapiro1983] for the KR&R system.15 A derived belief p cannot be retracted explicitly, because

it is dependent on the set A of base beliefs that minimally underlie its derivation. In this case, minimal

means that no proper subset of A is known to derive p. This minimal set is called an origin set for p

[Martins & Shapiro1983]. A belief can have more than one origin set.

To remove a derived belief from the belief set, at least one of the base beliefs in each of its origin sets

must be retracted to eliminate its re-derivation.

If we think of a derivation tree for some belief q, I refer to q as the child node derived (using a single

rule of inference in the system) from its parent nodes. In this sense, the origin set is comprised of the leaf

nodes of the derivation tree representing the outermost ancestors along each path.16 The parent nodes are

the propositions that “directly produced” q [Martins & Shapiro1988].

A derivation tree is shown in Figure 2.1, where ¬q is a derived node whose parent nodes contain the

beliefs t and t →¬q. The origin set for ¬q, however, is the set of base beliefs {s, s→ t, t →¬q}. The

belief z has two origin sets: {r→ z, r} and {r→ z, p→ r, p}.

A justification for a derived belief p contains a set of parent nodes, used to derive p in one inference

step, as well as the inference rule that was used in the derivation.17 Since a justification is provided by the

problem solver to the TMS, technically, it contains three elements [de Kleer1986, Forbus & de Kleer1993]:

the node that was derived (the consequent), the set of parent nodes (the antecedents), and the inference rule

used in the derivation (the informant). Two different (one-step) derivations of the same belief result in two

different justifications. In Figure 2.2, q has two justification sets: {p, p→ q} and {r, r→ q}.

In all TMS systems, a node also has a label that indicates the belief status of the node based on the

15This belief space was called the belief set in [Doyle1979] and the context in [de Kleer1986].
16In the case where a base node is also derived, it may not “look” like a leaf node, but the path may stop with the base node that it

hits or it may continue on to follow the alternate derivation of that node. There is a danger of cycling, however, which is discussed
later.

17This corresponds to Doyle’s SL-justification. His more complicated CP-justification can be reduced to a series of SL-
justifications, and will not be discussed here [Doyle1979].
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Figure 2.1: A derivation tree. Circles and ovals are belief nodes that each contain a belief (or an inconsis-
tency, as in the topmost node of the tree). Triangles connect derived beliefs (by the cq arc) with the beliefs
they were immediately derived from—in one derivation step (connected with the ant arc). The bottom row
of beliefs are base beliefs. The belief nodes within the tree are derived beliefs. Note that r is both a base
belief and a derived belief.

current set of base beliefs.

The early TMS systems dealt with different kinds of data (the representation of the proposition from the

problem solver). Doyle’s JTMS could only represent definite clauses [Doyle1979, Forbus & de Kleer1993];

McAllester reasoned with disjunctive clauses [McAllester1978]; de Kleer’s ATMS dealt with Horn clauses

[de Kleer1986, Forbus & de Kleer1993]; and Martins and Shapiro presented an ATMS-style system in a

higher-order relevance logic [Martins & Shapiro1988]. This dissertation, ignores the limitations and speci-

ficities of the original systems and their implementation details. Instead, it will focus on the general tech-

niques for storing derivation information and their corresponding benefits and detriments.
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pr p→q

ant ant

q

cq

r→q

ant ant

cq

Figure 2.2: A small derivation tree with two justifications for q.

2.4.3 JTMS

Doyle’s JTMS [Doyle1979] launched the beginning of the study of truth maintenance systems by applying

dependency-directed backtracking [Stallman & Sussman1977] to truth-maintenance. A newly detected con-

tradiction in the system could be traced, through the use of the justifications, to the underlying set of base

beliefs from which it was derived. If one of those base beliefs was removed, then the contradiction was no

longer known to be derivable using that derivation path.

Previously, elimination of a contradiction in a KR&R system used chronological backtracking, which

removed base beliefs in reverse order of their assertion until the contradiction was no longer known to be

derivable. Although removed nodes that did not underlie the contradiction could be reinstated, this simple

algorithm was inefficient.

The JTMS resulted in a less damaging resolution of the contradiction by not removing beliefs unrelated

to the derivation of the contradiction just because they were added or derived after the base beliefs underlying

the contradiction. It also allowed more direct access to the possible culprit hypotheses (those underlying the
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contradiction).

How JTMS derivation information is stored

When a belief is derived, its justification is sent to the JTMS for storage and updating of the system. The

actual implementation of this storage is immaterial as long as the information is retrievable.

• It might be stored as a justification node between the parent nodes and the derived child node, using

“ant” arcs (for antecedent) to the parent nodes and a “cq” arc (for consequent) to the child node, as

shown in Figure 2.1.

• Alternatively, the parent nodes could merely list the child node in a consequent list, and the derived

node could store the rest of the justification as a tuple containing the set of parent nodes (an antecedent

list) and the derivation rule used.

The justification for a base belief has an empty set for the parent nodes (antecedents) and nil for the

derivation rule. In Figure 2.1, the justifications stored with the belief r could be stored as:

(〈{}, nil〉, 〈{p, p→ r}, MP〉), where MP stands for modus ponens.

Given a set of base beliefs, a JTMS marks all its beliefs as either in (believed) or out (disbelieved or

unknown). The base beliefs are in by definition. If the parent nodes in one of a derived belief’s justifications

are in, then the belief is marked as in. If a belief has multiple justifications, only the elements of one

justification parent set need be marked as all in for the belief to be marked in. A node can be a base belief

and also have justifications — if it is retracted as a base belief, it might still be derivable through one of the

justifications. This would be the case if r was removed from the set of base beliefs in Figure 2.1—it would

still be derivable from {p, p→ r}.

By tracing down a node’s justifications recursively, the JTMS can determine the series of derivations that

produced the derivation—called the “well-founded supporting argument” in [Doyle1979]. The base nodes
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at the ends of the derivation paths (for one well-founded supporting argument) make up a set of base beliefs

that support the derived node.

Any removal of a base hypothesis requires updating the in/out markers. Likewise, adding a justification

to a belief that results in that belief’s label converting from out to in also requires recursively updating the

in/out labels in its consequent list and any successive consequent lists of nodes changed from out to in.

JTMS Cycles

A well-founded supporting argument for a derived belief requires that the chain of justifications not have

any cycles in it. This way a node cannot support itself. The testing for this, however, is non-trivial and one

of the drawbacks of using a JTMS—see [Doyle1979] for the algorithms to check for cycles.

Resetting node labels required setting the labels of all beliefs to nil, resetting the base beliefs labels to

in, then rechecking each consequent node (recursively) for a well-founded supporting argument.18

2.4.4 ATMS

When the problem solver sends an ATMS a justification, the ATMS stores it just like the JTMS-style systems

[de Kleer1986, Forbus & de Kleer1993] (except for SNePS [Martins & Shapiro1988], where it is used to

compute the label, then discarded).

The labeling is the key difference between the ATMSs and the JTMSs. The label for a derived node in

the ATMS is the node’s origin set (the set of base beliefs that minimally underlie the derivation of the belief).

The origin set for a hypothesis is the singleton set containing just that hypothesis. When a belief is de-

rived from other beliefs, there is a series of rules governing the combining of the “parent” origin sets to form

18A later version of a JTMS, called an ITMS, shortens this process (cf. Section 2.4.6).
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the origin set for the “child”. For example, Modus Ponens uses set union: assuming that os(p) is the origin

set for the belief p, then p derived from q and q→ p has the origin set os(p) = os(q)∪os(q→ p). Implica-

tion introduction, however, involves set subtraction [Martins1983, Martins & Shapiro1988, Shapiro1992].

Multiple derivations can result in multiple origin sets, and these duplications can multiply depending on

the rules for origin set combining. In the Modus Ponens example above, if q and q→ p each had two origin

sets, then their derivation of p could result in p having four origin sets!

Given a set of base beliefs, B any belief is known to be derivable from that set if at least one of its origin

sets is a subset of B.

An origin set is not saved if either (1) it is a superset of another origin set for the same node or (2) it

is known to be an inconsistent set. Case (1) is used to prevent circular supports—so that no supports with

cycles are used—and to insure that retraction of a single element of any origin set eliminates that specific

derivation.

These origin-set labels indicate which belief bases (also called contexts in [Martins & Shapiro1988]) a

node is derivable from. Any context that is a superset of a node’s origin set (any one of its origin sets) will

have that node in its belief set (the set of explicit beliefs).

No updates are needed when a base node is removed from the context. If a node gets a new justification,

however, any alteration to its origin sets is propagated recursively through its consequences and their conse-

quences, and so on. An exception to that is SNePS [Martins & Shapiro1988], where propagation does not

happen automatically (unless forward inferencing is used).

As stated earlier, the origin set for ¬q (in Figure 2.1) is the set of base beliefs {s, s→ t, t→¬q}. The

belief z has two origin sets: {r→ z, r} and {r→ z, p→ r, p}. Therefore, z would be believed even if

r were removed from the base, because it would still be derivable from the set {r→ z, p→ r, p}.

ATMS labels also allow the system to reason from a set of base beliefs that is not the current base.
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For example, using Figure 2.1, the system can answer the question, “Is z in the known belief space of

{r, p, s}?” without having to re-compute in/out labels or repeat previous derivations. The answer is “no,”

because no origin set for z is a subset of {r, p, s}. Unlike the in/out labels of a JTMS, origin set

information is not lost as the current context changes. Because the ATMS labels may contain origin sets that

are not subsets of the current context, ATMS reasoning is referred to as reasoning in multiple belief spaces

[Martins & Shapiro1983].

2.4.5 LTMS

McAllester [1978] developed an alternate version of the JTMS called a logic-based TMS (LTMS). Nodes

were propositional formulas whose labels were “true”, “false”, and “unknown”. The informant part of the

justification is represented as a clause: e.g., to represent that q was derived from p and p→ q, the clause

((p.false)∨(p→ q.false)∨(q.true)) would be the informant, q would be the consequent, and {p, p→ q}

would be the antecedent set. If the node is an assumption (hypothesis; base belief), the informant is merely

“Assumption”.

Antecedent nodes are labeled “true” or “false” before the derived node label is set; therefore, it cannot

be supporting itself. Additionally, each node has only one stored support. If the label for a node is changed,

resetting the labels on the affected nodes involved setting the label of each possibly affected consequent

node to “unknown”, then re-determining its support.

2.4.6 ITMS

The incremental TMS (ITMS [Nayak & Williams1998]) is an altered version of the LTMS. It was developed

to reduce the number of unnecessary node label changes (changes from “true” to “unknown” and then back

to “true” again, once it was re-evaluated).
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When a consequent node loses its support, the ITMS tests for alternate supports before changing all

consequent nodes recursively. The cycle prevention heuristics (using increasing numerical tags) are an

improvement over the algorithms used by the JTMS and LTMS in all but a select few worst case examples.

The average improvement was a seven-fold reduction in unnecessary label changes.

2.4.7 General Pros and Cons

There are differences between the ATMS and JTMS implementations other than those discussed above,

but our focus is on how they maintain the belief status of a node in its label. Note that both the JTMS

and ATMS recommend saving the justification information for updating label information [Doyle1979,

McAllester1978, de Kleer1986, Forbus & de Kleer1993].

Computational load

The JTMS label update algorithm is linear in space and time. The ATMS update or query answer can

possibly be exponential in both. But depending on the application, an ATMS can save time (such as when

label sets remain small, where a task requires finding most or all solutions, when the number of context

changes is large compared to the number of queries, and when multiple context reasoning at one time is

needed). The JTMS requires work to insure a well-founded supporting argument has no cycles, and ATMS

algorithms eliminate that work.

Multiple contexts

For reasoning in multiple belief spaces, [Martins1983], the ATMS style of recording supports is ideal.

Whether shifting contexts or querying in a context other than the current one, it is easy to determine if a

belief is known to be derivable from a set of base beliefs using a subset test on the origin sets and context.

Basically, reasoning done in one context is available as origin set information in all contexts.
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A context change would require the JTMS to reset in/out markers for the entire belief space. An

alternate context query would require a traversal down the justification paths with backtracking until a

successful derivation from the context beliefs was found.

Belief revision

Accessing the base beliefs for rapid culprit selection is speedy in the ATMS as compared to the JTMS.

Combining origin sets of contradictory beliefs provides the user with sets that are known to be inconsistent.

Removal of at least one belief from each inconsistent set (also called a nogood; cf. page 4) eliminates known

derivations of the contradiction. Additionally, no updating is necessary after hypothesis removal.

If a single context’s base beliefs will be asserted and retracted often, ATMS is, again, the better option.

Better, that is, assuming that (1) there is no pressing need to update all the flags that label whether each

belief is currently asserted (believed) by the system and (2) determining the value of a previously derived

belief by accessing its origin set is preferred to tracing the derivation tree to the base nodes underlying its

derivation.

Multiple supports for a belief

It is easy to record that a belief is both a hypothesis and a derived belief in either system—JTMS or ATMS.

Likewise for multiple derivations for a belief. Multiple derivations can be determined in an LTMS, but the

labels for any given node only contain one such derivation; if that derivation is lost, there is a search for an

alternate derivation to take its place.

2.4.8 What do current TMS systems do?

Exploration of recently implemented TMS systems indicates that both ATMS and JTMS styles are still

popular.
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Cyc [Cycorp2001a, Cycorp2001b], the largest KR&R system in use, is a JTMS. It has also put speed as

a primary concern, because (1) its size could be a major cause for slow processing and (2) its clients often

need results in real time.

An Incremental TMS [Nayak & Williams1998] (an extension of McAllester’s LTMS [McAllester1978],

which was expanded from the JTMS) is currently in use on Nasa’s Deep Space One (DS-1) [Pell et al.1997].

Systems focusing on multi-agent reasoning need the multiple context application of an ATMS. Such sys-

tems include DiBeRT [Malheiro & Oliveira1996] and DARMS [Beckstein, Fuhge, & Kraetzschmar1993].

Castro and Zurita proposed a Generic ATMS [Castro & Zurita1996] to remove the requirement that

beliefs have binary truth values (elements of {0,1}). The generic ATMS was then (a) particularized to deal

with the multivalued (in the range of [0,1]) logic and (b) particularized to deal with a fuzzy logic.

2.4.9 TMS Conclusions

An application that involves multiple contexts, frequent removal of base beliefs (contraction), and a mono-

tonic logic would benefit from an ATMS-style implementation. Conversely, reasoning in a single context

with little need for base contraction favors a JTMS-style implementation.

2.5 Different Ways to Order the Base Beliefs

Throughout this dissertation I discuss sets of beliefs that are ordered in various ways. The concept of

prioritizing beliefs during belief change operations is a reflection of some type of ordering. One common

way to order beliefs is by recency—the more recent a belief is the more preferred it is. There are alternatives

to recency, however, and these require an understanding of the various orderings that are possible.

To facilitate the discussion and comparisons of these orderings (also called orders), I present an overview

of the various orders that will be used. These orders are binary relations represented as� and�, where p� q
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means that p is preferred over q and p� q means that p is strictly preferred over q.19 These binary relations

have one or more of the following properties:

• Reflexivity: p� p;

• Antisymmetry: If p� q and q� p, then q = p.

• Transitivity: If p� q and q� r, then p� r,

• Comparability: For all p,q, p� q or q� p.

Lastly, p� q IFF p� q and q 6� p.

A total order has all four properties: reflexivity, antisymmetry, transitivity, and comparability. A total

ordering is also referred to as a linear ordering or a chain. A common example of a total order is the

relation of ≤ on the set of integers: e.g., 4 ≤ 5; given any two integers x and y, if x ≤ y and y ≤ x, then

x = y.20

A partial order is reflexive, antisymmetric, and transitive, but is not required to be comparable. A

partially ordered set is also called a poset or just an ordered set. A well known example of a partial order is

the subset relation (⊆): {1,2} ⊆ {1,2,3}, but the two sets {1,2} and {2,3} are not comparable using the ⊆

relation ( {1,2} 6⊆ {2,3} and {2,3} 6⊆ {1,2} ). A total order is also a partial order.

A pre-order (also referred to as a quasiorder) is an ordering that is both reflexive and transitive. A partial

order is also a pre-order. Below is an example of a pre-order over the following foods: ice cream (i), steak

(s), artichokes (a), raspberries (r), beets (b), and liver (l). I like ice cream the best and liver the least; I like

steak and artichokes equally well; I like both steak and artichokes better than either beets or raspberries; and,

19Most literature represents orderings from weakest to strongest using the symbol �. In this dissertation, I reverse that order,
because the orderings will be later used to order priority queues, where the first element in the queue is the most preferred element
in the queue. It would be confusing to have the first element in the queue be the last element of the ordering sequence, and switching
the direction of the ordering at that time would also be confusing. So, the base beliefs are ordered from strongest to weakest to
maintain a consistent representation throughout this dissertation.

20Note that antisymmetry is not the same as “not being symmetric”: the relation < on integers is not symmetric, but it is only
vacuously antisymmetric: for any two integers x and y, it is impossible to have both x < y and y < x.
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Figure 2.3: A graph showing a pre-order with arcs from more preferred items to less preferred ones. The
lack of antisymmetry is shown by the arcs going both ways between a and s. The lack of comparability is
shown by the absence of any path between r and b. Note: if an arc existed between r and b, the ordering
would be comparable and would be called a total pre-order.

regarding beets and raspberries, I am unable to decide which I prefer.21 These preferences form a pre-order

that can be represented with the following expressions: i� s, i� a, s� a, a� s, s� r, a� r, s� b, a� b,

b � l, r � l. It can also be shown by the graph in Figure 2.3, where each arc goes from a more preferred

item to a less preferred item. The lack of antisymmetry is shown by the arcs going both ways between a and

s. The lack of comparability is shown by the absence of any path between r and b.

A total pre-order is a pre-order that is also comparable. Figure 2.3 shows a total pre-order for the subset

of items {i,s,a,r, l}—a set that is missing the item b and thus eliminating the incomparability between r and

b that was previously discussed.

This next example illustrates a total pre-order over the set of beliefs {a,b,c,d} given that:

• each belief is assigned a rank: Rank(a) = 1; Rank(b) = 2; Rank(c) = 2; Rank(d) = 3;

• p� q IFF Rank(p)≤ Rank(q).

Note the lack of antisymmetry: b� c and c� b, but b 6= c (even though Rank(b) = Rank(c)).

21Although I am using the transitive relation ”like-better-than”, the relation ”like” is typically not transitive: If I like Mary and
Mary likes John, it does not necessarily follow that I like John.

55



Lastly, I review the concept of the minimal and maximal elements of these orderings. A maximal element

of some set S with an ordering relation � is any element m s.t. (6 ∃p ∈ S) : p � m. A minimal element of

some set S with an ordering relation� is any element m s.t. (6 ∃p ∈ S) : m� p. A set can have more than one

maximal element; likewise, a set can have more than one minimal element. If a set has a unique maximal

element, that element is called the greatest element of the set. If a set has a unique minimal element, that

element is called the least element of the set. An element in a set that is not comparable to any other element

in the set is both a maximal and a minimal element.

Looking at the elements in Figure 2.3, we can see that i is the greatest element, and l is the least

element—they are the unique maximal and the unique minimal elements respectively. However, for the

subset {s,a,r,b}, the set of maximal elements is {a,s}, the set of minimal elements is {r,b}, and there is no

least or greatest element of that subset.

I re-iterate: a set of maximal (or minimal) elements need not be a singleton set; and any maximal (or

minimal) element of a set is not, necessarily, strictly stronger (weaker) than the other elements in the set—

instead, there is no element in the set that is strictly stronger (weaker) that it (review the definition above if

this is still confusing).

As a last example, if all elements of a set are equivalent (i.e., no element in the set is strictly stronger

than any other), then all the elements are both minimal and maximal elements of the set.

2.6 Some KR&R Implemented Systems

In this section, I briefly describe some belief revision systems that I will be discussing and comparing in this

dissertation.
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2.6.1 SATEN

SATEN, developed by Mary-Anne Williams, is an “object-oriented, web-based extraction and belief revi-

sion engine” [Williams & Sims2000]. It implements the AGM [Alchourrón, Gärdenfors, & Makinson1985]

approach for belief revision and uses user specified rankings for the beliefs. The extraction process recovers

a consistent theory base from an inconsistent ranking. SATEN can reason in either propositional or first-

order logic. To query whether a belief is in the belief space of the base, you ask what its ranking would be.

A degree of 0 means it is not in the belief space, else the appropriate ranking for the belief is given. No reply

means it does not know the ranking. This system can be run over the Internet from the URL:

http://magic.it.uts.edu.au/systems/stdvsmaxi.html .

2.6.2 Cyc

Doug Lenat and Cycorp have developed Cyc [Cycorp2001a], a large knowledge base and inferencing sys-

tem that is “built upon a core of over a million hand-entered assertions or rules about the world and how

it works.” This system attempts to perform commonsense reasoning with the help of this large corpus of

beliefs (mostly default, with some that are monotonic). It divides its knowledge base into smaller contexts

called microtheories, which contain specialized information regarding specific areas (such as troop move-

ment, physics, movies, etc.). Belief revision is performed within microtheories or within a small group of

microtheories that are working together, and the system is only concerned with maintaining consistency

within that small group (as opposed to across the entire belief space). For example, in an everyday context,

a table is solid, but within a physics context, it is mostly emptiness.

A belief can have only one truth value, so no microtheory can contain both p and ¬p. The technique

for maintaining consistency is to check for contradictory beliefs whenever a proposition is asserted into a

microtheory (as a base assertion or through derivation). When contradictions are found, their arguments
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(derivation histories) are analyzed, and a decision is made regarding the truth value of the propositions

involved. Ranking of beliefs, however, is not a part of the system—it uses specificity to determine the truth

value of a default belief. For example: Opus the penguin does not fly, even though he is a bird, because

penguins don’t fly. If there can be no decision based on specificity, the truth value of the default belief is

unknown. A default belief loses out to a monotonic one.

Lastly, according to Cyc trainers and other contacts, contradictions that are purely monotonic bring the

system to a halt until they are “fixed” by the knowledge engineers—e.g., the knowledge base is altered to

eliminate the contradiction—a change made by the implementers, not the end users. During Cyc training,

however, I attempted to prove this last statement and failed—revision was performed. The instructors were

surprised, but thought the “user-friendly” training interface might be the cause. I hope to explore this further,

but it is an example of how a system description might not match its actual performance. Typically, however,

descriptions predict ideal results and performance falls short. Interestingly, my Cyc sources were expecting

failure, but the system produced a viable result.

The system can be run over the Internet. The main URL for Cycorp is:

http://www.cyc.com/ .

2.6.3 SNePS

SNePS [Shapiro & The SNePS Implementation Group2004, Shapiro & Rapaport1992] is a KR&R system

whose belief space represents the belief space of a cognitive agent called Cassie. SNePS reasons using a

paraconsistent, relevance-based logic, and is able to reason in multiple contexts, similar to Cyc.

SNePS attempts to derive propositions as they are asked for—either by the user or by the system as

it performs backward or forward inference.A contradiction is detected when a specific proposition and its

negation are both explicitly present in the belief space. At this point, belief revision is called to resolve the

58



inconsistency, and the system considers only the propositions in the current belief space—asserted hypothe-

ses and the propositions currently known to be derived from them—without considering any implicit beliefs.

Because justifications for the contradictory beliefs are stored as sets of base beliefs that are known to under-

lie the contradiction (ATMS-style), SNePS automatically reduces the set of beliefs under consideration to

only those involved with the derivation of the contradiction.

The SNePS system is available online for downloading by following links from the research group

website. The main URL for the SNePS Research Group is:

http://www.cse.buffalo.edu/sneps/ .

2.7 The Need for a DOBS Formalization

The research of this dissertation focuses on the fact that most of the approaches described above use the

concept of retaining (or returning) consistency to define their belief revision operations. Even a belief base

is considered inconsistent if an inconsistency exists in its deductive closure. Whether the inconsistency is

found by deductive closure or some procedure such as resolution refutation or a SAT test, it still requires

looking past what is known explicitly into the implicit beliefs to find an inconsistency. This requires time

and space.

2.7.1 Some Limitations of the Above Systems

Most of the systems above check consistency either at the time a belief is entered or when consistency is an

issue (e.g., during contraction, revision, extraction, query, etc.). Attempting to insure consistency takes time

and, depending on the logic, might not be able to be guaranteed.

SATEN is limited to logics with SAT-determined consistency. Additionally, derived beliefs are de-

termined at the time of query and are not saved. For a system that is constantly building on its beliefs,
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re-derivation could be costly.

As mentioned above, Cyc did not perform as described, and there must be some question as to other

possible differences from design theory. Most specifically, Cyc literature [Cycorp2001b] refers to the mi-

crotheories as consistent, for lack of a better word. Inconsistencies can exist between two microtheories;

but, within a microtheory, beliefs are consistent.

When asked, contacts agreed that it was possible that unknown contradictions might exist that had

not, yet, been derived. In this sense, Cyc can only guarantee that its microtheories are not known to be

inconsistent. Ideal terminology, such as consistent and derivable, is often not appropriate for use with a

large or complex implemented system.

SNePS typically recognizes an inconsistency when a belief p and its complement ¬p are explicitly

believed by the system (explicit beliefs consist of base beliefs and previously derived beliefs). Although

there are some other contradiction detection algorithms used by SNePS, it is possible that the system can be

inconsistent without being aware of it (i.e., implicit contradictions can exist).

2.7.2 Needs of a DOBS

How do you implement ideal techniques in a non-ideal system? We address the need to formalize theories

that take into account the fact that deductive closure cannot be guaranteed in a real-world, need-based,

resource-bounded, implemented system. These theories need to define a belief maintenance system that:

1. is not dependent on deductive closure (thus, a DOBS);

2. takes time and computational limitations into account,

• recognizing that adhering to these limitations might result in revision choices that are poor in

hindsight; and
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3. catching and correcting these poor choices as efficiently as possible.

Because of these needs, a new formalization is needed to describe the status of a DOBS—such as a con-

cept similar to consistency, but which is not based on an ideal agent’s deductive closure. The formalization

for a DOBS is presented in Chapter 5.

Before dealing with the formalization of a DOBS, I first formalize the belief base optimizing operation

of reconsideration; this is done in Chapter 3 and uses the base expansion and kernel consolidation. I then

develop the efficient, anytime algorithm for dependency-directed reconsideration (DDR) in Chapter 4, and

prove that DDR optimizes the belief base for a TMS (assuming it has an ideal reasoner). It is in Chapter 5,

then, after defining a DOBS, that I prove that the DDR algorithm from Chapter 4 will also optimize the base

of a DOBS system—optimizing the base with respect to the information that the system has, given that its

reasoner is likely non-ideal (not complete).
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Chapter 3

Reconsideration

This chapter contains material that was published in [Johnson & Shapiro2005a]. It has been altered and

expanded for clarity.

3.1 Introduction

3.1.1 Motivations and Assumptions

Motivation: Eliminating Negative Operation-Order Side Effects

As mentioned in Section 1.3.2, there are several motivations driving the research in this dissertation. One

of the main motivations is the reduction (ideally, the elimination) of the negative side effects of operation

order.

Assuming a Foundations Approach

The main assumption is that the reasoning agent or system is reasoning from and with a belief base—a

finite set of core or base beliefs (also called hypotheses in [Martins & Shapiro1988]) that have independent
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standing and are treated differently from derived beliefs. This follows the foundations approach [Doyle1979,

Gärdenfors1992, Hansson1993] discussed in Sections 1.2 (page 4) and 2.2.1 (page 19). A base belief is

information entered into the belief base as input from some external source (external to the reasoning system;

e.g., sensor readings, intelligence report, rules of a game, etc.). Beliefs that are derived through reasoning

from such base beliefs are believed only if the base beliefs underlying their derivation are in the base. The

currently believed base beliefs are the foundation for all the beliefs in the current belief space.

Since the belief base is finite, it is not deductively closed. Even though one could create a finite belief

base that was “closed”, in a sense, by selecting one belief from each set of logically equivalent beliefs in the

logical closure (e.g., retain just a, as opposed to a, a∨a, a∧a, etc. ), this is impractical for a belief space of

any size. It also violates one of the main purposes of the foundations approach, which is to set apart the base

beliefs as the “foundation” upon which the reasoning agent’s belief space stands. These base beliefs are the

input to the agent’s beliefs that come from some source of information other than reasoning and deduction,

and they should be preserved that way.

Assuming a Linear Preference Ordering

In defining reconsideration, I make the assumption that there is a recency-independent, linear preference

ordering (�) over all base beliefs. Thus, any base can be represented as a unique sequence of beliefs in

order of descending preference: B = p1, p2, . . . , pn , where pi � pi+1,1≤ i < n. Note: pi � p j means that pi

is strictly preferred over p j (is stronger than p j) and is true IFF pi � p j and p j 6� pi.

Limiting the ordering of base beliefs to a linear ordering is unrealistic for real world applications. I

discuss non-linear orderings of base beliefs at the end of this chapter, but assume the linear ordering at this

time to aid in theorems and proofs for this chapter and the next. Future work will address orderings that are

not anti-symmetric and/or cannot guarantee comparability.
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Because any finite set of beliefs whose elements are ordered linearly can also be represented as a

sequence of beliefs in descending order of preference (or credibility), I will do so interchangeably in

this dissertation—e.g. B = p1, p2, . . . , pn means that B = {p1, p2, . . . , pn} in a linear ordering where pi �

pi+1,1≤ i < n. Unless otherwise stated, the elements in an ordered set will be ordered in descending order

of preference (or credibility), as shown in the previous sentence.

Another assumption is that the agent can somehow order the incoming beliefs by credibility. This

preference ordering is assumed to be attached to an incoming belief and reflects its importance (or credibility

or reliability) as a base belief. Since base beliefs can be retracted, there is the question of how retractions

affects the ordering. Therefore, relative ordering of base beliefs should be unaffected by the presence of

other beliefs in the currently believed base or by whether these beliefs are derivable from other beliefs in

the base or even by whether the beliefs are in the base.

Example 3.1.1 An example of a set of base beliefs that ordered from strongest to weakest is: p � q � d.

Whether the set in the current base is B1 = {p,q} or B2 = {q,d}, the ordering is unaltered, so q is the

weaker element in B1 and the stronger element in B2. If the belief r is added to the set of base beliefs, the

relative ordering of the other beliefs should be unaffected: it is still the case that p � q � d, regardless of

where in this chain r gets placed.

My preference ordering is not the same as the epistemic entrenchment [Gärdenfors & Makinson1988,

Gärdenfors1988] or ensconcement [Williams1994a] approaches. These orderings reflect the way that beliefs

will survive belief change operations. One postulate for epistemic entrenchment, called Dominance, states

that if a` b, then a≤ b. This merely means that contraction by a may not require retracting b, but contraction

by b forces the retraction of a, therefore b is at least as entrenched as a (possibly even more entrenched, in

which case a < b).

Since the preference ordering is unaffected by the composition of the current base, any part that recency
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plays in the importance of an incoming belief should be reflected in its incoming ordering information. This

means that even if recency is a factor, we can use the non-prioritized belief change operation of kernel semi-

revision (expansion followed by kernel consolidation; as mentioned in Section 2.2.5) when adding beliefs

while maintaining consistency. The result is that a belief being added to the base might not survive the

consolidation step if it conflicts with stronger base beliefs.

Improving Recovery Adherence to Reduce Negative Operation-Order Side Effects

In the case of base theory change with consistency maintenance, the lack of adherence to the Recovery pos-

tulate [Alchourrón, Gärdenfors, & Makinson1985] results in the order of non-prioritized additions affecting

the makeup of the resulting base. Improving the Recovery aspect of belief change operations on a belief

base can reduce the negative operation order side effects resulting in a more reliable base.

In the remainder of this chapter, I discuss the side effects of operation order and how I implement

hindsight reasoning much the way a jury uses a jury room to review the testimony in a case before rendering

a decision. This hindsight reasoning is called reconsideration. I then present a lengthy analysis of the

improved adherence to a reconsideration-altered formulation of the Recovery postulate.

The final sections include a discussion of reconsideration performed with base beliefs in a non-linear

ordering followed by a detailed analysis of reconsideration performed on a total pre-order of base beliefs

using SATEN. This analysis extends an example from [Williams & Sims2000] that compares six different

adjustment strategies, which correspond to six different incision functions.
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3.1.2 A Brief Example Showing Operation Order Side-Effects

The examples below illustrate the effect that operation order can have on a belief base.1 Given the belief

base B0 = {s,d}, whose beliefs are linearly ordered as s > d, the results of adding two more beliefs using

kernel semi-revision are shown below—recall that B0 is an ordered set that can also be represented as a

sequence: B0 = s,d.

Example1: The first belief added to B0 is ¬(s∨ d), where ¬(s∨ d) � s � d. This forces the retraction of

both s and d to maintain consistency. The second belief added is s∨d, with s∨d �¬(s∨d). Now, ¬(s∨d)

must be retracted for consistency maintenance. The resultant base is B1 = {s∨d}.

Example2: If we reverse the order, however, of the last two additions—i.e., add s∨ d, then add ¬(s∨ d),

keeping the same overall preference ordering as before (s∨ d � ¬(s∨ d) � s � d)—the addition of s∨ d

would not force any retractions for consistency maintenance, and the following addition of ¬(s∨d) would

“fail” in the sense that ¬(s∨ d) would not be added to the base (because it directly contradicts the more

preferred s∨d). The resultant base would be B2 = {s∨d,s,d}= s∨d,s,d.

To aid in understanding these examples, consider the semantics of the atomic propositions to be the fol-

lowing (from [Hansson1991b]): s denotes “Cleopatra had a son” and d denotes “Cleopatra had a daughter.”

The two examples show the addition of two new beliefs in varying order but with the same preference order-

ing between them (and in relation to the existing beliefs). The new beliefs are “Cleopatra had no children”

and the most preferred belief “Cleopatra had a child.”2

The two examples differ only in the order that the additions take place, yet the resulting base in Example

2 (B2) contains s and d, whereas that of Example 1 (B1) does not. B1 is not considered optimal, because

the return of both s and d would expand the base without introducing any inconsistency (since ¬(s∨d) has

1These examples are based on the Cleopatra’s children example mentioned in [Hansson1991b].
2In this version, as in [Hansson1991b], “Cleopatra had a child” is assumed to mean that “Cleopatra was not childless” (i.e., she

had at least one child), as opposed to “Cleopatra had a single child.”
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already been retracted and is not in the base). Note that B2 is also the base that would result if both beliefs

had been added before consistency maintenance was triggered.

When reading about reconsideration later in this chapter, keep in mind that performing reconsideration

at the end of Example 1 would return both s and d to the belief base. Reconsideration would not alter the

base in Example 2.

3.1.3 Jury-room Reasoning

A person sitting on a jury during a trial is constantly performing belief change operations in series. There-

fore, they are also susceptible to experiencing the negative side effects of operation order.

As a juror hears testimony, his beliefs about the facts in the trial might change. New evidence might

cause him to retract a belief from earlier testimony if it conflicts, or perhaps the new testimony will not

be accepted as true if the earlier conflicting testimony appears to be more credible (an example of kernel

semi-revision).

In either case, the order of belief change operations—when done in series—affects the future belief base

(and, therefore, belief space).

Jurists, however, are not limited to performing belief change operations in series. Before rendering a

decision about a case, they retire to a jury room to review all the testimony and evidence. This is tantamount

to a batch consolidation of all their beliefs, including those that were retracted earlier. During this delibera-

tion, the jury might reconsider a previous retraction, and a previously removed base belief might be returned

to the base.

In this case, returning a removed belief to the belief base is specifically not the same as just returning it

to the belief space—a belief can return to the belief space if it is derivable from beliefs in the base (it need

not, actually, be in the base, itself). Returning a removed belief to the base is a more impressive return.
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If a KR&R system gains new information that, in hindsight, might have altered the outcome of an

earlier belief change decision, the earlier decision should be re-examined. By consolidating over all past

and current information, an optimal belief base is produced. I call this operation of “jury room reasoning”

reconsideration.

3.1.4 Anticipating Reconsideration—Other Belief Change Operations that Appear Similar

In the next section, I define the operation of hindsight belief change that I call reconsideration—an opera-

tion that returns beliefs that were previously removed from the belief base when a more recent retraction

eliminates any compelling reasons for them to remain disbelieved. This return is actually more of an ex-

change, because the return of some beliefs may require the removal of weaker ones to maintain consistency.

I also explore how this exchange of beliefs optimizes the base w.r.t. all previous base beliefs and affects the

Recovery aspect of base belief change.

The research on belief liberation [Booth et al.2005] also supports the concept that removing a belief

from a base might allow some previously removed beliefs to return. Because of this common view, I cannot

present the Recovery aspect of reconsideration without also examining the similarities and differences be-

tween belief liberation and reconsideration (see Section 3.2.4). I then use belief liberation terminology and

reconsideration in separate formulations of the Recovery postulate; and I discuss and compare the specific

cases that do (or do not) adhere to these formulations as well as to the traditional Recovery postulate for

belief bases.

In addition to belief liberation, there are several other algorithms for belief change that mention returning

base beliefs that were removed. However, for all these algorithms, this base belief return process is a

second step in a two-step belief-change algorithm. For three of the algorithms, the first step selects a set of

beliefs to remove from the base, and the second step then returns the removed base beliefs that are derivable
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from the retained ones. The algorithms that fall into this category include saturated kernel contraction

[Hansson1994], safe contraction [Alchourrón & Makinson1985], and standard adjustment [Williams1994a].

Hybrid adjustment [Williams & Sims2000] also performs a two-step process to select what base beliefs to

remove, but it favors saving beliefs that are not expressly causing an inconsistency, rather than just saving

those derivable from the first cut for base belief removal. In all four cases mentioned, the two-step process,

which includes returning some base beliefs, is all part of one single belief change operation: the removed

beliefs that are considered for possible return were only the beliefs just removed in step one; their “return”

is not evident as a result of the operation, because they were in the base when the operation began. The

base beliefs that are removed by these algorithms are not available for return at some later date. Therefore,

these algorithms are not likely to optimize the base w.r.t. all previously held base beliefs, and they cannot

be reasonably compared to reconsideration.

3.2 Reconsideration

3.2.1 The Knowledge State for Reconsideration

The Knowledge State Triple

The knowledge state B used to formalize reconsideration is a tuple with three elements, 〈B,B∪,�〉, where

B⊆ B∪ ⊆ L, and � is a linear ordering over B∪. All triples are assumed to be in this form.

Starting with a new knowledge state B0 that has an empty base B0 = /0, Bn is the belief base that results

from a series of n belief change operations on B0 (and the subsequent resulting knowledge states: B1,

B2, B3,. . . ), and B∪n =
S

0≤i≤n Bi. Xn is the set of base beliefs removed—and currently disbelieved:

(∀n) Bn∩Xn = /0 —from these bases during the course of the series of operations: Xn =de f B∪n \Bn .

The ordering changes with each new addition to the belief state, and how it changes is explained below.
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For now, it is sufficient to say that �n is the ordering for B∪n .

The belief state after these n operations is 〈Bn,B∪n ,�n〉.

Credibility Values for Bases and Their Beliefs

The linear ordering (�) can be numerically represented by assigning a numerical value to each belief in the

ordering such that a more credible belief has a higher value. By making each belief twice as valuable as the

belief immediately less credible than it in the ordering, every set of base beliefs can be associated with the

sum of its beliefs’ values. This sum is unique to that set—it cannot be matched by any other set of base

beliefs. These values and sums are helpful when explaining how the preference ordering is used to optimize

the knowledge state.

A numerical value for credibility of a belief pi ∈ B∪ = p1, p2, . . . , pn:

Definition 3.2.1 The credibility value for any belief pi ∈ B∪ = p1, p2, . . . , pn is: Cred(pi,B∪,�) =de f 2n−i.

Note that pi � p j IFF Cred(pi,B∪,�) >Cred(p j,B∪,�).

A numerical value for credibility of a consistent base is calculated from the preference ordering of

B∪ = p1, p2, . . . , pn. An inconsistent base has a credibility value of -1.

Definition 3.2.2 Cred(B,B∪,�) =de f ∑pi∈B 2n−i (the bit vector, or bitmap, indicating the elements in B)

when B 6 ` ⊥. Otherwise, when B `⊥, Cred(B,B∪,�) = -1.

This means that the credibility value of a belief is equivalent to the credibility value of its singleton set

(assuming that the belief is not, itself, an inconsistency): Cred(pi,B∪,�)= Cred({pi},B∪,�). And the cred-

ibility value of a consistent set is equivalent to the sum of the credibility values of its beliefs (also equivalent

to the sum of the credibility values of its singleton subsets): Cred(B,B∪,�) = ∑pi∈BCred(pi,B∪,�).
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Base Bitmaps for beliefs indicated. Consistent? Value

p ¬p q ¬q∨ p r ¬r∨¬p

B∪ 1 1 1 1 1 1 NO -1

B1 1 0 1 1 1 0 YES 46

B2 1 0 1 1 0 1 YES 45

B3 0 1 0 1 1 1 YES 23

{p} 1 0 0 0 0 0 YES 32

{¬p} 0 1 0 0 0 0 YES 16

{q} 0 0 1 0 0 0 YES 8

{¬q∨ p} 0 0 0 1 0 0 YES 4

{r} 0 0 0 0 1 0 YES 2

{¬r∨¬p} 0 0 0 0 0 1 YES 1

Table 3.1: The credibility value of a base is its bitmap when the base is consistent, -1 otherwise. This value
is also equivalent to the sum of the bitmaps for its singleton subsets (provided the base is consistent).

Example 3.2.3 Given B∪ = p,¬p,q,¬q∨ p,r,¬r∨¬p, Table 3.1 shows the bitmaps and credibility values

for B∪ as well as for the following sets: B1 = p,q,¬q∨ p,r, B2 = p,q,¬q∨ p,¬r∨¬p, B3 = ¬p,¬q∨

p,r,¬r∨¬p, and the singleton subsets of B3.

An ordering over bases (�⊥) that is dependent on credibility values is also defined:

Definition 3.2.4 B�⊥ B′ IFF Cred(B,B∪,�)≥ Cred(B′,B∪,�).

Likewise, B�⊥ B′ IFF Cred(B,B∪,�) > Cred(B′,B∪,�). Note that B�⊥ B′ implies B�⊥ B′.

Note that �⊥ provides a linear ordering over all consistent subsets of B∪, because the credibility value
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for any consistent base is unique—equivalent to the bitmap of its beliefs. Inconsistent subsets of B∪ cannot

be included in this linear ordering, because they all have a credibility value of -1. Therefore, if there is at

least one consistent subset of B∪, there is a unique maximal (greatest) consistent subset of B∪.

The following observation is a formalization of the concept that, when comparing two bases (assuming

both are consistent), you only need to compare their sequences, belief by belief, from strongest to weakest,

until you either come to the end of one sequence (belonging to the weaker base) or you find two mis-matched

beliefs (the stronger belief is in the stronger base). This is identical to comparing their bitmaps, bit by bit,

from left to right, and noting when the first mis-match (0 vs. 1) occurs—the base with the 1 is the stronger

base.

Observation 3.2.5 Given B∪, with elements ordered linearly by�, and the two bases B = b1,b2, . . . ,bn and

B′ = b′1,b
′
2, . . . ,b

′
m, where B6 ` ⊥, B′ 6 ` ⊥, B⊆ B∪ and B′ ⊆ B∪:

if Cred(B,B∪,�) > Cred(B′,B∪,�), then one of the following must be true:

• B′ ( B

• (∃i) : bi ∈ B, b′i ∈ B′,bi � b′i and b j = b′j for 1≤ j < i.

Subsequent chapters will include definitions for orderings over bases and knowledge state whose calcu-

lations are not dependent on consistency. These orderings will use (overload) the symbols � and � .

That is why this ordering that is dependent on consistency includes ⊥ as a subscript. For the remainder of

this chapter, however, � will be used interchangeably with �⊥ and � will also be used interchange-

ably with �⊥ . Only in later chapters will there need to be a distinction between consistency-oriented base

(and knowledge state) orderings and other base orderings.

3.2.2 Defining an Optimal Base and an Optimal Knowledge State

An optimal base is a base that is preferred over any other base for some given B∪ and �:
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Definition 3.2.6 Given a possibly inconsistent set of base beliefs, B∪= p1, p2, ..., pn, ordered by�, the base

B is considered optimal w.r.t. B∪ and � IFF B⊆ B∪ and (∀B′ ⊆ B∪) : B�⊥ B′. This is written as:

Optimal-per-⊥(B,B∪,�)≡ B⊆ B∪ ∧ (∀B′ ⊆ B∪) : B�⊥ B′.

An optimal knowledge state is a knowledge state whose base is optimal w.r.t. its B∪ and � .

Definition 3.2.7 The B = 〈B,B∪,�〉, is optimal IFF Optimal-per-⊥(B,B∪,�). This is written as Optimal-

per-⊥(B) IFF Optimal-per-⊥(B,B∪,�).

Essentially, if a base is optimal, no base belief p that is disbelieved (p ∈ X) can be returned without

raising an inconsistency that can only be resolved by either the removal of p or the removal of some

set of beliefs A containing a belief that is strictly stronger than p ((∃q ∈ A) : q � p). This favors re-

taining a single strong belief over multiple weaker beliefs—an approach supported in the literature (cf.

[Williams & Sims2000, Chopra, Georgatos, & Parikh2001, Booth et al.2005]). For this chapter, any ref-

erence to an optimal base is using Definition 3.2.6, and any reference to an optimal state is referring to

Definition 3.2.7.

As in [Johnson & Shapiro2005a], the assumption is made that an operation of contraction or consolida-

tion produces the new base B′ by using a global decision function that maximizes Cred(B′,B∪,�) w.r.t. the

operation being performed. This means that contracting B by some belief p will result in a base B′ that is a

subset of B (equal to B if p 6∈ B) whose credibility value is the largest of all subsets of B that do not derive

p—i.e. (∀B′′ ⊆ B) : B′′ 6 `p⇒ (B ∼ p) � B′′. Likewise, consolidating B results in a base B′ that is a subset

of B (equal to B if B is consistent) whose credibility value is the largest of all subsets of B. There may be

some B2 ⊆ B∪, however, that has a larger credibility value than either the result of B ∼ p or B!, because it

contains some belief that is not in B (i.e. B2 \B 6= /0), but this more credible base cannot be the result of

either contraction or consolidation.
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Maximizing Cred(B′,B∪,�) without concern for any specific operation (e.g., without the restriction that

B′ ⊆ B or B′ 6 ` ⊥) would result in B′ = B∪! .

For the purpose of this dissertation and unless otherwise stated, any maximizing decision function or

operation returns the maximal base B which is assumed to be maximizing Cred(B,B∪,�) for some known

B∪ and �—after first satisfying the conditions for the operation being performed. For a linear ordering of

beliefs, maximizing a base is equivalent to finding the unique maximal base, which is also the greatest base

(due to the linear ordering resulting in unique bitmaps for all bases). Likewise, there is only one, unique,

minimally consistent base: the empty set ( /0).

Observation 3.2.8 If consolidation uses a global decision function that finds the maximal consistent subset

of a finite set of linearly ordered beliefs, then the consolidation of a base B is the greatest (unique maximal)

subset of that particular base3 (w.r.t. B and �): B!⊆ B and (∀B′ ⊆ B) : B!� B′.

Observation 3.2.9 If consolidation uses a global decision function that finds the maximal consistent subset

of a finite set of linearly ordered beliefs, then the consolidation of B∪ produces the optimal base w.r.t. B∪

and its ordering:

Optimal-per-⊥(B) IFF B = B∪!.

If a knowledge state is optimal, and its beliefs are ordered linearly with the optimal base being the

maximal consistent subset of all the base beliefs as determined by the linear ordering, then the beliefs that

are not in the optimal base (all x∈ X) are each individually inconsistent with that base. Additionally, there is

no set of beliefs that can be removed from B+ x that will restore consistency without removing some belief

that is stronger than x (which is a bad trade, because it reduces the credibility value of the base). This is

expressed in the theorem below.

3Since consolidation produces a subset of the existing base, the ordering of the beliefs in the base is all that is needed to measure
the value of its subsets. The beliefs in B∪ that are not in B and their ordering information need not be known for this operation.
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Theorem 3.2.10 Given the knowledge state, B = 〈B,B∪,�〉 where � is a linear ordering of the beliefs in

B∪ and base optimality is defined as the maximal (greatest) consistent subset of B∪, then:

B is optimal⇔ (∀x ∈ X) : B6 ` ⊥, B+ x `⊥, and (@B′ ⊆ B) s.t. both (B\B′)+ x 6 ` ⊥ and (∀b ∈ B′) : x� b.

Proof.

(⇒) B is optimal, so we know that B 6 ` ⊥ and (∀B′ ⊆ B∪) : B� B′. Since X ⊆ B∪, (∀x ∈ X) : B+x⊆ B∪.

Prove B+x `⊥: if B+x 6 ` ⊥, then B ( B+x and Cred(B+x,B∪,�) >Cred(B,B∪,�), thus B+x� B

making B non-optimal. Contradiction. 2

Prove (@B′ ⊆ B) s.t. both (B\B′)+ x 6 ` ⊥ and (∀b ∈ B′)x � b: if @B′ ⊆ B s.t. both (B\B′)+ x 6 ` ⊥

and (∀b ∈ B′)x � b, then Cred((B \B′)+ x,B∪,�) >Cred(B,B∪,�), thus ((B \B′)+ x) � B making

B non-optimal. Contradiction. 2

(⇐) (∀x ∈ X) : B 6 ` ⊥, B+ x `⊥, and (@B′ ⊆ B) s.t. both (B\B′)+ x 6 ` ⊥ and (∀b ∈ B′) : x� b.

Therefore, (∀B′′ ⊆ B∪) : B� B′′. 2

3.2.3 Operations on a Knowledge State

The following are operations on the knowledge state B = 〈B,B∪,�〉.

Expansion of B

Expansion of B by p and its preference information, �p , is: B+ 〈p,�p〉=de f 〈B+ p,B∪+ p,�1〉,

where �1 is � adjusted to incorporate the preference information �p—which positions p relative to other

beliefs in B∪, while leaving the relative order of other beliefs in B∪ unchanged. The resulting ordering is the

transitive closure of these relative orderings. Additionally, if p ∈ B∪, then the location of p in the sequence

might change—i.e., its old ordering information is removed before adding �p and performing closure—but

all other beliefs remain in their same relative order.
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The following example shows how a new belief is inserted into the linear ordering of B∪.

Example 3.2.11 Start with a knowledge state B = 〈B,B∪,�〉, where B = B∪! and B∪ = p, p→ q,¬q.

Since B = B∪! , we know that B = p, p→ q. B + 〈q,�q〉 = B1 = 〈B1,B∪1 ,�1〉, where B1 = B∪{q}, and

B∪1 = B∪∪q. If �q states that p� q� p→ q, then the sequence B∪ = p,q, p→ q,¬q.

The next example shows how a belief p that is already in B∪ is added through expansion and relocated

to a different position in the chain. Notice how the remaining elements in B∪ (specifically, the beliefs in

B∪ \{p}) remain in the same order relative to each other.

Example 3.2.12 Start with a knowledge state B = 〈B,B∪,�〉, where B = B∪! and B∪= s, t, p, p→ q,¬q,m.

Since B = B∪! , we know that B = s, t, p, p→ q,m. B + 〈p,�p〉 = B1 = 〈B1,B∪1 ,�1〉, where B1 = B∪{p}

and B∪1 = B∪∪ p.

If �p states that ¬q � p � m, then B∪1 = s, t, p→ q,¬q, p,m. The base remains unchanged (B1 = B),

because this is an operation of simple expansion and p was already in B. Only the ordering of the beliefs is

changed.

Note that the set of all base beliefs has not changed—the sets B∪1 = B∪; but, since �1 6=�, the sequences

for B∪1 and B∪ are different. This distinction will be rare in the discussions in this dissertation.

The process of merging the existing ordering with incoming ordering information is an ongoing research

topic. Whether the belief being added is a new belief or merely an existing base belief being relocated in

the ordering, there needs to be a formalized process by which this merging can take place. For now, I will

assume that the new ordering takes priority over the existing ordering and that its information is complete

enough to precisely locate the new belief within the chain and no other beliefs are relocated with respect to

each other. There is a discussion in Chapter 4 (cf. page 170) regarding re-ordering multiple beliefs in B∪,

and for further discussion of merging orderings, cf. [Hansson1999, Meyer2000].
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Contraction of B

Contraction of B by p is: B ∼ p =de f 〈B ∼ p,B∪,�〉, where “∼” is some operation of base contraction.

In this dissertation, I focus on the base contraction operation of kernel contraction, which produces,

essentially, a base resulting from the removal of at least one element from each p-kernel

Consolidation of B

Consolidation of B is: B!=de f 〈B!,B∪,�〉, where “!” is base consolidation as discussed in Section 2.2.5.

Again, I prefer to focus on kernel consolidation. Recalling the discussion in Observation 3.2.8: due to

the beliefs in the base B being ordered linearly, a maximizing global decision function used for consolidation

results in B! being optimal w.r.t. B and �. Note, again, that the optimality is w.r.t. B, not B∪; because there

may be some belief in the base that is optimal w.r.t. B∪ that is not in B, and consolidation produces a subset

of the base being consolidated.

Although SATEN’s theory extraction is a form of consolidation, linear adjustment and standard adjust-

ment definitely violate Core-Retainment, as discussed in Section 2.2.5. This is because beliefs that do not

underlie the contradiction might get removed just because they are located at (or below, for standard adjust-

ment) a contradictory ranking. Regarding optimality and assuming a linear ordering: SATEN would extract

an optimal base using maxi-adjustment, hybrid adjustment, linear adjustment and quick adjustment—but

not when using standard or global adjustments (cf. Section 3.5). 4 As stated above, the resulting base would

be optimal w.r.t. the base that was being consolidated and its linear ordering. 5

4Global adjustment could produce an optimal base if any intersecting ⊥-kernels share the same weakest element. Standard
adjustment would produce an optimal base only in the case where all its ⊥-kernels share the same weakest element and that
element is the weakest belief in the ordering.

5This assumes and a base that is not too large (nor a logic to complex) to prevent SAT testing from being used to perform
consolidation.
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Semi-revision of B

The semi-revision of B by the belief p and its preference information, �p , is:

B+! 〈p,�p〉=de f 〈(B+ p)!,B∪+ p,�1〉 , where “+” is base expansion, “!” is base consolidation, and �1

is� adjusted to incorporate the preference information�p as for expansion of a knowledge state (explained

above).

Because of the consolidation of B + p, p might not actually “survive” the semi-revision addition into

the base. It will, however, always be in the union set of bases (now B∪ ∪ p). This is an operation of

non-prioritized belief revision, where the belief being added must survive the addition and consistency

maintenance on its own merits, not just because it is the current belief being added (as in prioritized belief

revision).

Again, I favor kernel semi-revision (as discussed in Section 2.2.5). The only difference between kernel

semi-revision on a knowledge state and kernel semi-revision on a base is the additional update to B∪ and

the ordering �. Semi-revision on a knowledge state is susceptible to the same operation order side-effects

mentioned for base semi-revision (cf. Example 3.1.2).

Reconsideration of B

Reconsideration of B [Johnson & Shapiro2005a] is: B!∪ =de f 〈B∪!,B∪,�〉 = 〈B∪,B∪,�〉! .

Reconsideration replaces the current base B with a new base B′ that is the consolidation of the current B∪.

As a result of reconsideration, beliefs in B∪ that are not in B may be present in B′, and beliefs that are in

B may be absent from B′. In the case of these changes, B′ is an improvement over B and the exchange of

beliefs in B \B′ for those in B′ \B is considered a good trade. If consolidation guarantees to produce an

optimal base, then so does reconsideration:

Theorem 3.2.13 [Johnson & Shapiro2005a] Assuming a linear ordering on the beliefs in B∪ and a decision

79



function for consolidation that results in an optimal subset of the base being consolidated, the base resulting

from reconsideration of B is optimal w.r.t. B∪ and �.

Proof. 〈B,B∪,�〉!∪ =de f 〈B∪!,B∪,�〉 . (∀B′ ⊆ B∪) : B∪!� B′. (from Obs. 3.2.8) 2

Example 3.2.14 Recalling Example 3.2.12, above: start with a knowledge state B = 〈B,B∪,�〉, where

B = B∪! and B∪ = s, t, p, p→ q,¬q,m. Since B = B∪! , we know that B = s, t, p, p→ q,m. B+ 〈p,�p〉=

〈B∪{p},B∪∪ p,�′〉. If �p states that ¬q � p � m, then B∪ = s, t, p→ q,¬q, p,m. B remains unchanged,

because this is an operation of simple expansion and p was already in B. Only the ordering of the beliefs is

changed.

However, the base is now sub-optimal, due to the relocation of the belief p in the ordering. Reordering

beliefs creates a need to reconsider past belief change operations (such as the removal of ¬q for consistency

maintenance) in light of the new ordering. In this case, reconsideration will result in a base where ¬q is

believed and the now weaker, conflicting p is removed:

〈B,B∪,�′〉!∪ = 〈B′,B∪,�′〉, where B′ = B∪! = {s, t, p→ q,¬q,m}.

The next observation states that reconsideration results in the optimal base (and, thus, the optimal knowl-

edge state), regardless of the makeup of the belief base at the time that reconsideration is performed. In

other words, the result of reconsideration on a knowledge state is independent of the base of that knowledge

state.

Observation 3.2.15 Reworded from [Johnson & Shapiro2005a] Given any knowledge state for B∪ with a

linear ordering � over B∪ and a maximizing global decision function for consolidation (that finds the max-

imal consistent subset of the base being consolidated), reconsideration on that state produces the optimal

knowledge state: (∀B⊆ B∪) : 〈B,B∪,�〉!∪ = 〈Bopt ,B∪,�〉, where Bopt is the optimal base w.r.t. B∪ and �.
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Although the concept of contraction is formalized by many researchers, the most practical use for con-

traction is as a part of the revision process: adjusting a belief space to maintain consistency during the

process of adding new information. The various operations of revision that were discussed in Chapter 2

(theory revision, base revision, and semi-revision) can all be expressed as expansion combined with con-

traction6 or consolidation (recall that consolidation is a specific form of contraction). Contraction is rarely

used by itself. Although there are scenarios one can imagine to justify contraction as a sole operation, typi-

cally, a belief is retracted when some other belief provides a reason for that belief’s removal. As explained

in [Chopra, Georgatos, & Parikh2001] “Agents do not lose beliefs without a reason: to drop [i.e., retract]

the belief . . . p is to revise by some information that changes our reasoning.”

In the same way that contraction is used with addition to maintain consistency, a system can use recon-

sideration following each addition to maintain optimality (assuming that the decision function can achieve

optimality). This would be helpful when new beliefs are added to the base as well as when existing beliefs

are relocated in the order. It also would be beneficial for additions and/or relocations of sets of beliefs—such

as when databases are merged.

This pairing of addition followed by reconsideration is called optimized-addition.

Optimized-addition to B

expansion Optimized-addition to B of the pair 〈p,�p〉 is: B+!∪ 〈p,�p〉 =de f (〈B,B∪,�〉+ 〈p,�p〉)!∪ .

Optimized-addition is the pairing of the operation of expansion followed by reconsideration on a knowl-

edge state. If B∪ and � are known (or obvious), I adopt the shorthand writing of: (1) B+!∪ 〈p,�p〉 to stand

for 〈B,B∪,�〉+!∪ 〈p,�p〉; and (2) B∪+!∪ 〈p,�p〉 to stand for 〈B′,B∪,�〉+!∪ 〈p,�p〉 for any B′ ⊆ B∪ (recall

Observation 3.2.15). If the effect of adjusting the ordering by �p is also known (such as with ordering

6Thanks to the Levi Identity.
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by recency), then 〈p,�p〉 can be reduced to p. Which shorthand version is used (1 or 2) depends on the

situation and what is more intuitive to the author/reader of the text where the shorthand is being used. An

example of using this shorthand can be seen in the (OR) column in Table 3.2.

Observation 3.2.16 Optimized-addition does not guarantee that the belief added will be in the optimized

base—it might be removed during reconsideration.

Example Let B∪ = p, p→q,¬q, p→r,¬r,m→r,m. And assume that B = B∪! = p, p→q, p→r,m→r,m.

〈B,B∪,�〉+!∪ 〈¬p,�¬p〉 = ¬p, p→q,¬q, p→r,¬r,m→r, assuming that �¬p indicates ¬p � p. Notice the

return of ¬q and ¬r to the base due to the removal of p, and the simultaneous removal of m to avoid a

contradiction with ¬r and m→r. If, on the other hand, �¬p indicated p � ¬p, then the base would have

remained unchanged.

Assuming a linear ordering of beliefs, the expansion of an optimal knowledge state by a belief that is

consistent with the base but is not actually in the base is equivalent to the optimized addition of that belief—

i.e., expansion by a new and consistent belief results in a new and optimal knowledge state. This is expressed

in theorem 3.2.17.

Theorem 3.2.17 Given B = 〈B,B∪,�〉, where B = B∪!, X = B∪ \B, B∪ is ordered linearly by�, and B∪! is

the greatest (unique maximal) consistent subset of B∪ (as determined by�), then (∀p s.t. B+ p6 ` ⊥ and p 6∈

B):

B+ 〈p,�p〉= 〈B+ p,B∪+ p,�′〉= 〈(B∪+ p)! ,B∪+ p,�′〉!∪ = 〈B+ p,B∪+ p,�′〉!∪ .

Proof.

Since B = B∪! , we know that (∀x∈ X) : B+x `⊥ and (@B′⊆ B) s.t. both (B\B′)+x 6 ` ⊥ and (∀b∈ B′)x� b

(Theorem 3.2.10). Therefore, since B + p6 ` ⊥, p 6∈ X , and B + p∪X = B∪+ p. Now, (∀x ∈ X) : (B + p)+

x `⊥ and (@B′ ⊆ (B + p)) s.t. both ((B + p) \ B′) + x 6 ` ⊥ and (∀b ∈ B′)x � b (from Theorem 3.2.10).

Therefore, (∀B′′ ⊆ (B∪+ p)) : (B+ p)�B∪+p B′′. Thus, B+ p = (B∪+ p)! . 2
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In the following two examples, the belief being added p is not already an element of B∪. In the first

example, p is also not in the belief space Cn(B). In the second example, p is derivable from B. In the

examples below, B is represented in set notation ({p1, . . . , pn}) rather than in sequence notation (p1, . . . , pn)

expressly because the final ordering after expansion (�′) is unknown and immaterial to this theorem.

Example 3.2.18 Given B∪ = q,q→ r,¬r, the optimal knowledge state is B1 = 〈{q,q→ r},B∪,�〉.

B2 = B1 + 〈p,�p〉= 〈{q,q→ r}∪{p},B∪∪{p},�′〉. B2!∪ = 〈{q,q→ r, p},B∪∪{p},�′〉.

Example 3.2.19 Given B∪ = q,q→ p,¬p, the optimal knowledge state is B3 = 〈{q,q→ p},B∪,�〉.

B4= B3+〈p,�p〉= 〈{q,q→ p}∪{p},B∪∪{p},�′〉. B4!∪ = 〈{q,q→ p, p},B∪∪{p},�′〉.

In Example 3.2.19, even if p is added below¬p in the ordering, p would survive reconsideration, because

all elements of a single p-kernel, {q,q→ p}, are higher than ¬p (or any of its kernels) in the ordering. If

¬p was higher than either q or q→ p, then p would not survive reconsideration unless it was inserted above

¬p in the ordering; however, in this case, ¬p would be in the original base and expanding by p would cause

a contradiction and, thus, violate the premise of Theorem 3.2.17, so expansion by p is not guaranteed to

produce an optimal base.

Assuming a linear ordering of beliefs (�), expansion of an optimal knowledge state with base B by

a belief p ∈ B (provided p is not being relocated to a less credible position in the ordering) results in a

knowledge state whose base remains unchanged and is optimal w.r.t. the set of all base beliefs and the

new ordering. This is expressed in the theorem below. Note: The belief p survives the optimizing step

of reconsideration because of the location of p in the ordering �′. If p were to be relocated to a lower

preference in that ordering, then p might not survive reconsideration.

Theorem 3.2.20 Given an optimal knowledge state B = 〈B,B∪,�〉, where X = B∪ \B, and � is a linear

ordering, then (∀p ∈ B): B+ 〈p,�p〉= B1 = 〈B1 , B∪1 , �1〉, where B1 = B+ p, and the sets B∪1 = B∪+ p.
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If �1 is ordered such that p = pi ∈ B∪ = p j ∈ B∪1 and j ≤ i, then p is not relocated to a weaker position in

the ordering, and B1 = B, the sets B∪1 = B∪, and B1 = 〈B1, B∪1 , �1〉!∪ and is optimal w.r.t. B∪1 and �1.

Proof.

Because B is optimal, we know B = B∪! . So, we also know that (∀x ∈ X) : B + x `⊥ and (@B′ ⊆ B) s.t.

both (1) (B \B′)+ x 6 ` ⊥ and (2) (∀b ∈ B′)x � b (from Theorem 3.2.10). Therefore, since p ∈ B, we know

that B+ p = B, B∪+ p = B∪, and p 6∈ X .

Since p = pi ∈ B∪ = p j ∈ B∪1 and j ≤ i, we know

1. (∀q ∈ B∪) : p� q⇒ p�1 q, because p did not move to a weaker position in the ordering, and

2. all other beliefs kept their same relative order— (∀q,r ∈ B∪) : q� r⇒ q�1 r.

Therefore, (∀x ∈ X1) : B1 + x `⊥ and (@B′ ⊆ B1) s.t. both (1) (B1 \B′)+ x 6 ` ⊥ and (2) (∀b ∈ B′) : x �1 b.

And, from Theorem 3.2.10, B1 is optimal w.r.t. B∪1 and �1. Therefore, (∀B′ ⊆ B∪1 ) : B1 �1 B′. And,

B1 = 〈B1,B∪1 ,�1〉!∪ . 2

Example 3.2.21 Given B∪ = p,q,q→ r,¬r, the optimal knowledge state is B5 = 〈{q,q→ r},B∪,�〉. B6=

B5+〈q,�q〉= 〈B,B∪,�′〉. But is B optimal, now?

If the ordering of �′ is p�′ q→ r �′ ¬r �′ q, then the optimal base w.r.t. B∪ and �′ is {p,q→ r,¬r}. B is

no longer optimal, because q has been relocated below ¬r in the ordering.

If the ordering of �′ is p �′ q �′ q→ r �′ ¬r or q �′ p �′ q→ r �′ ¬r, the base is unchanged by the

expansion.

If the ordering of�′ is p�′ q→ r�′ q�′ ¬r, then the base will also be unchanged by the expansion. Notice

that, in this case, q is lowered in the ordering, but the base remains unchanged. That is because q is still

above ¬r. However, when q ∈ B and B is optimal, only if q is not lowered in the ordering can expansion be

guaranteed to result in an optimal base.
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Figure 3.1: A graph showing the elements of B∪ (circles/ovals) of a knowledge state connected to their
respective nogoods (rectangles). Consider the optimal knowledge state B1 where ¬p was not yet in
the set of all base beliefs: B1 = 〈B1,B∪1 ,�1〉. In this case, �1 would order B∪1 in the following way:
B∪1 = p, p→ q, p→ r,m→ r,s→ t,w→ v,w→ k, p→ v,z→ v,n,¬r,w,s,¬v,m,z,¬q,¬t,¬k. Therefore, the
optimal base for B1 would be B1 = {p, p→ q, p→ r,m→ r,s→ t,w→ v,w→ k, p→ v,z→ v,n,w,s,m,z}.
The semi-revison addition of ¬p (preferred over p) followed by reconsideration is described in Exam-
ple 3.2.22 in the text.

A Reconsideration Example

Example 3.2.22 If we start with an optimal knowledge state B1, where B∪1 = p, p→ q, p→ r,m→ r,s→

t,w→ v,w→ k, p→ v,z→ v,n,¬r,w,s,¬v,m,z,¬q,¬t,¬k. The optimal base would be B1 = p, p→ q, p→

r,m→ r,s→ t,w→ v,w→ k, p→ v,z→ v,n,w,s,m,z, as described in Figure 3.1. The semi-revision addition

of ¬p (where ¬p� p) forces the retraction of p to maintain consistency. NOTE: Most systems would stop

here.

However, the belief base optimizing operation of reconsideration produces the following changes: (1) ¬q

and ¬r return to the base, and (2) m is removed (for consistency maintenance; to allow ¬r to return; a

“good trade”). The “recovery for bases” flavor of reconsideration is seen if we add p back into the base at a
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stronger preference than ¬p: p�¬p. Reconsideration would return p, remove ¬p, remove ¬q, and remove

¬r while returning m to the base. The resulting base would be B1.

Implementing Reconsideration

Later in this chapter, there will be a discussion about testing a naive application of reconsideration using

an online BR engine called SATEN [Williams & Sims2000]. I show and discuss the results of the different

adjustment strategies available in SATEN performing reconsideration.

The next chapter fully presents and discusses a TMS-friendly, anytime algorithm that implements re-

consideration in a dependency-directed technique that is more efficient than a naive implementation. This

algorithm was first presented in [Johnson & Shapiro2005a].

3.2.4 Comparing Reconsideration To Belief Liberation

Key Difference Between Liberation and Reconsideration

Reconsideration was intended specifically to improve the optimality of a specific belief base and to impart an

aspect of Recovery. The research in belief liberation [Booth et al.2005] focuses on defining liberation oper-

ators for some belief theory K relative to some arbitrary σ (essentially, some arbitrary linear ordering whose

closure is the belief theory K). The focus is on K and how it changes when a contraction is performed—

whether there is any σ that shows that a given contraction operation is an operation of σ-liberation. The

authors do not advocate maintaining any one, specific σ. Although it is clearly stated that σ-liberation does

not adhere to Recovery, the similarity between σ-liberation and reconsideration—the fact that both favor

belief change operations possibly triggering the return of some subset of previously removed base beliefs—

prompted us to compare them in detail.
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Similarities to Reconsideration

Assume B∪ = [[σ]] and is ordered by recency; and the belief theory associated with σ as Kσ (my term).

Bn(σ) is the maximal consistent subset of [[σ]]—i.e., Bn(σ) = [[σ]]! = B∪! . Similarly, Bn(σ, p) is the

kernel contraction of [[σ]] by p. In other words, Bn(σ, p) = B∪ ∼ p.7 Thus, K ∼σ p = Cn(B∪ ∼ p).

If we assume that B = B∪! = Bn(σ), I define σB to be the recency ordering of just the beliefs in Bn(σ),

and Kσ = KσB . Now I can define contraction of an optimal knowledge state in terms of contraction for

σ-liberation: B ∼ p = (Kσ ∼σB p)∩B and Cn(〈B,B∪,�〉∼ p) = Kσ ∼σB p.

This contraction operation produces different results from that discussed in [Booth et al.2005]: K ∼ p =

K ∼σ p∩K, where any beliefs removed by K ∼σ p, whether to retract p or for adjustment to belief liberation,

may be absent from the resulting belief space. In the contraction version that I use, which is equivalent to

base kernel contraction, no beliefs can return (because the sequence is σB—there are no other beliefs) and,

therefore, no removals occur except those to achieve retraction of p.

I define the operation of σ-addition (adding a belief to the belief sequence σ) in the same way that

sequence expansion is defined in [Chopra, Georgatos, & Parikh2001]: σ + p is adding the belief p to the

sequence σ = p1, . . . , pn to produce the new sequence σ1 = p, p1, . . . , pn.

If σ is the sequence for B∪, then the optimized-addition of p to any knowledge state for B∪ results in

a base equivalent to the base associated with the sequence resulting from the addition of p to σ: Given

B∪+!∪ p = 〈B′,B∪+ p,�′〉, then B′ = Bn+1(σ+ p).8

Likewise, σ-addition followed by recalculation of the belief theory is equivalent to optimized-addition

followed by closure: Given B∪ = σ, Kσ+p = Cn(B∪+!∪ p).

7Note: specifically not Bn(σ, p) = B∪! ∼ p.
8My notation for the base associated with a σ-addition is not inconsistent with the notation of [Booth et al.2005] for the base

associated with a σ-liberation operation. Addition changes the sequence, so I am determining the base for the new sequence (σ+ p):
B(σ+ p). The operation of σ-liberation changes the base that is used to determine the belief theory (from B(σ) to B(σ, p)), but
the sequence σ remains unchanged.
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Cascading Belief Status Effects of Liberation

It is important to realize that there is a potential cascade of belief status changes (both liberations and

retractions) as the belief theory resulting from a σ-liberation operation of retracting a belief p is determined;

and these changes cannot be anticipated by looking at only the nogoods and kernels for p.

Example Let σ = p→ q, p,¬p∧¬q,r→ p∨ q,r,¬r. Then, B6(σ) = {p→ q, p,r→ p∨ q,r}. Note that

r ∈ Kσ and ¬r /∈ Kσ. K ∼σ p = Cn({p→ q,¬p∧¬q,r→ p∨q,¬r}). Even though r is not in a p-kernel in

[[σ]], r 6∈ K ∼σ p. Likewise, ¬r is liberated even though @N s.t. N is a nogood in [[σ]] and {¬r, p} ⊆ N.

Reconsideration has an identical effect. If B∪ = σ, and B = B∪! = B6(σ), then 〈B,B∪,�〉+!∪ 〈¬p,�¬p〉,

where �¬p indicates ¬p� p, would result in the base B1 = {¬p, p→ q,¬p∧¬q,r→ p∨q,¬r}.

3.3 Improving Recovery for Belief Bases

3.3.1 Reconsideration Provides an Improved Recovery Aspect to Base Belief Change

Recovery is a Postulate Constraining the Operation of Contraction

The Recovery postulate is a contraction postulate: it constrains the operation of theory contraction; it is

an axiom to which its authors recommend any theory contraction operation should adhere. Recovery states

that, for a theory K and a belief p, K ⊆ (K− p)+ p, where K− p is theory contraction and K + p is theory

expansion.

Base Recovery says that B⊆Cn((B− p)+ p), where B− p is base contraction and B+ p is base expan-

sion. Note here that the base is recovered in the belief space. It is not required to be in the revised base (i.e.,

Base Recovery does not require that B⊆ (B− p)+ p).

Comparing whether different belief change operations adhere to Recovery is limited to comparing dif-

ferent operations of contraction—by checking whether an expansion by some belief p that immediately
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follows contraction by p results in a superset of the original theory. Any contraction of a belief base (when

defined to result in some subset of that base) cannot guarantee to adhere to Recovery. Since contraction

of a knowledge state is defined by contraction of its base, knowledge state contraction cannot adhere to

Recovery.

This section discusses how performing reconsideration following the contraction-expansion sequence of

operations in the Recovery axiom increases the number of cases showing the benefits of Recovery. Recon-

sideration does not perform any deductive closure, it merely shows an alternate approach to gain some of

the benefits that Recovery provides.

Benefits of Recovery

As mentioned above, Recovery constrains theory contraction. The goal is to remove as little as possible

from a theory to accomplish the retraction of some belief p. So little should be removed, in fact, that if p

were returned to the theory (and deductive closure performed), all beliefs removed during the contraction

would be returned.

So there are two main benefits resulting from adherence to Recovery:

1. One benefit of a contraction adhering to Recovery, obviously, is that the set of beliefs removed during

the contraction is minimized.

2. A second benefit of adherence to Recovery, however, is this sense that a contraction by a belief can

be undone if immediately followed by expansion by that same belief (undone in the sense that it is

returned to the belief space—which, for a theory, is indistinguishable from its base).

Although base contraction does not adhere to Recovery, assuming a linear ordering guarantees that any

foundations-oriented contraction operation that maximizes the resulting base (provided it adheres to the

Success postulate for base contraction, see Section 2.2.4) will minimize the set of beliefs it removes from
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the base. So the first benefit of adherence to Recovery is satisfied.

The second benefit of Recovery is realized (in most cases) by performing reconsideration after each ex-

pansion (expansion and reconsideration performed in series is called optimized-addition; cf. Section 3.2.3).

Given a base B and some belief p, contraction by p followed by expansion by p followed by reconsideration

of the knowledge state will return a knowledge state whose base B′ is a superset of B (i.e., B⊆ B′)—except

in the case where ¬p is in the original belief space (i.e.¬p ∈Cn(B)).

The exception just noted is trivial, because it occurs in the case where expansion produces an inconsistent

set whose closure (for classical logic) is the set of all beliefs—i.e., all theories would be a subset of that

inconsistent set (due to closure and assuming we are not using a paraconsistent logic). Reconsideration

removes the contradiction by (typically, though not always; discussion in a later section) retracting ¬p,

which means that the original base will not be a subset of the post-reconsideration base or its closure.

Reconsideration improves the aspect of Recovery for belief bases, but not to the extent of allowing an

inconsistent base.9 Additionally, in an implementation, contraction would rarely be used unless the belief

being contracted was actually in the current belief space (and, therefore, its negation would not be in the

belief space—assuming B is consistent), so this exceptional case is of lesser importance when attempting to

realize the benefits of Recovery for practical, real-world applications.

The following section includes an extensive discussion regarding the realization of this second benefit

of Recovery for various cases and various Recovery-like formulations.

9The aspects of Recovery that I refer to are, in actuality, criteria that are associated with the Recovery postulate—the goals of
the Recovery postulate. I refer to the shift from satisfying less important goals to more important goals as an improvement in the
aspect of Recovery that can be associated with belief base operations. This shift can be seen in the upcoming Table 3.2 on page 93.
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3.3.2 Comparing Recovery-like Formulations

This section explores and discusses Recovery-like formulations, and whether they are adhered to during

base belief change.

Let B = 〈B,B∪,�〉, s.t. B∪ = [[σ]], B = B∪! = Bn(σ), K = Kσ = Cn(B), P = the set of p-kernels in B,

p = 〈p,�p〉, B1 = 〈B1,B∪1 ,�1〉= (B ∼ p)+!∪ p, and X1 = B∪1 \B1. The first element in any knowledge state

triple is recognized as the currently believed base of that triple (e.g., B in B), and is the default set for any

shorthand set notation formula using that triple (e.g., A⊆ B means A⊆ B). Note that the assumptions above

include the assumption that B is optimal w.r.t. B∪ and �.

Table 3.2 shows the cases where different Recovery formulations hold—and where they do not hold.

There is a column for each formulation and a row for each case. The traditional Recovery postulate for

bases (Cn(B) ⊆ Cn((B ∼ p) + p)) is shown in column (TR). In column (LR), the recovery postulate for

σ-liberation retraction followed by expansion (Liberation-recovery, LR, our term) is: K ⊆ ((K ∼σ p)+ p).

In column (OR), the recovery-like formulation for kernel contraction followed by optimized-addition

is: K ⊆ Cn((B ∼ p) +!∪ p). I call this Optimized-recovery, OR, and it is formulated this way to make

comparisons to TR and LR more intuitive. As it turns out, adherence to OR occurs because of adherence to

the more demanding axiom of Strict Base Optimized Recovery: B⊆ ((B ∼ p)+!∪ p). This is more demanding

than OR, because base beliefs are recovered in the base, itself, not just its closure.

There are two columns devoted to OR. For column (OR-i), the ordering for B∪ and B∪1 is recency. For

column (OR-ii) the assumptions include:

1. the ordering is not recency-based,

2. p ∈ B∪ (nullifying Case 3), and

3. optimized-addition returns p to the sequence in its original place (i.e., �=�1).

Note that (OR) is not a true Recovery axiom for some contraction operation—i.e., it does not describe
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the result of contraction followed by expansion, but rather describes the desired result of contraction fol-

lowed by expansion followed by reconsideration; it adds an additional operation (reconsideration) after the

contraction-expansion pair. (OR) can also be rewritten as K ⊆Cn( ((B ∼ p)+ p)!∪ ), where reconsideration

is performed after the expansion but before the closure to form the new belief space.

An entry of YES in the table means the formulation always holds for that given case; NO means it does

not always hold; NA means the given case is not possible for that column’s conditions. The second entry in

each cell indicates whether the resulting belief space is guaranteed to be optimal (i.e., is the base from which

the belief space is calculated optimal w.r.t. B∪1 (= B∪+ p = σ+ p) and its linear order). If not optimal, then

a designation for consistency is indicated. Recall that optimality requires consistency.

Case 1 In this simple case, {p} is the sole p-kernel in B. There are no other ways to derive p, therefore,

retraction of p removes no other beliefs except p. For all formulations, p is removed then returned to the

base, therefore all cases hold.

For (TR): B ∼ p = B\{p}, and (B ∼ p)+ p) = B.

For (LR): Since Bn(σ)\Bn(σ, p) = {p}, Bn(σ)⊆ Bn(σ, p)∪{p} and K ⊆ (K ∼σ p)+ p. If no beliefs

are liberated by K ∼σ p, then Bn(σ, p) = Bn(σ) \ p, and (K ∼σ p) + p = K. If beliefs are liberated by

K ∼σ p, then (∃q ∈ Bn(σ, p) \Bn(σ)) : Bn(σ)+ q `⊥. Therefore, Bn(σ, p)+ p `⊥, so (K ∼σ p)+ p `⊥

and Liberation-recovery holds.

For (OR), since p ∈ B, (B ∼ p)+ p = B, and OR holds. Additionally, for (OR-ii), �=�1 and B∪ = B∪1 ,

so B = B1.

Case 2 Case 2 says that p ∈Cn(B) and there are p-kernels other than {p} in B. Since there are p-kernels in

B that consist of beliefs other than p, beliefs other than p must be removed from the base during contraction

by p.

For (TR), if those p-kernel beliefs are not derivable from (B ∼ p) + p), then TR does not hold. For
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(TR) (LR) (OR)

Case K ⊆Cn((B ∼ p)+ p) K ⊆Cn((K ∼σ p)+ p) K ⊆Cn((B ∼ p)+!∪ p)

but also B⊆ (B ∼ p)+!∪ p

(i) (ii)

recency recency recency p ∈ B∪ and �1=�

1. p ∈Cn(B); YES YES YES YES

P = {{p}} optimal possibly inconsistent optimal optimal

2. p ∈Cn(B); NO NO YES YES

P\{{p}} 6= /0 consistent possibly inconsistent optimal optimal

3. p 6∈Cn(B); YES YES YES NA

B+ p 6 ` ⊥ optimal optimal optimal

4. p 6∈Cn(B); YES YES NO YES

B+ p `⊥ inconsistent inconsistent optimal optimal

Table 3.2: This table indicates whether each of three different Recovery formulations (TR, LR and OR)
holds in each of four different cases (which comprise all possible states of belief). K = Cn(B), p = 〈p,�p〉,
and P is the set of p-kernels. YES means the formulation always holds for that given case; NO means it
does not always hold; NA means the given case is not possible for that column’s conditions. See the text
for a detailed description. Note: If requiring contraction for consistency maintenance only, a column for
adherence to either B⊆ (B+!∪ ¬p)+!∪ p (ordered by recency) or Kσ ⊆ K(σ+¬p)+p would match (OR-i).

example: B = {p∧q}, then B ∼ p = /0 and (B ∼ p)+ p) = {p}. Therefore, K 6⊆Cn((B ∼ p)+ p), and (TR)

does not hold.

For (LR), a similar example shows that (LR) does not hold. If σ = p∧ q, then K ∼σ p = /0 and (K ∼σ

p)+ p = Cn({p}). So, p∧q 6∈ (K ∼σ p)+ p. (LR) does not hold.

For (OR), the key questions are (1) what is the optimal base: (B∪+ p)!, and (2) is B a subset of that opti-

mal base? Recall that reconsideration is on B∪ and its results are independent of any contractions performed

earlier (see Observation 3.2.15). Since p ∈Cn(B), then B + p6 ` ⊥. Therefore, (B∪! + p)6 ` ⊥. If p ∈ B, it

will be relocated to a spot that is not any weaker in the ordering (OR-i will have it as the most preferred

93



belief; OR-ii does not change the ordering). Therefore, (B∪+ p)! = B + p = B (from Theorem 3.2.20). If

p 6∈ B, then it is still the case that (B∪+ p)! = B+ p (from Theorem 3.2.17). Either way, B⊆ (B∪+ p)!, and

(OR) holds.

Case 3 In case 3, p 6∈ Cn(B) and B + p6 ` ⊥. Because of these assumptions, we know that p 6∈ B∪—

otherwise, if p ∈ B∪ and B + p 6 ` ⊥, then B + p ⊆ B∪ and (B + p) � B and B 6= B∪! (which is not possible,

because the premise is that B is equivalent to B∪!). So, p 6∈ B∪, and p 6∈ σ. Column (OR-ii) has NA (for

“Not Applicable”) as its entry, because (OR-ii) assumes that p ∈ B∪.

For the other columns, since p 6∈Cn(B), contraction results in no change to the base (or set) involved:

B ∼ p = B, K ∼σ p = K = Cn(B), and B ∼ p = B. Clearly, (TR) holds and (LR) holds. (OR-i) also holds,

since we know that B+ p 6 ` ⊥ and p 6∈Cn(B) (Theorem 3.2.17).

Case 4 In case 4, p 6∈Cn(B) and B + p `⊥. Because p 6∈Cn(B), B ∼ p = B and K ∼σ p = K = Cn(B).

Since B+ p `⊥, both (TR) and (LR) produce inconsistent spaces; therefore, they both hold.

For (OR), B ∼ p = B. For (OR-i), the optimized-addition puts p at the most preferred end of the new

sequence (most recent), so p ∈ B1 forcing weaker elements of B to be retracted for consistency maintenance

during reconsideration (recall B+ p `⊥). Therefore (OR-i) does not hold.10 For (OR-ii), optimized-addition

returns p to the same place in the sequence that it held in B∪ (recall B∪1 = B∪ and �=�1). In this case, p

will be retracted during reconsideration as it was before (to make the optimal base B). Therefore, B1 = B

and (OR-ii) holds.

3.3.3 Discussion

When comparing the traditional base recovery adherence (in column TR) to optimized recovery adherence

(shown in the OR columns), the latter produces improved adherence and/or improved results, because:

10Producing an optimal base is preferred to adhering to a recovery-like formulation by having an inconsistent base.
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1. in all cases where retraction of p actually alters the base (both OR columns for cases 1 and 2), B is

recovered following optimized addition;

2. using a recency-based ordering (OR-i), B is recovered in all cases where ¬p 6∈Cn(B) (cases 1-3);

3. if expansion by p traditionally makes the final base inconsistent (TR,4), the final base for (OR) is

consistent and optimal, even if (as in the case of (OR-i,4) the base is not recovered. Recall that we

favor optimality over adherence to recovery.

4. in the case where the contraction is most closely undone—where p was in B∪, and the ordering is not

altered by expansion by p (OR-ii)—the original base is always recovered.

Reconsideration eliminates the results of any preceding contraction, because B∪ is unaffected by con-

traction: (B ∼ p)!∪ = B!∪ (see Observation 3.2.15). Likewise, optimized-addition also eliminates the results

of any preceding contraction: ∀q : (B ∼ q)+!∪ p = B+!∪ p. In a sense it is strange to say that reconsideration

undoes the operation of contraction when it really just ignores any contractions that were done. However,

contraction is typically done as a part of the belief change operations of revision or consolidation. Though

Recovery is an interesting postulate, it is more interesting to see how it applies to the more practical instance

of contraction for consistency maintenance.

When considering contraction for consistency-maintenance only (i.e., contraction as a result of con-

sistency maintenance necessitated by the addition of a belief, or set of beliefs, to the base) and assuming

ordering by recency, the recovery-like formulation B⊆ (B+!∪¬p)+!∪ p would have column entries identical

to those in the column under (OR-i). Likewise, the entries in a column for Kσ ⊆ K(σ+¬p)+p would also

be identical to the entries for column (OR-i). These (OR-i) results for B ⊆ (B +!∪ ¬p) +!∪ p and Kσ ⊆

K(σ+¬p)+p show adherence to (R3) in [Chopra, Ghose, & Meyer2002]. (R3) states that if ¬p 6∈ K(ES), then

K(ES) ⊆ K((ES ∗¬p) ∗ p), where ES is an epistemic state (a knowledge state), ES ∗ p is the operation of

revising that state by the belief p, and K(ES) is the belief space associated with that ES.

95



A key element of the improved Recovery aspect that reconsideration provides for bases is that it does

not involve the addition of extra beliefs to the belief base. A belief base can “adhere” to Recovery if the

contraction operation to remove p also inserts p→ q into the base, for every belief q that is removed during

that retraction of p. However, adding extra beliefs just to adhere to Recovery deviates from the assumption of

a foundations approach, where the base beliefs represent the base input information from which the system

or agent should reason. Not only would this technique insert unfounded base beliefs, but the recovery of

previously removed beliefs would only show up in the belief space; whereas reconsideration actually returns

the removed beliefs to the belief base (Strict Base Recovery).

There are contraction operations, other than liberation, that propose adding beliefs into the belief base

as a part of the contraction process. In [Nayak1994], contraction of B by p would insert p→ q for all beliefs

q in B. Similarly, Nebel suggests adding p→ &B when contracting B by p, where &B is the conjunction

of all beliefs in B [Nebel1989]. Both these techniques would result in Recovery adherence, but they also

insert new beliefs into the base merely to satisfy this adherence. A different approach, called Disjunctive

Maxi-Adjustment (DMA), is proposed in [Benferhat et al.2004], where beliefs that are removed from a

base during consistency maintenance are replaced by a weakened version (selected various disjunctions of

the beliefs), which maintains some of the information without raising an inconsistency. An example of this

would be revising the set of equally believed beliefs {a,b,c} with the more credible belief ¬(a∧ b): in

addition to removing both a and b (skeptical reasoning), DMA inserts the belief a∨ b into the base. This

is different from the other methods, because the beliefs being inserted are a weaker version of pre-existing

base beliefs and still support the foundations approach (much like replacing some bricks in a foundation

with some temporary shoring that will not be in the way if the bricks get returned). Reconsideration could

be used in conjunction with DMA as long as B∪ and � are updated with the newly inserted beliefs.
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Returning to our discussion of the Recovery aspect of reconsideration and optimized addition:

Reconsideration adds an aspect of Strict Base Recovery, and it does so equally well with paraconsistent

logics (those where a contradiction does not automatically imply anything). In fact, relevance logics

[Anderson & Belnap1975, Anderson, Belnap, & Dunn1992] are not only paraconsistent, but they also do

not support the axiom that anything implies a true proposition. For reasoning and belief revision using

non-classical logics such as these, even theory contraction would not adhere to the Recovery postulate, be-

cause deductive closure would fail to produce the beliefs needed by that recovery process. Given the set

B = {p,q}, depending on the relationship of the beliefs (their relevance to each other), the belief p∨q might

be in Cn(B), but the belief p↔ q might not be in the closure, and (K ∼ (p∨q))+(p∨q) might not be able

to recover p or q. OR, however, would perform as it did in the Table 3.2, because it does not depend on

closure to achieve its Recovery-like aspect.

If the linear ordering is not recency-dependent and �1 6=�, then there are cases where Optimized-

recovery does not hold even though the resulting base will still be optimal. For Case 1, if p is re-inserted

into the ordering at a weaker spot, then it might be retracted during reconsideration in the case where it is

re-asserted in a position that is weaker than the conflicting elements of some pre-existing nogood and the

incision function favors retracting p. This could also happen in case 2, unless the elements of some p-kernel

are all high enough in the order to force the retraction of the beliefs conflicting with p. In Case 3 all Recov-

ery formulations always hold. In Case 4, if p is inserted into the final ordering at a strong enough position

(specifically, high enough that no kernel for ¬p has all its elements higher), then p would survive the recon-

sideration step of optimized-addition—in which case, (OR) would not hold, even though the resulting base

would still be optimal.
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3.4 Belief Change Issues for Non-linear Orders

3.4.1 Introduction

When the ordering of the beliefs in B∪ is not linear, it becomes less clear what determines an optimal base.

Even with a linear ordering, there is a point when deciding to remove many weaker beliefs rather than one

strong belief begins to look like a questionable strategy. With a non-linear ordering, however, there are

different issues to deal with.

Since I favor kernel operations, I will focus on the operation of kernel consolidation: specifically, which

belief(s) should be selected for removal from active nogoods to eliminate all inconsistency. The issues

discussed can easily be extrapolated to the operation of contraction: e.g., which belief(s) to remove from

each p-kernel to retract the belief p from a belief space. All other operations on a knowledge state are

determined by these two operations, except for expansion which is essentially unaffected by a change from

a linear ordering to a pre-order.

3.4.2 A Single Nogood With a Non-Singleton Set of Minimal Beliefs

The main problem comes from a nogood having a minimal set of beliefs that is not a singleton set. In a linear

ordering, every nogood has one unique minimal element, the belief that is less credible than any other belief

in that nogood: given the nogood N, (∃p∈N) : ∀q∈N \{p},q� p. Having a least element for every nogood

makes culprit selection foolproof and simplifies the determination of how best to remove culprits from

multiple nogoods (assuming, again, that optimization favors one strong belief over many weaker beliefs).

In a total pre-order, antisymmetry is not guaranteed; therefore, two or more beliefs can have the same

level of credibility (called a ranking by [Williams & Sims2000]). In this case, is possible for a nogood to

have more than one belief at the lowest ranking.
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Rank Beliefs in a Single Nogood Beliefs Including 3 Nogoods

1 p p→ q p p→ q

2 q→ r q→ r s∨w

3 r→ s s→ t ¬t r→ s s→ t ¬t ¬w r

Table 3.3: An example of nogoods in pre-orders. The left column of beliefs contains a single nogood. The
right column of beliefs contains three nogoods: NG1 = {p, p→ q, q→ r, r→ s, s→ t, ¬t}, NG2 = {r→
s, s→ t, ¬t, r} , and NG3 = {s∨w, s→ t, ¬t, ¬w}.

If a specific nogood has a non-singleton set of weakest elements (the culprit set), the choices for elimi-

nating the inconsistency caused by that nogood include:

1. removing one of the elements in the culprit set (credulous reasoning);

2. removing all the elements from the culprit set (skeptical reasoning);

3. (least reasonable) removing more than one, but not all elements from the culprit set.

Note that, if there is only one nogood to consider,choice number 3 seems strange with only the ranking to

assist in culprit selection, because there is no accepted reason for choosing a number between one and all

culprits non-inclusively.

Example: Let N be a nogood represented as a set of beliefs paired with their respective ranks such that the

lower the rank, the more credible the belief: N = {〈p,1〉,〈p→ q,1〉,〈q→ r,2〉,〈r→ s,3〉,〈s→ t,3〉,〈¬t,3〉}

The first column of beliefs in Table 3.4.2 shows these ranking more clearly. Removing all beliefs at the

third rank would be skeptical belief change. Removing only one of the beliefs at the third rank would be

an example of credulous reasoning. Since there are three beliefs at the third rank, there are three possible

outcomes of using credulous reasoning. Maintaining all three is a way of looking at all possible worlds.
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3.4.3 Multiple Nogoods Having Non-Singleton Sets of Minimal Beliefs

A more complicated issue occurs when multiple nogoods have non-singleton culprit sets—especially when

those sets intersect. To see the effect, expand on the example in the previous section by adding three

more beliefs: 〈s∨w,2〉,〈¬w,3〉,〈r,3〉. We now have three nogoods. They are the original nogood, NG1 =

{p, p→ q, q→ r, r→ s, s→ t, ¬t}, and two additional nogoods: NG2 = {r→ s, s→ t, ¬t, r} and

NG3 = {s∨w, s→ t, ¬t, ¬w}. These nogoods are represented in the rightmost column of Table 3.4.2. The

minimal set of beliefs for each nogood lies at the third level, and these minimal sets intersect to form the set

{s→ t, ¬t}.

Should we be skeptical and remove the union of the three minimal sets? Should we be credulous and

remove one element from each nogood as long as it is at the third rank?

Perhaps we should focus on the intersection of the three nogoods. In this case, credulous reasoning

might remove either s→ t or ¬t, whereas skeptical revision would remove both beliefs. This is where one

might reason that presence in multiple nogoods reduces credibility. This reasoning can backfire, though.

Imagine the many failed attempts to make an airplane during the birth of aviation. Each failed

flight was preceded by the formation of a set of base beliefs from which the inventor inferred

that his plane would fly. After his contraption came crashing to the earth, the inventor had an

inconsistent set of beliefs (a nogood). Thus, every failed flight produced a nogood. It is a fair

bet that the belief “Gravity exists” was present in all the nogoods, but that certainly does not

mean it should be removed from the belief base in an attempt to restore consistency.

Hence, a belief’s presence in multiple nogoods does not guarantee that the belief is the best choice for

removal to restore consistency. It should be noted, however, that the belief “Gravity exists” would most

likely have a higher rank than other beliefs common to most or all the nogoods in the airplane example—
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i.e., beliefs about how gravity, speed and construction would affect the flight characteristics of the plane—so

“Gravity exists” would not be likely to be selected as a culprit.

3.4.4 Dealing with non-linear issues

This discussion of belief change issues was presented to emphasize the complexities of culprit selection

when the beliefs are not ordered linearly and/or when nogoods intersect. Developing a perfect culprit selec-

tion function is beyond the scope of this dissertation—perhaps, beyond the scope of a lifetime of research.

A major goal of this research, however, is to provide an operation (the operation of reconsideration) that

can improve the way an existing reasoning system maintains its belief base. This is dependent on the culprit

selection strategy that is used by that system to restore consistency to an inconsistent base. The next section

discusses six different strategies (that is, six of the many strategies) for restoring consistency in a belief base

where the beliefs are ordered in a total pre-order. I then apply reconsiderastion to a pre-existing example

that contrasts these strategies. The results show (at least for this one example) how reconsideration can, in

most cases, improve a pre-order of base beliefs—and, in some cases, improve the base to an optimal state.

3.5 Belief Change in a Total Pre-order: Six Strategies Used by SATEN

3.5.1 Introduction

As mentioned earlier, SATEN [Williams & Sims2000] is an “extraction and belief revision engine” that

is available over the internet. When performing an extraction or a revision, the user must choose one of

six available adjustment strategies that select which beliefs should be removed (if necessary). Essentially,

the adjustment strategies can be considered selection functions [Alchourrón, Gärdenfors, & Makinson1985]

or in some cases incision functions [Hansson1994, Hansson1999], and an extraction (the extraction of a

consistent belief base from the current base) is an operation of kernel consolidation [Hansson1994].
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In the SATEN system, beliefs are accompanied by a degree of credibility between 0 and 1, where a higher

degree means a belief is more preferred (more important). These degrees provide a ranking (1,2,3,. . . ) where

the highest degree in the base equates to a ranking of 1. Beliefs at the highest degree are also considered to be

at the first or highest rank. Note that “rank is inversely proportional to importance” [Williams & Sims2000].

A cut of the base at a specific rank is the set of beliefs at that rank and above: e.g., a cut at rank 3 would

include all beliefs at ranks 1, 2, and 3.

SATEN does no “track-keeping” or storage of derived beliefs. Its belief revision strategies are based on

algorithms that (1) look at the degrees of credibility of the beliefs in the base and (2) calculate inconsistencies

in the base at the time that revision is needed. In some cases, the information needed to perform kernel

contraction or kernel consolidation is also calculated at the time that revision is done, but some of the

strategies used do not perform kernel belief change operations.

The six adjustment strategies used by SATEN are explained briefly below with a mix of quotes from

[Williams & Sims2000] followed by further clarification. They can produce pairwise distinct results when

looking at an example of extraction (consolidation) on a base of ten beliefs at just four different degrees of

credibility.11 The example is actually shown as a base of nine of the ten beliefs revised by the tenth belief,

¬a. This is equivalent to adding ¬a and performing contraction.

Table 3.4 shows the original base of nine beliefs (in the first row of base beliefs) and the results of

revision by ¬a under each adjustment strategy (in the second row of base beliefs). Table 3.5 also shows

these same rows as its top two rows of belief bases.

In the explanations of the adjustment strategies that follow, I have added the reasons for each different

revision result. To simplify later discussion, I am using semi-revision (implemented as addition followed by

consolidation: (B+¬a)! ). Because ¬a is entering the base at the highest level and is not inconsistent with

11This example was found (and is available for testing) on SATEN’s website: <http://magic.it.uts.edu.au/systems/saten.html>.
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Belief Base Rank Degree Standard Maxi-adjustment Hybrid Global Linear Quick

B 1 .95 a∨b a∨b a∨b a∨b a∨b a∨b
2 .90 a∨ f a∨ f a∨ f a∨ f a∨ f a∨ f
3 .40 a∨d , ¬b∨¬d, a∨d, ¬b∨¬d, a∨d, ¬b∨¬d, a∨d , ¬b∨¬d, a∨d, ¬b∨¬d, a∨d, ¬b∨¬d,

d,e, f d,e, f d,e, f d,e, f d,e, f d,e, f
4 .20 ¬g∨¬b, ¬d∨g ¬g∨¬b, ¬d∨g ¬g∨¬b, ¬d∨g ¬g∨¬b, ¬d∨g ¬g∨¬b, ¬d∨g ¬g∨¬b, ¬d∨g

(B+¬a)! 1 .95 ¬a, a∨b ¬a, a∨b ¬a, a∨b ¬a, a∨b ¬a, a∨b ¬a, a∨b
2 .90 a∨ f a∨ f a∨ f a∨ f a∨ f a∨ f
3 .40 f e, f ¬b∨¬d, e, f e, f d,e, f
4 .20 ¬g∨¬b, ¬d∨g ¬g∨¬b, ¬d∨g ¬g∨¬b, ¬d∨g

Table 3.4: This table shows the basic SATEN example that compares its six adjustment strategies when
revising a base B by the belief ¬a. The differences are explained in the text. Revision by ¬a is performed
by the addition of ¬a followed by consolidation. This table is included in Table 3.5 in larger print.

the other belief at that level, this is equivalent to external revision ((B+¬a) ∼ a), which produces the same

result in this system as internal revision ((B ∼ a)+¬a).

My intent is not to insist that the reader completely understand each strategy and its implementation, but

rather that the reader be comfortable with the concept that (1) the strategies produce different results and (2)

reconsideration can improve (and possibly optimize) a base after a series of belief change operations—even

if the base beliefs are not in a linear ordering. I address point (1) in this section and point (2) in Section 3.6.

3.5.2 Standard Adjustment

From the standard adjustment description in [Williams & Sims2000]:

Standard Adjustment [Williams1994a, Williams1995, Williams1994b] is based on the standard

epistemic entrenchment construction [Gärdenfors & Makinson1988, Gärdenfors1988] for Be-

lief Revision.

Essentially, standard adjustment moves down each rank testing for consistency with all higher ranks.

When a rank is found that is inconsistent with the higher ranks, the beliefs at that rank and all weaker beliefs
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are removed from the base. Then, any removed beliefs that are derivable from the beliefs that were retained

are returned to the base.

In the example shown in Table 3.4, inconsistency is found at the third rank. Of all the beliefs at Ranks

3 and 4, only f is derivable from the beliefs at Ranks 1 and 2. So all beliefs ranked at level 3 and 4 are

removed—except for f .

A standard adjustment of a linear ordering is unlikely to produce an optimal result, because every belief

at the first inconsistent ranking and below is removed, unless it is derivable from the beliefs ranked above the

first inconsistency. Even if these weaker, unsupported beliefs are not in any nogoods (and, thus, unrelated

to any inconsistenty), they are removed.

Consolidation using standard adjustment is not an example of kernel consolidation, because beliefs other

than those in nogoods are removed.

3.5.3 Maxi-Adjustment

From the maxi-adjustment description in [Williams & Sims2000]:

Maxi-adjustment is based on maximal inertia [Williams1997]. Maxi-adjustment proceeds from

the top of the ranking and moves down it rank by rank. At each rank it deletes all the beliefs

that are inconsistent with other beliefs at that rank and above. [It does this by removing] the

union of all subsets S of the beliefs on that rank having the properties (1) S is inconsistent with

. . . all the information ranked higher in the base than S; and (2) no proper subset of S satisfies

(1). This strategy keeps many of the beliefs in the theory base, but is also quite slow as it has

to examine all subsets of each rank. Performance is improved if the agent is more discerning.

[The] algorithm is anytime [Williams1997] so the longer the agent has to revise the better the

result.

104



Essentially, when maxi-adjustment finds a rank j that is inconsistent with the beliefs in the ranks above

it (1 through j−1), it calculates the subset at rank j of every nogood for the set of beliefs spanning ranks 1

through j. As mentioned in [Williams & Sims2000], this requires computing and testing all subset combi-

nations at rank j which is computationally expensive (see [Williams & Sims2000] for complexity analysis).

The reference in the quote above to a discerning agent improving performance means the following: the

more ranks the agent can spread the base beliefs across, the smaller the number of beliefs at any one rank

resulting in fewer subset combinations to be tested in the inconsistent ranks. The most discerning agent

presents a linear ordering of beliefs, which requires no subset testing at all and would produce the optimal

base as defined in Section 3.2.2 (the base with the highest bitmap value).

The anytime aspect of the algorithm refers to the fact that the calculation of the new base begins at the

highest rank and works its way down the rankings, iteratively building up a new base from the strongest

rank (rank 1) to the weakest rank. If the algorithm is stopped at any point before completion, the current

rank being processed, call it j, is dismissed, and the new base consists of what is known to be correct: the

ranking of beliefs from rank 1 to rank j− 1. Unfortunately, beliefs ranked below rank j− 1 are lost. This

is an anytime algorithm, because a partial solution is always available (the base made up of ranks 1 through

j−1) and this partial solution improves as the algorithm continues to run.

The result of maxi-adjustment equates to skeptical reasoning with no attention to nogood intersections.

It is as if the nogoods for the beliefs at that rank and stronger were calculated, and the minimal elements of

each nogood were then removed.

In the example shown in Table 3.4, inconsistency is found at the third rank. The inconsistent subsets at

that rank are {a∨d, ¬b∨¬d} and {¬b∨¬d, d}, so {a∨d, ¬b∨¬d, d} is removed from the base. This

leaves e and f at rank 3, and rank 4 does not produce an inconsistency.
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Consolidation using maxi-adjustment is an example of kernel consolidation, because only beliefs in

nogoods are removed from the base.

3.5.4 Hybrid Adjustment

From the hybrid adjustment description in [Williams & Sims2000]:

Hybrid Adjustment is a combination of standard adjustment and maxi-adjustment. [Standard

adjustment] is computationally “easier” than maxi-adjustment, however the main shortcoming

of [standard adjustment] is that it maintains beliefs only if there is an explicit reason to keep

them, whilst maxi-adjustment removes beliefs only if there is an explicit reason to remove

them. Hybrid adjustment performs a standard adjustment which computes the core beliefs to

be retained, and then it performs a maxi-adjustment which is used to regather as many beliefs

as possible that were discarded during the adjustment phase.

The hybrid adjustment strategy represents a combination of the standard adjustment and maxi-

adjustment strategies. When revising with a, hybrid adjustment first finds every belief b in the

base such that ¬a∨b is in the base, and is at the same rank as ¬a (this is the adjustment step—it

is removing every belief that “explicitly fails to be a consequence of the cut above ¬a), and

then performs a maxi-adjustment on what is left. So in other words maxi-adjustment is used

to recoup as much of the ranking as the time set aside for the revision permits. This strategy

is comparable to maxi-adjustment with regard to the number of beliefs retained, and though

somewhat faster on average, has the same worst-case time expenditure as the maxi-adjustment

procedure.

Although hybrid adjustment can sometimes return a few more beliefs to the base than maxi-adjustment,

they produce the most similar results. In the example shown in Table 3.4, inconsistency is yet again found
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at the third rank, but hybrid adjustment differs from maxi-adjustment by first removing the two beliefs a∨d

and d. After their removal, rank 3 is no longer inconsistent, so ¬b∨¬d can remain in the base along with e

and f and the beliefs at rank 4.

As with maxi-adjustment, hybrid adjustment of a linear ordering would produce the optimal base.

Consolidation using hybrid adjustment is also an example of kernel consolidation, because the maxi-

adjustment phase insures that only beliefs in nogoods are removed from the base.

3.5.5 Global Adjustment

From the Global adjustment description in [Williams & Sims2000]:

Global Adjustment is similar to a maxi-adjustment except that it takes all beliefs in the ranking

into consideration when computing the minimally inconsistent subsets, instead of proceeding

rank by rank. It removes the least ranked beliefs “causing” the inconsistency.

Global adjustment is the only adjustment strategy that does not proceed down the ranking of beliefs rank

by rank. Instead it computes the complete nogoods for the entire base (as if the beliefs were not ranked at

all). This takes considerably longer than the other adjustment strategies, even much longer than the subset

calculations that maxi-adjustment performs at a single rank. Once the nogoods are computed, the minimal

elements of each nogood are removed from the base.

This is similar to consolidation by safe contraction12 [Alchourrón & Makinson1985]. But, safe con-

traction has a second step much like standard adjustment does. After safe contraction removes all minimal

culprits (like global adjustment), any removed beliefs that are derivable from the remaining base beliefs are

returned to the base.

12Recall that revision is performed by adding ¬a and then consolidating. The way to perform consolidation using safe contraction
is to contract by falsum: (B+¬a)! = ((B+¬a) ∼⊥), where ∼ is the operation of safe contraction.
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In the example shown in Table 3.4, global adjustment computes the following nogoods (with minimal

elements underlined):

NG1= {¬a, a∨b, ¬b∨¬d, a∨d},

NG2= {¬a, a∨b, ¬b∨¬d, d},

NG3= {¬a, a∨b, d, ¬g∨¬b, ¬d∨g},

NG4= {¬a, a∨b, a∨d, ¬g∨¬b, ¬d∨g}.

The minimal (underlined) elements are then removed. Note that the ranking is used to determine the minimal

elements for each nogood. This is skeptical reasoning with no regard for intersecting nogoods or for the

removal of non-minimal elements in a nogood: e.g., the removal of a∨d and d does not prevent the removal

of the minimal elements in NG3 and NG4 (if it did, it would produce the same results as maxi-adjustment).

Global adjustment of a linear ordering will produce an optimal base if none of the nogoods intersect;

otherwise, an optimal result is unlikely.

Although global adjustment is slower and produces less desirable results than maxi-adjustment, it does

compute the entire set of nogoods for this base, and (as I will show in the next chapter) that information

might be beneficial to save.

Consolidation using global adjustment is an example of kernel consolidation, because it very specifically

calculates the nogoods and only removes elements (the minimal ones) from those nogoods.

3.5.6 Linear Adjustment

From the linear adjustment description in [Williams & Sims2000]:

Linear Adjustment is similar to maxi-adjustment except that it removes all the beliefs at ranks

which contain inconsistencies with beliefs above them [Nebel1994]. In the case where there is

only one belief at each rank, then linear and maxi-adjustment are identical.
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[This] strategy looks at the successive cuts of the theory-base and, at every rank at which the

cut is inconsistent, removes the entire rank from the base. This is quite time-efficient, and

keeps more beliefs in the base than standard adjustment, but, unlike hybrid adjustment and

maxi-adjustment, is fairly ad-hoc about the beliefs to be kept in the theory base.

In the example shown in Table 3.4, linear adjustment removed all the beliefs at the third rank. Because

of that removal, rank 4 is not inconsistent with the remaining base.

Consolidation using linear adjustment is not an example of kernel consolidation, because beliefs other

than those in nogoods may be removed.

3.5.7 Quick Adjustment

From the quick adjustment description in [Williams & Sims2000]:

Quick Adjustment is identical to maxi-adjustment except that rather than removing all beliefs it

randomly chooses a minimal number of beliefs from each set of inconsistent beliefs in this way

the inconsistency is removed.

[This] strategy is an attempt to capture the judiciousness of maxi-adjustment without the asso-

ciated time expenditure. Once a given rank of beliefs is discovered to cause a contradiction,

quick adjustment begins adding beliefs from the left end of that rank until a contradiction is dis-

covered. It then removes these beliefs, one at a time, keeping track of which ones eliminate the

contradiction when they are removed. It is these “culprit” beliefs that are then removed from

the theory base. This process is then iterated. This strategy has the advantage of improving

performance by reducing the amount of processing at each rank, and also emulates the output

of maxiadjustment much of the time. However, its behaviour depends upon the order of the

inputs on a given level of the theory base, and hence is somewhat ad hoc. The system could
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be easily extended to generate more than one ranking and used to perform credulous reasoning.

Instead of randomly choosing an alternative, all alternative revised rankings could be created.

In the example shown in Table 3.4, quick adjustment removes a∨d and ¬b∨¬d at rank 3. This elim-

inated the inconsistency at that rank; but, by not removing d, rank 4 is inconsistent and quick adjustment

chooses to remove both beliefs at that rank.

Quick adjustment is not guaranteed to remove only one element from each active inconsistent subset

when it reaches an inconsistent rank. It is also not guaranteed to remove the intersection (if it exists) of

those sets. However, depending on the order that the beliefs are listed at the inconsistent rank, both of

those results are a possibility. When a different order was used at rank 3, specifically placing ¬b∨¬d

to the right of both a∨ d and d, then quick adjustment removed only ¬b∨¬d from rank 3. This is an

example of removing one belief from an inconsistent subset and an example of removing the intersection of

two inconsistent subsets. During this testing, I was unable to find any list order for the rank 3 beliefs that

resulted in quick adjustment removing both a∨ d and d but retaining ¬b∨¬d, which would have allowed

the beliefs at rank 4 to be retained. Additionally, no list order at rank 4 could produce a quick adjustment

that removed only one of the rank 4 beliefs.

Quick adjustment on a linear ordering will produce the optimal base. Consolidation using quick ad-

justment is also an example of kernel consolidation, because only beliefs underlying the inconsistency are

removed and those beliefs are elements of the nogoods.

3.5.8 Preparing to Test Reconsideration

In the next section, I test reconsideration using this same example to see whether it can improve the state of

a belief base that is not ordered linearly.
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3.6 Reconsideration on a Total Pre-order Using SATEN Strategies

3.6.1 Introduction

To test how reconsideration works with the six adjustment strategies just discussed, I chose to use the same

example that is used to compare them. I revise the already revised bases by the belief a at a higher degree of

credibility than the previously added ¬a; then I see if reconsideration improves the belief base. The degree

for a is .98, whereas the degree for ¬a is .95. In effect, I am “undoing” the revision by ¬a. As before,

revision is implemented by addition followed by consolidation, where the consolidation is performed by

each of the six adjustment strategies.

If the adjustment strategies could adhere to the Recovery postulate, the revision by a would produce

a base that is a superset of the original base B. This is because ¬a was not an element in the closure of B

originally: if ¬a 6∈Cn(B), then ((B+¬a)!+a)! = (((B+¬a) ∼ a)+a) ∼¬a = (((B ∼ a)+¬a) ∼¬a)+a =

(B ∼ a)+a. Therefore if Recovery holds, then B⊆Cn((B ∼ a)+a), and, therefore, B⊆Cn(((B +¬a)! +

a)!). However, as mentioned before, foundations-oriented base belief change operations cannot adhere to

Recovery, and the six SATEN strategies are no exception.

3.6.2 Performing a Second Revision: ( ((B+¬a)!+a)! )

The results of this second revision ( ((B+¬a)!+a)! ) are shown in the third row of belief bases in Table 3.5.

Recovery does not hold for any of these strategies; because, for each resulting base, there is at least one

element from the original base, B, that is not derivable from that base. Both ¬b∨¬d and d were beliefs in

B; but the base produced by quick adjustment does not entail ¬b∨¬d, and the bases produced by the other

strategies do not entail d. Therefore, none of the six strategies adhere to recovery.

Four of the strategies merely remove the belief ¬a during revision by a; those adjustment strategies are
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maxi-adjustment, hybrid, global, and quick. This is consistent with the kernel consolidation nature of all

four strategies: since the only nogood in the base being consolidated is {a, ¬a}, and all strategies remove

the minimal elements of a nogood, all remove only ¬a. Standard and linear adjustments differ in their results

for this revision, because they are not kernel operations.

Standard removes ¬a; it retains a∨ b and a∨ f , because they follow from the consistent cut {a}; it

removes f , because f is not derivable from the consistent cut {a} (it was retained previously, because it

follows from ¬a and a∨ f , which were in the consistent cut from the revision by ¬a).

Linear adjustment removes all the beliefs at the inconsistent rank 2, so a∨b is removed along with the

contradictory ¬a.

3.6.3 Reconsideration: ( ((B+¬a)+a)! )

The goal of this test was to see if reconsideration could improve the knowledge state that was produced by a

series of revisions, even thought the beliefs are ordered in a total pre-order as opposed to a linear ordering,

and even though some of the adjustment strategies are not kernel operations.

I implemented reconsideration by consolidating the set of all base beliefs: ((B+¬a)+a)!. The consol-

idation operation was performed by all six adjustment strategies, and the results are shown in the last row of

Table 3.5. To picture the entire set of base beliefs, ((B +¬a)+ a), look at B in the top row of bases in the

table and imagine the following: ¬a alongside a∨b at .95 and a at a rank above those two beliefs at .98.

Three Strategies Produced the Optimal Base

For three of the strategies, reconsideration produced the optimal base13 of B + a, which has the Recovery

aspect of containing the original base in its closure: B ⊆ Cn( ((B +¬a) + a)! ). In fact, the base, itself,

13Pre-orders may not have a unique optimal base for the operation of ((B +¬a)+ a)!, where a � ¬a. For this example, since
¬a 6∈Cn(B), the optimal base is B+a.
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explicitly contains the original base: B ⊆ ( ((B +¬a) + a)! ). This means that the revision by ¬a was

completely reversed. The three strategies are maxi-adjustment, hybrid adjustment, and quick adjustment.

These all worked, because they found the inconsistency at rank 2 (due to ¬a at .95 conflicting with a at .98)

and removed ¬a (since they are kernel oriented). After that, no further inconsistencies existed.

Reconsideration on a linear ordering using any one of these three strategies will produce an optimal base.

Reconsideration on a non-linear ordering using any one of these strategies is not guaranteed to produce

optimal results. It is nice to see that it can happen, though.

Reconsideration Using Global Adjustment Never Improves the Base

Reconsideration using global adjustment is the fourth kernel operation, but it does not produce an optimal

base. This is because it always removes at least one minimal element from every nogood. Even though ¬a is

present in all the nogoods, and its removal is sufficient to remove all inconsistencies, ¬a is not the minimal

element in all the nogoods, so other beliefs are removed (the same beliefs and for the same reasons as those

discussed in Section 3.5.5).

Since global adjustment always removes the minimal elements of all nogoods, reconsideration using

global adjustment will never improve on the results of a series of revisions performed using global adjust-

ment. There are even cases where reconsideration will remove more beliefs (moving away from an optimal

result).

Example: Given two beliefs ¬a and b at .90, revision by a at .95 followed by revision by a∨¬b at .98

results in the belief base {a∨¬b, a, b}. Reconsideration on all the beliefs, removes both beliefs at .90,

because they contradict a∨¬b at .98; so the resulting base is {a∨¬b, a}, which is a proper subset of a

consistent base and, therefore, sub-optimal.

Reconsideration is not necessary unless beliefs have been removed. In the above example, the first
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adjustment was optimal, and the second revision did not require further retractions, so reconsideration need

not have been called.

Reconsideration Improves the Bases for the Standard and Linear Adjustment Examples

As seen in Table 3.5, reconsideration performed using standard adjustment improved the belief base in this

example by returning a∨d (along with a∨b and a∨ f ) to the base because it is derivable from the consistent

cut {a}.

Likewise, reconsideration performed using linear adjustment improved the belief base because the be-

liefs with a degree of credibility of .40 did not get removed. The linear result is only suboptimal because the

belief a∨b was removed along with ¬a when all beliefs with a degree of .95 were removed.

Linear adjustment reconsideration on a linear ordering of beliefs will always produce an optimal base.

Linear adjustment reconsideration on a non-linear ordering of beliefs is not guaranteed to produce an optimal

base.

As mentioned before, the standard adjustment strategy will rarely yield an optimal base, no matter how

the beliefs are ordered.

The sub-optimality of Standard and Linear Adjustments occurs largely due to the fact that their algo-

rithms are not incision functions and do not perform kernel contraction—elements that do not underly an

inconsistency may get removed during consolidation solely because they have the same (in both Standard

and Linear Adjustment) or weaker (Standard Adjustment, only) degrees of credibility as some contradic-

tory belief that must be removed. Specifically, these strategies do not adhere to the postulate for base

contraction called Relevance (discussed in Section 2.2.4) and the postulate for kernel contraction called

Core-Retainment (see Theorem 2.2.1), because they may remove beliefs that are not relevant to (i.e., they

do not underly) any inconsistency.
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3.7 Conclusions

Reconsideration provides a way for belief change operations on a finite set of base beliefs to improve the

knowledge state by optimizing the belief base with the help of hindsight. The result is the return of previ-

ously retracted beliefs reminiscent of the Recovery postulate. This occurs without altering the set of base

beliefs that have been considered by the reasoning agent.

For reconsideration to optimize a belief base, the incision function used to determine what beliefs should

be removed during kernel consolidation must be able to maximize the value of the belief base bitmap for a

consistent base. This is easy to achieve if the beliefs are linearly ordered, but all that is required is knowledge

of the least element in each nogood of base beliefs. Defining an optimal base as the maximal bitmap for

a consistent base (when a linear ordering is possible) is a technique supported in belief revision research

[Williams & Sims2000, Booth et al.2005].

Section 3.2.4 shows that a system that can implement σ-liberation can also implement reconsideration

and vice versa. This is assuming (1) a linear ordering of beliefs and (2) both systems can implement the same

ordering. I have not proved whether a non-linear ordering with least elements of the nogoods is sufficient

for performing σ-liberation, and I leave this for future work.

Kernel consolidation of a finite belief base has adherence results for Optimized-recovery (OR) that

are preferred over the adherence results for the traditional Recovery postulate for base contraction. Thus,

reconsideration imparts a Recovery aspect to belief bases that was previously lacking. Although σ-liberation

retraction was never intended to adhere to Recovery, if (1) contractions are for consistency maintenance only

and (2) the base for each new ordering is determined, then it adheres identically as well as kernel contraction

adheres to OR).

For non-linear orderings of beliefs, there is less guarantee that reconsideration can produce an optimal

base. In fact, what defines an optimal base is less clear for non-linear orderings. What I do show is that,
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for an arbitrary example comparing six different decision functions, a series of revisions on a total-pre-order

results in a sub-optimal belief base which can be improved (in all but one case) and possibly optimized (as

seen in three/half of the cases) by performing reconsideration. It is interesting to note that one optimization

occurred using a skeptical approach (maxi-adjustment), and another occurred using a credulous approach

(quick adjustment). These are not guarantees that reconsideration will always optimize a base that has a

non-linear ordering, but they do support using reconsideration as a background process to possibly improve

the reliability of a base.

A complete analysis of reconsideration for non-linear orderings is reserved for future work.

In the next chapter, I present an algorithm for implementing reconsideration in any truth maintenance

system (TMS) where the set of nogoods of base beliefs is known.
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Chapter 4

Dependency-Directed Reconsideration

This chapter contains material that was published in [Johnson & Shapiro2005b]. It has been altered and

expanded for clarity and includes full algorithms and proofs (although some proofs are in the Appendix due

to their length).

4.1 Introduction, Motivation and Assumptions

The preceding chapter presented the operation of reconsideration on the knowledge state triple 〈B,B∪,�〉.

The discussion included the purpose of reconsideration, benefits, similarities to other belief change oper-

ations, and examples of its use. Reconsideration can be implemented in several ways. Some examples

are:

• examine all beliefs in B∪ in order (from most to least preferred) to determine which can be in the

optimal base1

• assume all non-culprit beliefs are in the base and only examine the culprit beliefs (in descending order

1This is similar to the definition for determining the base for some σ in the belief liberation research (cf. Section 2.2.7) or the
way that SATEN would extract a consistent base from a linear ordering using either maxi-adjustment, hybrid adjustment, linear
adjustment or quick adjustment—but not standard or global adjustments (cf. Section 3.5).
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of preference) to see which ones can also be in the base

• assuming B is consistent, examine just those beliefs in X (in descending order of preference) to see

which can return. Recall that X = B∪ \B. This is the only naive algorithm that can be performed on

the current belief base and incrementally improve it.

The examples just mentioned are progressively less naive.

In this chapter, I present an algorithm that assumes that, in addition to maintaining the three elements of

the knowledge state triple described in Chapter 3 (〈B,B∪,�〉), a system can (1) identify and store inconsis-

tent sets (nogoods [de Kleer1986, Forbus & de Kleer1993]) as well as (2) maintain connections between a

base belief and any nogoods containing that belief.

This is a reasonable expectation for any track-keeping system, such as the justification-based truth

maintenance system (JTMS) [Doyle1979] and the assumption-based truth maintenance system (ATMS)

[de Kleer1986, Martins1983, Martins & Shapiro1988], which were discussed in Section 2.4.2. These truth

maintenance systems already identify inconsistent sets when performing truth maintenance to eliminate

contradictions [de Kleer1986, Forbus & de Kleer1993].

However, a nogood need not be minimally inconsistent, so I use the term NAND-set to refer to a set of

base beliefs that an implemented system identifies as minimally inconsistent.3 Note that, unless the system’s

reasoning is complete, there is no guarantee that a NAND-set is truly minimal, only that the system has not

determined that any proper subset of that NAND set is inconsistent.

As a generalization of the binary NAND (standing for NOT AND), a consistent base cannot derive the

conjunction (AND) of all the elements of a NAND-set. If all minimally inconsistent NAND-sets are known,

the goal of eliminating inconsistencies can be achieved by insuring that no NAND-set is a subset of the

2Although minimally inconsistent nogoods are identified by SATEN during global adjustment (cf. Section 3.5), the process uses
SAT testing and is computationally impractical for a large knowledge base.

3I thank my advisor, Stuart C. Shapiro, for suggesting NAND-set as the name such a set.
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current belief base—i.e., if at least one element in a NAND-set N is removed from the belief base, the

inconsistency that is attributed to N is eliminated.

Example 4.1.1 An example of how a TMS can identify a NAND-set after detecting an inconsistency can

be seen by referring to Figure 2.1 on page 45. The derivation of both q and ¬q indicates an inconsistency.

A JTMS would trace down the paths of the derivation tree to determine the NAND-set formed by the base

beliefs underlying the derivation of ⊥. An ATMS would union the origin sets for q and ¬q ({p, p→ q}

and {s, s→ t, t→¬q}, respectively) to determine the NAND-set. In either case, the NAND-set is {p, p→

q, s, s→ t, t→¬q}.

The best way to improve the computational expense of reconsideration over the naive algorithms listed

above is to reduce the number of retracted base beliefs whose removal is to be reconsidered. By storing and

using the NAND-sets detected in B∪ dependency-directed reconsideration can greatly reduce the number

of beliefs examined for return to the base.

4.2 Dependency-Directed Reconsideration (DDR)

4.2.1 The DDR Process

If consolidation results in removing some base belief, p, from the base, this might allow a currently dis-

believed weaker base belief, q, to return to the base; e.g., q can return if the reasons for disbelieving it

depended on p being believed. Specifically, a belief can return if it either (1) does not raise an inconsistency

or (2) if any inconsistencies raised can be resolved by retracting only weaker beliefs. The DDR algorithm

processes retracted beliefs in two ways:

1. if a belief was retracted, DDR uses the NAND-sets to determine which weaker beliefs should be
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examined for possible return to the base and inserts them onto a global priority queue4

2. if a retracted belief q is on the queue to be considered for possible return, DDR determines whether q

can return, and, if so, executes the return of q to the base while retracting some (possibly empty) set

of weaker conflicting beliefs in order to maintain consistency.

Because a retracted belief points (by way of its NAND-sets) to the removed beliefs to be examined for

possible return to the base, DDR is “dependency-directed” (a phrase coined in [Stallman & Sussman1977]).

4.2.2 Defining a Knowledge State

Definition 4.2.1 A DDR knowledge state is a five-tuple: 〈B , B∪ , I , � , Q〉, where :

• B is a set of base beliefs that are currently believed (the current base)

• B∪ is the set of all base beliefs, believed or not. Therefore, B⊆ B∪.

• I ⊆ {N | N ⊆ B∪ and N `⊥}, where (@N,N′ ∈ I) : N′ ( N.

• � is a linear preference ordering on the beliefs in B∪

• Q is a priority queue consisting of a sequence, possibly empty, of tagged beliefs (written as

〈p1,τ1〉,〈p2,τ2〉, . . . ,〈pn,τn〉) s.t.

– pi ∈ B∪ \B

– i 6= j ⇒ pi 6= p j

– pi � pi+1 , 1≤ i < n

– τ ∈ {justout, in?,both}

For convenience, let X be the set of currently disbelieved base beliefs and X will be called the exbase:

X =de f B∪ \B. Note that if 〈pi,τi〉 ∈ Q, then pi ∈ X .

4Note that a priority queue is different from a standard queue. A standard queue is a first-in-first-out data structure—much like
a line for tickets at the cinema. Think of a priority queue as a high school cafeteria line where one might step into line in a place
befitting one’s rank within the current makeup of the line—highest rank can enter the front of the line, middle ranked step in line in
the middle, and so forth.
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Unless otherwise stated, for this chapter, I assume the notational default that (for i ∈ {0,1,2, . . .}) any

DDR knowledge state referred to as KSi is the five-tuple 〈 Bi , B∪i , Ii , �i , Qi 〉 and that Xi = B∪i \Bi .5

For a knowledge state referred to as KS , the five-tuple elements are B, B∪, I, �, and Q , respectively,

and X = B∪ \B . These elements may also be referred to with a subscript of the knowledge state that

they comprise: e.g., B can also be written as BKS, and B1 could also be called BKS1 . This will remain

unchanged for the duration of this chapter. I also use the shorthand expression p ∈ Q to stand for ∃τ

s.t. 〈p,τ〉 ∈ Q. Additionally, the deductive closure of a knowledge state is defined as the closure of its

base: Cn(KS) =de f Cn(B).

4.2.3 Defining a NAND-set

Elements in I are called NAND-sets.

Definition 4.2.2 A set N is a NAND-set IFF N ∈ I.

4.2.4 Defining Complete-I

The DDR knowledge state KS has a component called I, which is a set of NAND-sets where no element of

I can be a proper subset of another element in I. One cannot assume that the NAND-sets in I are minimally

inconsistent; nor are they guaranteed to represent all inconsistencies in B∪.

An ideal reasoner has the ability to reason both soundly and completely. Therefore, it knows all mini-

mally inconsistent sets of beliefs. Given a set of base beliefs B∪, Complete-I(B∪) is defined as the set of all

minimally inconsistent sets in B∪:

Definition 4.2.3 Complete-I(B∪) =de f {N | N ⊆ B∪, N `⊥ ∧ (∀N′ ⊂ N) : N′ 6 ` ⊥}. Because every KS has

an associated B∪, Complete-I(KS) =de f Complete-I(B∪). Note that the elements of Complete-I(KS) are the

5For example: KS1 = 〈 B1 , B∪1 , I1 , �1 , Q1 〉 .
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minimally inconsistent NAND-sets in B∪.

If a system with an ideal reasoner implemented DDR through the use of a DDR knowledge state, it

would be expected that I = Complete-I(KS).

The information in I can be represented in a graph connecting base beliefs to the NAND-sets they are

in. For an example, see Figure 4.2 on page 164. In this example, I = Complete-I(KS).

4.2.5 Defining Culprits

The definitions and observations in this section all assume a DDR knowledge state KS containing the ele-

ments B,B∪, I, �, and Q.

Because there is a linear ordering over all beliefs in B∪, there must be a minimal (least) belief in any

subset of B∪:

Definition 4.2.4 Given a non-empty set S⊆ B∪, where B∪ is ordered by �,

Weakest(S,�) =de f the belief p such that p ∈ S and (∀q ∈ S) : q� p .

The weakest belief in a set is the least preferred belief in that set:

Observation 4.2.5 For some set S⊆ B∪, p = Weakest(S,�) ≡ (∀q ∈ S) : q 6= p ⇒ q� p .6

The weakest element of a NAND-set is its culprit:

Definition 4.2.6 If S ∈ I, then Culprit(S,�) =de f Weakest(S,�).

A NAND-set’s culprit belief is less preferred than any other belief in that NAND-set:

Observation 4.2.7 For some set S ∈ I, p = Culprit(S,�) ≡ (∀q ∈ S) : q 6= p ⇒ q� p .

6The ≡ can be read “if and only if” and is used to indicate that the two boolean expressions it separates have the same boolean
value. It can also be written using the symbol ⇔ or the text IFF, and I choose to use all these forms. The form used at any given
time is determined by my perception of which form best suits the flow of the statement that I am expressing—it is purely subjective
and, quite probably, inconsistent.
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NAND-sets can be inserted into a priority queue that is ordered by their culprits (non-increasing order

of credibility). Since more than one NAND-set can have the same culprit, this ordering is not linear. I refer

to a priority queue of NAND-sets as a NAND-set-Q.

Definition 4.2.8 Given a set of NAND-sets I′ ⊆ I, NAND-set-Q(I′,�) =de f S1,S2, ...,Sn , for all Si ∈ I′ ,

where Culprit(S j ,�) � Culprit(S j+1 ,�) for 1 ≤ j < n .

A knowledge state is consistent if its base is consistent:

Definition 4.2.9 Consistent(KS)≡ BKS 6 ` ⊥ .

The culprits of a knowledge state are the weakest (least) elements of its NAND-sets:

Definition 4.2.10 Culprits(KS) = {p | (∃S ∈ I) : p = Weakest(S,�)} .

For any belief p∈ B∪, the NAND-sets that contain p as their culprit are p’s IC-NAND-sets (IC stands for

is-culprit) and those NAND-sets that contain p but with a different belief as their culprit are p’s NC-NAND-

sets (NC stands for not-culprit):

Definition 4.2.11 Given a belief p ∈ B∪:

IC-NAND-sets(p,KS) = {S | (S ∈ I) and p = Culprit(S,�)}.

NC-NAND-sets(p,KS) = {S | (S ∈ I), p ∈ S, and p 6= Culprit(S,�)}.

4.2.6 Definitions Relevant to Knowledge State Consistency and Optimality

The definitions and observations in this section all assume a DDR knowledge state KS containing the ele-

ments B,B∪, I, �, and Q, and the exbase X = B∪ \B.

An active set is a set that is a subset of the current belief base (i.e., all its base beliefs are currently

believed):

Definition 4.2.12 Active(A,KS)≡ A⊆ B .
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Observation 4.2.13 If any NAND-set is active, then B is inconsistent: (∃S ∈ I) Active(S,KS)⇒ B `⊥.

Observation 4.2.14 If I = Complete-I(KS), the base of the knowledge state KS is inconsistent IFF at least

one of its NAND-sets is active: I = Complete-I(KS)⇒ (B `⊥≡ (∃S ∈ I) : Active(S,KS))

A precarious NAND-set is a NAND-set that has all but one of its base beliefs in the current belief base

(i.e., only one of its beliefs is not currently believed):

Definition 4.2.15 Given the NAND-set S ∈ I, Precarious(S,KS)≡ (|S∩X |= 1) .

A DDR knowledge state is Safe-per-I if none of its NAND-sets are Active.

Definition 4.2.16 Safe-per-I(KS)≡ (∀S ∈ I) : ¬Active(S,KS) .

A DDR knowledge state is Safe-per-I, if and only if its base is Safe-per-I: Safe-per-I(B)≡ Safe-per-I(KS).

Observation 4.2.17 Given a DDR knowledge state KS, where I = Complete-I(KS):

Safe-per-I(KS)≡ Consistent(KS).

MustOut(p,KS) indicates that the belief p is the culprit (weakest element) of some NAND-set whose

other beliefs are currently believed. Note that MustOut does not indicate whether p is currently believed

or not, merely that it must not be believed if consistency is desired (given the other elements in the current

base).7

Definition 4.2.18 MustOut(p,KS)≡ (∃S ∈ I) : S\{p} ⊆ B and p = Culprit(S,�).

The following three definitions are about a disbelieved belief p (i.e., p ∈ X).

A belief p is designated as BadOut in a knowledge state KS if it is disbelieved and it is not the case that

MustOut(p,KS). This means that for any precarious NAND-set S⊆ I containing p, p is not the culprit for S.

7It is possible that multiple NAND-sets are active in B and that there is a currently believed culprit, q, that is MustOut and that
shares the only NAND-set that is designating p as MustOut. If this is the case, once q is removed, p would no longer be MustOut
and can remain in the base without threatening consistency. DDR recognizes this—whether p is already disbelieved or whether q
and p are removed together—and DDR would end up returning p to the base (barring any other obstacle to its return).
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Definition 4.2.19 BadOut(p,KS)≡ p ∈ X ∧ ¬MustOut(p,KS).

A belief p is designated as JustifiedOut in a knowledge state KS if it is disbelieved, and it is the case that

MustOut(p,KS). This means that there is some precarious NAND-set S⊆ I that has p as a culprit.

Definition 4.2.20 JustifiedOut(p,KS)≡ p ∈ X ∧ MustOut(p,KS).

The following observation is a tautology expressed using the binary connective XOR (exclusive or), meaning

one or the other but not both. A base belief that is not in the current base is either BadOut or JustifiedOut,

but it cannot be both.

Observation 4.2.21 (∀p ∈ X): BadOut(p,KS) XOR JustifiedOut(p,KS) .

The value of MustOut, BadOut, or JustifiedOut for any belief in a DDR knowledge state is not affected

by the makeup of the priority queue. In other words: two DDR knowledge states, KS and KS1, that differ

only in their priority queues have identical bases and exbases, and each individual belief’s designation as

MustOut, BadOut, or JustifiedOut is the same for KS as it is for KS1.

Observation 4.2.22 Given two DDR knowledge states KS and KS1, where B = B1, B∪= B∪1 , I = I1, �=�1,

and Q 6= Q1: X = X1 and (∀p): MustOut(p,KS) ≡ MustOut(p,KS1), BadOut(p,KS) ≡ BadOut(p,KS1),

and JustifiedOut(p,KS) ≡ JustifiedOut(p,KS1) .

4.2.7 DDR Belief Credibility and Base Credibility, Ordering, and Optimality

The definitions and observations in this section all assume a DDR knowledge state KS containing the ele-

ments B,B∪, I, �, and Q.

A numerical value for credibility of a belief pi ∈ B∪ is as defined in Definition 3.2.1: The credibility

value for any belief pi ∈ B∪ = p1, p2, . . . , pn is: Cred(pi,B∪,�) =de f 2n−i.
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It is still the case that pi � p j IFF Cred(pi,B∪,�) >Cred(p j,B∪,�). As discussed in Chapter 3

(page 71), these credibility values are merely a numerical representation of the linear ordering of the be-

liefs that simplifies the definitions and proofs of belief base and knowledge state optimality.

The credibility of a DDR base is dependent on I as well as where its beliefs fall in the ordering of B∪.

Definition 4.2.23 Given a DDR knowledge state KS containing the elements B, I, and B∪ = p1, p2, . . . , pn

as ordered by �: Cred(B,B∪, I,�) =de f ∑pi∈B 2n−i (the bit vector indicating the elements in B) when Safe-

per-I(KS). Otherwise, when ¬Safe-per-I(KS), Cred(B,B∪, I,�) =−1.

This means that, as in Chapter 3, the credibility value of a consistent belief is equivalent to the credibility

value of its singleton set: Cred(pi,B∪,�)= Cred({pi},B∪, I,�). And the credibility value of a consistent

set is equivalent to the sum of the credibility values of its beliefs (also equivalent to the sum of the credibility

values of its singleton subsets): Cred(B,B∪, I,�) = ∑pi∈BCred(pi,B∪,�).

A linear ordering over DDR bases (overloading the relation �) is defined similarly to that in Chapter 3

(Def 3.2.4):

Definition 4.2.24 Given two DDR knowledge states, KS and KS1, where B∪ = B∪1 , I = I1, and �=�1:

B� B1 IFF Cred(B,B∪, I,�)≥ Cred(B1,B∪, I,�).

Likewise, B� B1 IFF Cred(B,B∪, I,�) > Cred(B1,B∪, I,�).

Note that B� B1 implies B� B1.

If I is complete, the preference ordering over bases is also consistency-oriented—i.e., ordered by �⊥

and/or �⊥, as defined in Def 3.2.4.

Observation 4.2.25 If I = Complete-I(KS), then B� B′⇒ B�⊥ B′ and B� B′⇒ B�⊥ B′.

A DDR base is Optimal-per-I if it is the maximal subset of B∪ provided it is Safe-per-I:

Definition 4.2.26 Optimal-per-I(B,KS) ≡ ∀B′ ⊆ B∪ , B� B′.
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Note that a base that is Optimal-per-I may possibly be inconsistent, because it is only Safe-per-I, but not

guaranteed to be consistent.

An optimal (Optimal-per-⊥) DDR base is defined similarly to the Optimal-per-⊥ base in Chapter 3 (cf.

Definition 3.2.6):

Definition 4.2.27 Optimal-per-⊥(B,KS) ≡ ∀B′ ⊆ B∪ , B�⊥ B′.

Therefore, Optimal(B,KS)=de f Optimal-per-⊥(B,KS).

A base that is Optimal-per-⊥ is guaranteed to be consistent.

If I = Complete-I(KS), then Optimal-per-I is equivalent to Optimal.

Observation 4.2.28 I = Complete-I(KS)⇒ (Optimal-per-I(B,KS) ≡ Optimal-per-⊥(B,KS)).

4.2.8 Using Q

The priority queue, Q, is used to store beliefs that need to be processed by DDR. These beliefs are processed

in order from most credible to least credible.

The uses of the tags are:

• Any belief p that is removed from the base is inserted into Q with the tag justout. This pair will be

processed in turn to determine if any weaker base beliefs that are disbelieved should be considered

for possible return to the base.

• If the processing of some 〈p, justout〉 ∈ Q determines that some q ∈ X might be eligible for return to

the base, then 〈q, in?〉 is inserted into Q (unless q is already on Q with a tag of justout, in which case

q’s tag is changed to both). After 〈p, justout〉 is processed, it is removed from Q.

• Processing some 〈q, in?〉 ∈ Q determines whether q can actually return to the base or not. A belief

can return either (1) if it does not raise an inconsistency or (2) if any inconsistencies raised can be

resolved by retracting only weaker beliefs. After 〈q, in?〉 is processed, it is removed from Q.
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• If 〈p,both〉 ∈ Q then it is first processed to see if p can return to the base (as if it were tagged as in?).

Only if p cannot return to the base, is it then processed as if it were tagged justout. After 〈p,both〉 is

processed, it is removed from Q.

4.2.9 Functions for the Priority Queues: Q and NAND-set-Q

Definition 4.2.29 The list below comprises the functions for any priority queue, QUEUE, (whether it is a

queue of belief-tag pairs or of NAND-sets) that I will be using in this dissertation. Although most are well

known in the computer science field, I define them here to insure their use is understood.

• Empty(QUEUE) returns true if QUEUE is empty, else false. This is non-destructive.

• First(QUEUE) returns the first element in QUEUE (non-destructively), unless Empty(QUEUE), in

which case it returns false.

• Rest(QUEUE) returns a queue just like QUEUE but without its first element (non-destructively).

If Empty(QUEUE), it returns false.

• Insert(ELEMENT, QUEUE,�) destructively alters QUEUE and returns the modified queue (MOD-

QUEUE) that now contains ELEMENT in its proper place per�. If ELEMENT is already on QUEUE,

it simply returns QUEUE. Note: (∀e 6=ELEMENT): e ∈MOD-QUEUE ≡ e ∈ QUEUE.

• Pop(QUEUE) destructively removes the first element in QUEUE, and returns it. The return is identical

to that for First(QUEUE), but in this case, the first element has been actually removed from the

queue—modifying the queue to be equivalent to Rest(QUEUE). If Empty(QUEUE), it returns false.

Regarding the elements in the modified queue (MOD-QUEUE): (∀e 6=First(QUEUE)): e ∈ MOD-

QUEUE ≡ e ∈ QUEUE.

• Popped(QUEUE) destructively removes the first element in QUEUE, then returns the modified queue

(MOD-QUEUE). The return is identical to that for Rest(QUEUE), but the operation is destructive. If

Empty(QUEUE), it returns false. Note: (∀e 6= First(QUEUE)): e ∈MOD-QUEUE ≡ e ∈ QUEUE.
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Definition 4.2.30 Additional functions for a knowledge state priority queue Q include:

• New-Q( ) returns a DDR knowledge state queue that is empty.

• Bel(Q) =de f {p | 〈p,τ〉 ∈ Q} .

• Find(p,Q,�) returns the tuple 〈p,τ〉 non-destructively.

• Change-Tag(p,Q,τ,�) destructively alters the queue Q by changing the tag for p to τ, and returns

the new queue. If p 6∈ Bel(Q), it returns Q. Note: (∀q 6= p,∀τ) : 〈q,τ〉 ∈ Q≡ 〈q,τ〉 ∈ Q1.

• Merge-Qs(Q1,Q2,�) non-destructively merges two priority queues (of the type used in a DDR

knowledge state) into one priority queue, provided they have no beliefs in common, and they are

both ordered by the same linear ordering �. Merge-Qs returns the resulting merged queue.

• DDR-Q-Insert (p,Q,�) destructively alters the priority queue Q (changing it from Qpre to Qpost)

so that p is in the priority queue Qpost with a tag to indicate that it should be considered for possible

return to a base. The resulting tag will depend on whether p is in Qpre and, if so, with what tag:

if 〈p, in?〉 ∈ Qpre, then Qpost = Qpre

if 〈p,both〉 ∈ Qpre, then Qpost = Qpre

if 〈p, justout〉 ∈ Qpre, then Qpost = Change-Tag(p,Qpre,both,�) .

if p 6∈ Qpre, then Qpost = Insert(〈p, in?〉,Qpre,�).

DDR-Q-Insert returns the altered queue. When a belief is inserted into a priority queue using DDR-

Q-Insert, I refer to it as being “DDR-Q-Inserted” into the queue.

4.2.10 DDR Invariants

For DDR to work, there are two requirements:

• the knowledge state priority queue, Q, must always be properly maintained, and

• the knowledge state KS must also be properly maintained whenever the DDR algorithm is running.
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Helper Predicate: Protected-by-Q

If a belief in the DDR knowledge state is designated as “BadOut”, it must be protected by some presence in

the priority queue that will insure that the belief can return to the base.8 This protection happens in at least

one of the following ways:

1. The belief is on Q with a tag of either in? or both.

2. At least one of its IC-NAND-sets, N, has at least one non-culprit belief also in X , and every non-culprit

belief in N∩X is on Q with a tag of either justout or both.9

This concept of being protected is formalized in the definition below:

Definition 4.2.31 Given a DDR knowledge state KS with the elements B,B∪, I,�, and Q,

Protected-by-Q(p,KS) ≡

Q1 (or 〈p, in?〉 ∈ Q ;;; p protects itself

Q2 〈p,both〉 ∈ Q ;;; p protects itself

Q3 ∃S s.t (and S ∈ I ;;; p protected by one of its IC-NAND-sets

Q4 Weakest(S,�) = p

Q5 (S\{p})∩X 6= /0

Q6 ∀q ∈ ((S\{p})∩X):

Q7 (or 〈q, justout〉 ∈ Q

Q8 〈q,both〉 ∈ Q ))))

8The BadOut belief will return to the base, unless (prior to that return) changes to the knowledge state result in its status changing
to “JustifiedOut”.

9Item 2 insures that either: (a) all more credible beliefs in that NAND-set are returned to the base making p “JustifiedOut”;
or (b) one of the non-culprit beliefs is processed as justout during DDR which results in p getting a tag of either in? or both (as
determined by DDR-Q-Insert), which will result in its return to the base (provided it is still “BadOut” when it is processed).
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DDR Invariant Predicates: Proper-Q and Proper-KS

A priority queue, Q, for a knowledge state KS = 〈B,B∪, I,�,Q〉 is considered to be properly maintained if

every belief p that is “BadOut” is protected by that Q.

Definition 4.2.32 Given a DDR knowledge state KS with the elements B,B∪, I,�, and Q,

Proper-Q(KS) ≡ (∀p) : BadOut(p,KS) ⇒ Protected-by-Q(p,KS).

A properly maintained knowledge state KS = 〈B,B∪, I,�,Q〉 has no active elements of I and has a

properly maintained priority queue Q:

Definition 4.2.33 Given a DDR knowledge state KS with the elements B,B∪, I,�, and Q,

Proper-KS(KS) ≡

P1 (and Safe-per-I(KS)

P2 Proper-Q(KS))

Note: Proper-Q is always maintained, because it is computationally expensive to regain10—it is essential

to the efficiency of DDR. Proper-KS, however, can lapse as long as DDR is not being performed. This means

that although the queue is maintained, the base of a knowledge state may become inconsistent due to active

NAND-sets. Before DDR can be run, however, the system must insure (by retracting beliefs, if necessary)

that no NAND-set is active.

Theorems Using Proper-Q and Proper-KS

A proper DDR knowledge state with a complete I is consistent (has a consistent base).

Theorem 4.2.34 Given a DDR knowledge state KS,

Proper-KS(KS)∧ I = Complete-I(KS)⇒ Consistent(KS).

10Proper-Q can be regained efficiently in the case where there has been a re-ordering of the base beliefs as discussed in Sec-
tion 4.5.1, provided the old ordering/culprit information is still available to reference and the changes to the ordering are relatively
minor.
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Proof.

(Proof-by-Refutation): Given Proper-KS(KS) and I = Complete-I(KS), assume ¬Consistent(KS).

Consistent(KS) ≡ B6 ` ⊥ (Def 4.2.9). Therefore, ¬Consistent(KS) ≡ B `⊥. Therefore, B `⊥. Proper-

KS(KS)≡ Safe-per-I(KS)∧Proper-Q(KS)) (Def 4.2.33). Therefore, Safe-per-I(KS). Safe-per-I(KS)≡ (∀S∈

I) : ¬Active(S,KS) (Def 4.2.16). Therefore, (∀S ∈ I) : ¬Active(S,KS). Complete-I(KS) = {S | S ⊆ B∪,

S `⊥, and (∀S′ ( S) : S′ 6 ` ⊥} (Def 4.2.3). Because B `⊥, either (1) (∀B′ ( B)[B′ 6 ` ⊥] XOR (2) (∃B′ (

B)[B′ `⊥ ∧(∀B′′ ( B′)[B′′ 6 ` ⊥]]. In other words, since B is inconsistent, either it is minimally inconsistent

or one of its subsets (take such a subset to be called B′) is minimally inconsistent (per set theory). If (1) is

true, then B ∈ I, because I = Complete-I(KS). But, that would mean Active(B,KS) (Def 4.2.12)—causing

a contradiction with (∀S ∈ I) : ¬Active(S,KS). If (2) is true, then B′ ∈ I, because I = Complete-I(KS).

But, again we’d have Active(B′,KS) (Def 4.2.12)—and a contradiction. Therefore, (Proper-KS(KS) ∧ I =

Complete-I(KS))⇒ Consistent(KS). 2

If a DDR knowledge state has a properly maintained priority queue that is empty, then all retracted base

beliefs must be designated as JustifiedOut.

Theorem 4.2.35 Given the DDR knowledge state KS (containing the elements B,B∪, I,�, and Q), Proper-

Q(KS), and Empty(Q), then (∀p ∈ X) : JustifiedOut(p,KS), recalling that X = B∪ \B.

Proof.

(Proof-by-refutation) Given the DDR knowledge state KS (containing the elements B,B∪, I,�, and Q),

Proper-Q(KS) and Empty(Q), assume (∃p ∈ X) : ¬JustifiedOut(p,KS). (∀p ∈ X): BadOut(p,KS) XOR

JustifiedOut(p,KS) (Obs:4.2.21) . Therefore, (∃p ∈ X) : BadOut(p,KS). Since Proper-Q(KS), Protected-

by-Q(p,KS) (Def 4.2.32). But, based on the definition for Protected-by-Q (Def 4.2.31), there must be some

element on Q “protecting” p—at least one of the following statements must be true:
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• 〈p, in?〉 ∈ Q (line Q1)

• 〈p,both〉 ∈ Q (line Q2)

• (∃q ∈ X) : 〈q, justout〉 ∈ Q∨〈q,both〉 ∈ Q (lines Q7 or Q8 to satisfy lines Q3-8)

If any of the just listed statements were true, then ¬Empty(Q). Since Empty(Q) is a given, we have a

contradiction. Therefore, (∀p ∈ X) : JustifiedOut(p,KS). 2

If a DDR knowledge state has a properly maintained priority queue, and one belief’s tag is changed from

justout to both, then the new knowledge state also has a properly maintained queue.

Theorem 4.2.36 Given the DDR knowledge state KS (containing the elements B,B∪, I,�, and Q), such

that Proper-Q(KS), 〈p, justout〉 ∈ Q, and KS1 where B1 = B,B∪1 = B∪, I1 = I,�1=�, and Q1 = Change-

Tag(p,Q,both,�): Proper-Q(KS1).

The proof for this theorem is in the Appendix in Section A.1.1. Briefly described, the only way that p’s

presence in Q affects Proper-Q(KS) is if 〈p, justout〉 satisfies line Q7 in Definition 4.2.31 above for some

belief b, where Protected-by-Q(b,KS).11 If so, 〈p,both〉 will equally satisfy line Q8 for that same b. Re-

call that BadOut(b,KS) ≡ BadOut(b,KS1), because all elements of the knowledge states KS and KS1 are

identical except for their queues (cf. Obs 4.2.22). Since all other belief pairs in Q are also in Q1, all other

requirements for Proper-Q(KS1) are met in the same way that they are met when determining Proper-Q(KS).

For any DDR knowledge state KS where Proper-Q(KS), p ∈ X , and p 6∈ Q: inserting p into the queue

will result in a new knowledge state KS1 s.t. Proper-Q(KS1).

Theorem 4.2.37 Given the DDR knowledge state KS = 〈B,B∪, I,�,Q〉, Proper-Q(KS), p ∈ X, p 6∈ Q, and

KS1 = 〈B,B∪, I,�,Q1← Insert(〈p,τ〉,Q,�)〉, where τ ∈ {justout, in?,both}: Proper-Q(KS1).

11I choose to use b for an arbitrary belief rather than p, which is already used in this discussion, or q, which is used in lines Q6
through Q8 of Definition 4.2.31.
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The proof for this theorem is in the Appendix in Section A.1.2. Briefly described, once the conditions

for Proper-Q(KS) are met, any other belief p 6∈ Q can be inserted into the queue without violating the

Proper-Q designation—provided the definition of a priority queue (Def 4.2.1) is not violated—i.e., p ∈ X ,

its tag τ ∈ {justout, in?,both}, and it is inserted in order based on �. Essentially, all the elements in KS

that satisfied the requirements for Proper-Q(KS) are also contained in KS1, therefore Proper-Q(KS1). Note

that this depends on KS and KS1 differing in their queue elements only—all other elements of their DDR

knowledge state tuples must be identical.

Based on the previous two theorems, a designation of Proper-Q is maintained through DDR-Q-Insertion.

Theorem 4.2.38 Given KS = 〈B,B∪, I,�,Q〉, p ∈ X, and KS′ = 〈B,B∪, I,�, DDR-Q-Insert(p,Q,�)〉, then

Proper-Q(KS)⇒ Proper-Q(KS′).

Proof.

Based on the definition for DDR-Q-Insert (Def 4.2.30):

1. if 〈p, in?〉 ∈ Q, then Q′ = Q

2. if 〈p,both〉 ∈ Q, then Q′ = Q

3. if 〈p, justout〉 ∈ Q, then Q′ = Change-Tag(p,Q,both,�)

4. if p 6∈ Q, then Q′ = Insert(〈p, in?〉,Q,�).

Cases (1) and (2) result in KS′ = KS, therefore Proper-Q(KS)⇒ Proper-Q(KS′). Case (3): Proper-Q(KS)⇒

Proper-Q(KS′) from Theorem 4.2.36. Case (4): Proper-Q(KS)⇒ Proper-Q(KS′) from Theorem 4.2.37. 2

When altering a knowledge base by merely popping a JustifiedOut first belief off the priority queue, the

designation of Proper-Q is not lost if either (1) the belief is tagged as in? or (2) all retracted culprits of its

NC-NAND-sets are in Q with a tag if in? or both.
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Theorem 4.2.39 Given KS = 〈B,B∪, I,�,Q〉, Proper-Q(KS),〈p,τ〉 = First(Q), JustifiedOut(p,KS), and

KS′ = 〈B,B∪, I,�, Popped(Q)〉,

then we know that Proper-Q(KS′), provided one of the following is true:

1. τ = in? or

2. (∀q ∈ X) : ((∃N ∈ NC-NAND-sets(p,KS)) q = Culprit(N,�))⇒ (〈q, in?〉 ∈ Q ∨ 〈q,both〉 ∈ Q).

Proof.

JustifiedOut(p,KS) and KS′ = 〈B,B∪, I,�, Popped(Q)〉 (given). (∀q 6= p,∀τ) : 〈q,τ〉 ∈Q≡ 〈q,τ〉 ∈Q′ (Def-

inition of Popped: Def 4.2.29). Since JustifiedOut(p,KS), we know p ∈ X and ¬BadOut(p,KS) (Def 4.2.20,

Obs 4.2.21). (∀q) :BadOut(q,KS) ≡ BadOut(q,KS′) (Obs 4.2.22). Proper-Q(KS) ≡ (∀q) : BadOut(q,KS)

⇒ Protected-by-Q(q,KS) (Def 4.2.32). (∀q) : BadOut(q,KS) ⇒ Protected-by-Q(q,KS) (Proper-Q(KS)

is given).

1. If τ = in?, then (∀q 6= p) : p is not involved in supporting Protected-by-Q(q,KS), because a belief

with tag in? can only “protect” itself (Def 4.2.31). Therefore, (∀q 6= p) : Protected-by-Q(q,KS) ≡

Protected-by-Q(q,KS′) (all elements are protected in the same way in both KS, and KS′). Thus, Proper-

Q(KS′) (Def 4.2.32).

2. (∀q ∈ X) : (∃N ∈ NC-NAND-sets(p,KS)) q = Culprit(N,�)⇒ (〈q, in?〉 ∈Q ∨ 〈q,both〉 ∈Q). Since

the case for τ = in? is already proved, assume τ ∈ {both, justout}. I must prove that p’s removal from

Q will not prevent any BadOut belief from being Protected-by-Q. As in case (1) above, if p is not

involved in supporting Protected-by-Q(q,KS), then Protected-by-Q(q,KS) ≡ Protected-by-Q(q,KS′).

Let q be an arbitrary belief such that BadOut(q,KS) and 〈p,τ〉 ∈Q is involved in “protecting” q. Since

BadOut(q,KS), q ∈ X (Def 4.2.19). Since ¬BadOut(p,KS), q 6= p. Therefore, the only protection

p can offer is if (∃S ∈ I) : {p,q} ⊆ S,q =Weakest(S,�), and (∀s ∈ ((S \ {q})∩X)) : 〈s, justout〉 ∈

Q∨ 〈s,both〉 ∈ Q (Def 4.2.31). Take such an S. Then we know q = Culprit(S,�) and S ∈ NC-
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NAND-sets(p,KS)) (Def 4.2.6,Def 4.2.11). Therefore, 〈q, in?〉 ∈ Q ∨ 〈q,both〉 ∈ Q. And, 〈q, in?〉 ∈

Q′ ∨ 〈q,both〉 ∈Q′, because the only change from Q to Q′ is the removal (pop) of p. So, Protected-by-

Q(q,KS′) (Def 4.2.31). Therefore, (∀q) : BadOut(q,KS′) ⇒ Protected-by-Q(q,KS′). Thus, Proper-

Q(KS′) (Def 4.2.32). 2

Given a DDR knowledge state KS, where Proper-Q(KS), returning any retracted base belief p to the base

results in a new knowledge state KS1 where Proper-Q(KS1), provided p 6∈ Q1. Recall that X = B∪ \B.

Theorem 4.2.40 Given the DDR knowledge states KS = 〈B,B∪, I,�,Q〉 and KS1 = 〈B1,B∪, I,�,Q1〉, where

Proper-Q(KS), p ∈ X, p ∈ B1, p 6∈Q1 and (∀q 6= p,∀τ) : (q ∈ B≡ q ∈ B1)∧ (〈q,τ〉 ∈Q≡ 〈q,τ〉 ∈Q1); then

following statement is true: Proper-Q(KS1).

The proof for this theorem is extensive and can be found in the Appendix in Section A.1.3.

Given a DDR knowledge state KS, where Proper-Q(KS), removing a set of base beliefs R⊆ B from the

base results in a new knowledge state KS1 where Proper-Q(KS1), provided every belief in R is in the queue

with the tag both.

Theorem 4.2.41 Given the DDR knowledge states KS = 〈B,B∪, I,�,Q〉 and KS1 = 〈B1,B∪, I,�,Q1〉, where

Proper-Q(KS), R ⊆ B, R∩B1 = /0, and (∀q 6∈ R,∀τ,∀r ∈ R) : (q ∈ B ≡ q ∈ B1)∧ (〈q,τ〉 ∈ Q ≡ 〈q,τ〉 ∈

Q1)∧〈r,both〉 ∈ Q1; then following statement is true: Proper-Q(KS1).

Proof.

This proof uses the definition for Protected-by-Q (Def 4.2.31) and refers to the lines in that definition as

Q#. The goal is to show that (∀b) : BadOut(b,KS1) ⇒ Protected-by-Q(b,KS1), and, therefore Proper-

Q(KS1) (Def 4.2.32). Because Proper-Q(KS), it is known that (∀b) : BadOut(b,KS)⇒ Protected-by-

Q(b,KS) (Def 4.2.32). For any r ∈ R, if BadOut(r,KS1), then 〈r,both〉 ∈ Q1 satisfies line Q2. For any
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other belief b ∈ (X1 \R), we know that b ∈ X (premise).12 Let b be any arbitrary belief such that b ∈ X1 \R.

If BadOut(b,KS1), then (1) BadOut(b,KS) XOR (2) JustifiedOut(b,KS) (Obs 4.2.21). Regarding case(1),

if Protected-by-Q(b,KS) is satisfied using line Q1 or Q2, then Protected-by-Q(b,KS1) is likewise satisfied.

Otherwise, for case(1), Protected-by-Q(b,KS) is satisfied through some set S ∈ I as described in lines Q3-

Q8. Take such an S. If R∩S = /0, then Protected-by-Q(b,KS1) is satisfied in the same way as Protected-by-

Q(b,KS)—recall that all beliefs in X remain in X and experience no tag changes (premise). If R∩S 6= /0, then

(∀r ∈ R∩S)[〈r,both〉 ∈Q1] and (∀p∈ (S∩X)\(R+b))[〈p, justout〉 ∈Q1 ∨ 〈p,both〉 ∈Q1] (again, because

the elements in X and Q are also in X1 and Q1). This means that Protected-by-Q(b,KS1) is satisfied through

that same S that satisfies Protected-by-Q(b,KS) through lines Q3-Q8. Case (2) states that JustifiedOut(b,KS);

so, BadOut(b,KS1) means there must be an S ∈ I, where b = Cul prit(S,�), (S\{b})⊆ B (i.e., (S\{b})∩

X = /0), but R∩ S 6= /0 (i.e., (S \ {b})∩X 6= /0). In this case, the premise that (∀r ∈ R∩ S)[〈r,both〉 ∈ Q1]

is sufficient to insure that Protected-by-Q(b,KS1) holds—by satisfying line Q8 of the Q3-Q8 condition.

Therefore, (∀b) : BadOut(b,KS1)⇒ Protected-by-Q(b,KS1). Therefore, Proper-Q(KS1) (Def 4.2.32). 2

Given a DDR knowledge state KS, where Proper-Q(KS), any p that is on the priority queue with a tag of

both and is also designated as JustifiedOut, can have its tag changed to justout and the resulting knowledge

state will retain the Proper-Q designation.

Theorem 4.2.42 Given the DDR knowledge states KS = 〈B,B∪, I,�,Q〉 and KS1 = 〈B,B∪, I,�,Q1〉, where

〈p,both〉 ∈ Q, JustifiedOut(p,KS), 〈p, justout〉 ∈ Q1, and (∀q 6= p,∀τ) : 〈q,τ〉 ∈ Q ≡ 〈q,τ〉 ∈ Q1; then the

following statement is true: Proper-Q(KS1).

Proof.

Again, I will reference lines of the definition for Protected-by-Q (Def 4.2.31), using the convention Q#,

12Recall that for any KS, X =de f B∪ \B (Def 4.2.1).
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where # is the number of the line. Given the premise Proper-Q(KS), it is known that (∀b) : BadOut(b,KS)⇒

Protected-by-Q(b,KS) (Def 4.2.32). Regarding any p where 〈p,both〉 ∈ Q and JustifiedOut(p,KS), it is

clear that ¬BadOut(p,KS) (Obs 4.2.21). For any other b 6= p, BadOut(b,KS)⇒ Protected-by-Q(b,KS).

BadOut(b,KS)≡ BadOut(b,KS1), because B is the base for both KS and KS1 (premise). Therefore,

BadOut(b,KS1)⇒ Protected-by-Q(b,KS). If Protected-by-Q(b,KS) is satisfied using line Q1 or Q2, then

Protected-by-Q(b,KS1) is likewise satisfied. Otherwise, Protected-by-Q(b,KS) is satisfied through some set

S ∈ I as described in lines Q3-Q8. Take such an S. If p 6∈ S, then Protected-by-Q(b,KS1) is satisfied in the

same way as Protected-by-Q(b,KS)—recall that all beliefs in X remain in X and experience no tag changes

(premise). If p ∈ S, then 〈p,both〉 ∈Q contributes to satisfying Protected-by-Q(b,KS) at line Q8. Similarly,

〈p, justout〉 ∈ Q1 contributes to satisfying Protected-by-Q(b,KS1) at line Q8. As before, (∀s ∈ (S∩X) \

{b, p}) : [〈s, justout〉 ∈Q1 ∨ 〈s,both〉 ∈Q1], because (∀s ∈ (S∩X)\{b, p}) : [〈s, justout〉 ∈Q ∨ 〈s,both〉 ∈

Q], and the beliefs in X \ {p} and their tags are not altered. And, therefore, (∀b) : BadOut(b,KS1)⇒

Protected-by-Q(b,KS1). Thus, Proper-Q(KS1) (Def 4.2.32). 2

4.2.11 Knowledge State Preference Ordering and the Impact of Q

Given a DDR knowledge state with the elements B,B∪, I,�, and Q, the impact that the priority queue Q can

have on KS (QImpact) is proportional to the credibility of its first tagged belief (Def 3.2.1).

Definition 4.2.43 Given a DDR knowledge state KS with the elements B,B∪, I,�, and Q, if Empty(Q),

QImpact(KS) =de f 0;

otherwise, given First(Q) = 〈p,τ〉, then QImpact(KS) =de f Cred(p,B∪,�).

Assuming a knowledge state has a consistent base and a non-empty queue, popping the first element off

the queue results in a knowledge state with a reduced QImpact value.
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Observation 4.2.44 Given the DDR knowledge states KS and KS1, where B1 = B,B∪1 = B∪, I1 = I,�1=�

,Q1 =Popped(Q), and ¬Empty(Q): QImpact(KS) >QImpact(KS′).

The impact of Q is incorporated into the determination of a knowledge state’s relative credibility, though

that credibility is largely determined by the credibility of its belief base (Cred(B,B∪, I,�): Def 4.2.23). Note

that two knowledge states can be compared only if they have the same B∪ and �.

Definition 4.2.45 Given a knowledge state KS with the elements B,B∪, I,�, and Q, if ¬Safe-per-I(KS),

then Cred(B,B∪, I,�)= -1, and @KS′ s.t. KS �KS KS′. Otherwise, Safe-per-I(KS), and given a second

knowledge state KS1 where B∪1 = B∪, I1 = I, and �1=�, and Proper-Q(KS) and Proper-Q(KS1):

• If B1 = B and QImpact(KS) = QImpact(KS1), then KS�KS KS1 and KS1 �KS KS. Their queues may

differ, as long as the first elements in their queues are the same.

• KS�KS KS1 if either

– B� B1 OR

– B = B1 and QImpact(KS) < QImpact(KS1).

• If KS�KS KS1, then KS�KS KS1.

A preference between knowledge states can also be defined in terms of consistency:

Definition 4.2.46 Given a knowledge state KS with the elements B,B∪, I,�, and Q, if ¬Consistent(KS),

then Cred(B,B∪,�)= -1, and @KS′ s.t. KS �⊥ KS′. Otherwise, Consistent(KS), and given a second knowl-

edge state KS1 where B∪1 = B∪, I1 = I, and �1=�, and Proper-Q(KS) and Proper-Q(KS1):

• If B1 = B and QImpact(KS) = QImpact(KS1), then KS �⊥ KS1. Their queues may differ, as long as

the first elements in their queues are the same.

• KS�⊥ KS1 if either

– B�⊥ B1 OR

– B = B1 and QImpact(KS) < QImpact(KS1).
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• If KS�⊥ KS1, then KS�⊥ KS1.

Popping the first element off the non-empty queue of a knowledge state that is Safe-per-I results in a

strictly more preferred knowledge state, provided both states are Proper-Q.

Observation 4.2.47 Given the DDR knowledge states KS and KS1, where B1 = B,B∪1 = B∪, I1 = I,�1=�

,Q1 =Popped(Q), Safe-per-I(KS), Proper-Q(KS), Proper-Q(KS′), and ¬Empty(Q): KS′ �KS KS.

Popping the first element off the non-empty queue of a knowledge state that is consistent results in a

strictly more preferred knowledge state, provided both states are Proper-Q.

Observation 4.2.48 Given the DDR knowledge states KS and KS1, where B1 = B,B∪1 = B∪, I1 = I,�1=�

,Q1 =Popped(Q), Consistent(KS), Proper-Q(KS), Proper-Q(KS′), and ¬Empty(Q): KS′ �⊥ KS.

Since QImpact(KS) is determined by First(Q), different queues with identical first elements will have

the same QImpact value. �KS is a preorder—it is not linear.13 The QImpact value of a knowledge state

is an indication of the impact the priority queue may have on the beliefs in the base when DDR processes

the knowledge state towards the optimal base. The higher the preference of the top element, the greater the

number of beliefs (and the greater their possible preference) that might be moved in or out of the base to

make it optimal.

The QImpact value of a knowledge state is not only a measure of how much DDR might affect the

base of the knowledge state, it is also a reverse measure of the confidence in the current base and reasoning

performed using that base. The higher the QImpact value, the lower the confidence that the base is optimal.

Any reasoning that is grounded in a set of base beliefs that are all more preferred to the top element in Q

is reasoning performed in an optimal belief space and will survive the DDR process. Actually, reasoning

13Consider KS1 and KS2, where B1 = B2, Q1 6= Q2, but First(Q1) = First(Q2) (only the beliefs need be equal here, not the tags).
In this case, KS1 6= KS2, but KS1 � KS2 and KS2 � KS1.
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with non-culprit base beliefs is always safe, since they never are retracted from the base (assuming I =

Complete-I(KS) and no new input forces them out). Reasoning with any beliefs derived using some culprit

base belief that is not more credible than the top element in Q is potentially faulty reasoning with regard to

the optimal base (the base that is optimal w.r.t. B∪ and �).

Observation 4.2.49 Given the DDR knowledge states KS and KS1, where B∪1 = B∪, I1 = I,�1=�, and

Safe-per-I(KS): KS�KS KS1 ≡ ((B� B1)∨ (B = B1∧ QImpact(KS1) > QImpact(KS))).

Observation 4.2.50 Given the DDR knowledge states KS and KS1, where B∪1 = B∪, I1 = I,�1=�, and

Safe-per-I(KS): ((B� B1)∧ (QImpact(KS1)≥ QImpact(KS))) ⇒ KS�KS KS1 .

A knowledge state KS is Optimal-per-I (w.r.t. B∪ and�) if it is preferred over all other knowledge states

with the same B∪ and �:

Definition 4.2.51 Given a DDR knowledge state KS with the elements B,B∪, I,�, and Q,

Optimal-per-I(KS) ≡ (∀KS1) : (B∪1 = B∪ ∧ I1 = I ∧ �1=�) ⇒ KS� KS1 .

A knowledge state KS is optimal (a.k.a. Optimal-per-⊥) w.r.t. B∪ and � if it is preferred (per ⊥) over

all other knowledge states with the same B∪ and �:

Definition 4.2.52 Given a DDR knowledge state KS with the elements B,B∪, I,�, and Q,

Optimal-per-⊥(KS) ≡ (∀KS1) : (B∪1 = B∪ ∧ I1 = I ∧ �1=�) ⇒ KS�⊥ KS1 .

Based on Observation 4.2.28, if I = Complete-I(KS), then a knowledge state that is Optimal-per-I is also

Optimal-per-⊥:

Observation 4.2.53 Given a DDR knowledge state KS with the elements B,B∪, I,�, and Q, I = Complete-

I(KS)⇒ (Optimal-per-I(KS) ≡ Optimal-per-⊥(KS)).

If a DDR knowledge state is Proper-KS and has an empty queue, then it is Optimal-per-I.
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Theorem 4.2.54 Given a DDR knowledge state KS with the elements B,B∪, I,�, and Q,

where Proper-KS(KS): Empty(Q)⇒ Optimal-per-I(KS)

Proof.

Proper-KS(KS) and Empty(Q) (given, premise). Therefore, Safe-per-I(KS) (Def 4.2.33). Proper-Q(KS)

∧ Empty(Q) ⇒ (∀p ∈ X) : JustifiedOut(p,KS) (Thm 4.2.35). (∀p ∈ X ,∃S ∈ I) : S \ {p} ⊆ B ∧ p =

Culprit(S,�) (Def 4.2.18,Def 4.2.20) . Therefore, (∀p ∈ X ,∃S ∈ I) : S ⊆ (B∪{p}) ∧ p = Culprit(S,�).

Therefore, (∀p ∈ X) : (B∪{p}) `⊥ (Def of I: Def 4.2.1). If S ∈ I and p = Culprit(S,�), then (∀q ∈ S) :

q 6= p⇒ q � p (Def 4.2.4,Def 4.2.6). Therefore, ((B∪{p}) \ {q | p � q}) `⊥. Therefore, (@B′ ⊆ B∪) :

Cred(B′,B∪, I,�)>Cred(B,B∪, I,�), because any belief in X added to B makes the resulting base ¬Safe-

per-I (resulting in a credibility of -1) unless a stronger belief is removed (resulting in a lower credibility than

B)—so no change to the base can increase its credibility. Therefore, (∀B′ ⊆ B∪) : B � B′. Empty(QKS)⇒

QImpact(KS) = 0 (Def 4.2.43). ¬Empty(QKS) ∧ 〈p,τ〉 = First(QKS) ⇒ QImpact(KS) = Cred(p,B∪,�)

(Def 4.2.43). Therefore, (∀KS′) : QImpact(KS′)≥ QImpact(KS). Therefore, (∀KS′ where B∪1 = B∪ ∧ I1 =

I ∧ �1=�) : B�B′ ∧ QImpact(KS′)≥QImpact(KS). Therefore, (∀KS′ where B∪1 = B∪ ∧ I1 = I ∧ �1=�

) : KS�KS KS′ (from Obs 4.2.50). Optimal-per-I(KS) ≡ (∀KS1) : (B∪1 = B∪ ∧ I1 = I ∧ �1=�) ⇒ KS�

KS1 (Def 4.2.51). Therefore, Optimal-per-I(KS). Given a DDR knowledge state KS with the elements

B,B∪, I,�, and Q, where Proper-KS(KS): Empty(Q)⇒ Optimal-per-I(KS). 2

If a DDR knowledge state is Proper-KS and has an I that is complete and an empty queue, then it is

Optimal-per-⊥.

Theorem 4.2.55 Given a DDR knowledge state KS with the elements B,B∪, I,�, and Q, where Proper-

KS(KS) and I = Complete-I(KS): Empty(Q)⇒ Optimal-per-⊥(KS)
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Proof.

Proper-KS(KS), I = Complete-I(KS), and Empty(Q) (given, premise). Proper-KS(KS) ∧ Empty(Q) ⇒

Optimal-per-I(KS) (Theorem 4.2.54). I = Complete-I(KS)⇒ (Optimal-per-I(KS) ≡ Optimal-per-⊥(KS))

(Obs 4.2.53). Therefore, Optimal-per-⊥(KS). 2

4.2.12 DDR Knowledge State Belief Change Operations

Introduction

The operations that can be performed on (and change) a DDR knowledge state, KS, are expansion, con-

solidation, semi-revision, reconsideration and optimized-addition. These are similar to the operations on a

knowledge state triple that were discussed in Chapter 3 (see Section 3.2.3), but the operation of contraction

is notably absent. This omission is discussed immediately below.

The operators used to represent these operations will be the same as those used on the knowledge state

presented in Chapter 3—and in some cases the same as those operations on a simple belief base—but the

context in which each operator is used should disambiguate its usage.

The main belief change operations performed on a DDR knowledge state involve changes to its belief

base that are defined in terms of only two base belief change operations: expansion (+) and/or kernel

consolidation (!) [Hansson1994]. When the base of a DDR knowledge state is altered, however, there may

be changes to other elements of the tuple as well.

All changes made to the priority queue during these operations are to insure that the resulting knowledge

state (KS1) satisfies Proper-Q(KS1)—assuming that the starting knowledge state (KS) similarly satisfied

Proper-Q(KS).
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Knowledge State Contraction Performed for Consistency Maintenance Only

There are two reasons for not defining an operation of contraction for a knowledge state implemented for

use with DDR.

First, I assume that any system implemented to include reconsideration is designed with optimality as a

high priority. When the operation of contraction is performed outside of consistency maintenance, there is a

potential for producing a sub-optimal base. As explained in [Chopra, Georgatos, & Parikh2001] “Agents do

not lose beliefs without a reason: to drop [i.e., retract] the belief . . . p is to revise by some information that

changes our reasoning.” Extending this concept, reconsideration supports the idea that beliefs should not

remain lost (retracted) without a reason.14 Contraction occurs as a by-product of the consistency maintaining

operations of consolidation, reconsideration, and optimized-addition.

Second, the algorithm for performing dependency-directed reconsideration (DDR) could adjust to any

user initiated contraction as long as the contracted belief (along with any other contracted beliefs) is inserted

into the priority queue Q with a tag of both at the time of contraction. If the contraction was justified, the

belief will remain contracted when DDR is performed. If it does not need to be removed for consistency

maintenance, the contracted belief will be returned to the base by DDR.15 Whether the user initiated con-

traction holds or not, the result is the optimal base which is optimal w.r.t. B∪ and � and unaffected by

the contraction. Hence, since DDR eliminates the effects of any contraction, I choose to eliminate it as a

possible operation for a system implementing DDR.

14Contraction was included in the knowledge state triple belief change operations discussed in Chapter 3 to facilitate the dis-
cussion of improved Recovery for belief bases and the comparison of reconsideration to the operations in the Belief Liberation
literature.

15These DDR predictions assume no other factors occur after the contraction or during DDR (such as the return or removal of
some other belief that affects the contracted belief) to change the status of the contraction.
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DDR Knowledge State Expansion

The operation of expansion on a DDR knowledge state KS (containing B,B∪, I,�, and Q) is the addition

of some belief p (along with the preference ordering information regarding that belief, �p), without regard

to any inconsistencies that may arise from that addition. Expansion of KS by the pair 〈p,�p〉 is written as

KS + 〈p,�p〉 and is the knowledge state version of belief base expansion.16 The result is a new knowledge

state, KS1 containing the following elements:

• B1 = (B+ p), where + is the operation of belief base expansion

• B∪1 = B∪+ p, where + is the operation of belief base expansion. Note that X1 = X .

• I1 = I∪ I′, where I′ ⊆ {N | N ⊆ B∪1 and N `⊥} and (@N,N′ ∈ I1) : N′ ( N.

• �1 is� adjusted to include the preference information�p—which positions p relative to other beliefs

in B∪, while leaving the order of other beliefs in B∪ unchanged. The resulting ordering is the transitive

closure of these orderings.17 If this re-ordering results in altering the culprit for a NAND-set, a

corresponding change is reflected in Q1, see below.

• Q1 is similar to Q with the following changes, which insure adherence to the definition of a priority

queue and Proper-Q(KS1): (1) if p was in Q and is now in B1, then it is not in Q1; (2) (∀q ∈ X): if

the re-ordering results in q being moved up from the culprit position in a NAND-set to a non-culprit

position, then q must be in the queue with a tag indicating it should be considered for possible return

to the base during DDR.18

16I choose to overload the expansion operator, +, because it is clear from the context which expansion operation is being
performed—base expansion or DDR-KS expansion. Similarly, I will also be overloading the operators for consolidation (!) and
semi-revision (+!).

17I assume that if p ∈ B∪, the location of p in the sequence might change—i.e., its old ordering information is removed before
adding �p and performing closure—but all other beliefs remain in their same relative order.

18This insertion would be performed by the procedure DDR-Q-Insert which determines whether the tag for q should be in? or
both. How this assures Proper-Q(KS1) is discussed in detail in Section 4.5.1 which covers restoring Proper-Q after a re-ordering.
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DDR Knowledge State Consolidation

KS! is consolidation of the DDR KS which produces KS1, where B1 = B! (recall that ! is the operation

of belief base kernel consolidation), and Q1 is similar to Q but adjusted so that: (∀p) If p ∈ B and p 6∈

B1, then 〈p, justout〉 ∈ Q1 (assuming JustifiedOut(p,KS1)). Any beliefs in B \B1 that are not guaranteed

to be JustifiedOut should have tags of both in the queue (to assure Proper-Q(KS1)). B∪1 = B∪, I1 = I, and

�1=�.

As discussed in Chapter 3, the linear ordering of the beliefs in the base B make it possible (and desirable)

for B! to be optimal w.r.t. B and �. Note, again, that the optimality is w.r.t. B, not B∪. See Section 3.2.3 for

the full discussion.

DDR Knowledge State Kernel Semi-Revision

The operation of kernel semi-revision on a DDR knowledge state KS is the addition of a belief p (along with

the preference ordering information regarding that belief, �p) followed by the consistency maintenance op-

eration of consolidation. It is written as KS+! 〈p,�p〉 and is the knowledge state version of Hansson’s belief

base kernel semi-revision [Hansson1997]. The result is a new knowledge state (KS1) with the following el-

ements:

• B1 = B+! p, where +! is belief base semi-revision: B+! p = (B+ p)!, and ! is performed using the

information in �1. Recall: p is not guaranteed to be in B1

• B∪1 = B∪+ p (and recall that X1 = B∪1 \B1)

• I1 = I∪ I′, where I′ ⊆ {N | N ⊆ B∪1 and N `⊥} and (@N,N′ ∈ I1) : N′ ( N.

• �1 is � adjusted to include the preference information �p as described above for knowledge state

expansion.
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• Q1 is similar to Q with the following alterations:19

1. if p ∈ Q and p ∈ B1, then p 6∈ Q1

2. (∀q ∈ X): if the re-ordering results in q being moved up from the culprit position in a NAND-set

to a non-culprit position, then q must be DDR-Q-Inserted into the queue as discussed for DDR

knowledge state expansion.

3. (∀b ∈ B) : if b ∈ X1, then 〈b, justout〉 ∈Q1, provided JustifiedOut(p,KS1)—if the system cannot

guarantee JustifiedOut(p,KS1), then the tag for b is both (to assure Proper-Q(KS1)).

4. If p ∈ X1, then 〈p, justout〉 ∈ Q1

DDR Knowledge State Reconsideration

KS!∪ is reconsideration of the knowledge state KS which produces KS1, where B1 = B∪! (where ! is the

operation of belief base kernel consolidation), B∪1 = B∪, I1 = I,�1=� and Q1 is empty.

The following theorem is the DDR version of Observation 3.2.15. It states that, assuming a maximizing

global decision function for consolidation (that finds the maximal consistent subset of the base being con-

solidated), reconsideration results in the optimal base (and, thus, the optimal knowledge state), regardless of

the makeup of the current belief base (recall that the current base is B, not B∪) at the time that reconsidera-

tion is performed. In other words, the result of reconsideration on a knowledge state is independent of the

makeup of the current base of that knowledge state.

Theorem 4.2.56 Given any DDR knowledge state KS containing the elements B,B∪, I, �, and Q, where a

maximizing global decision function is used for consolidation (one that finds the maximal consistent subset

of the base being consolidated) : Optimal-per-⊥(KS!∪).

Proof.

Given that KS1 = KS!∪, B1 = B∪!, by the definition of reconsideration. If consolidation uses a maximizing

19The first three alterations come from the expansion and consolidation changes to the priority queue already discussed above.
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global decision function that finds the maximal consistent subset of the base being consolidated, (∀B′⊆B∪) :

B∪!�⊥ B′ (Obs 3.2.8). Therefore, (∀B′ ⊆ B∪) : B1 �⊥ B′. Empty(Q1) by definition, therefore QImpact(KS1)

= 0 (Def 4.2.43). So, (∀KS′ = 〈B′,B∪, I,�,Q′〉) : KS1 �⊥ KS′ (Def 4.2.24, Def 4.2.45). Thus, Optimal-

per-⊥(KS1) (Def 4.2.52). 2

DDR Knowledge State Optimized-Addition

The operation of optimized-addition on a DDR knowledge state KS is the addition of a belief p (along

with the preference ordering information regarding that belief, �p) followed by the optimizing operation of

reconsideration. It is written as KS +!∪ 〈p,�p〉 and is expansion followed by reconsideration. The result is a

new DDR knowledge state, KS1 with the following elements:

• B1 = B∪+! p, where +! is belief base semi-revision: (B∪+! p = (B∪+ p)!), and ! is performed using

the information in �1. Note, however, that the new base is a result of semi-revision of B∪ by p (not

semi-revision of B by p)—this is the difference between semi-revision of a DDR KS and optimized-

addition to a DDR KS.

Recall: p is not guaranteed to be in B1, and B1 is optimal w.r.t. B∪1 and �1.

• B∪1 = B∪+ p

• I1 = I∪ I′, where I′ ⊆ {N | N ⊆ B∪1 and N `⊥} and (@N,N′ ∈ I1) : N′ ( N.

• �1 is � adjusted to include the preference information �p as described above for knowledge state

expansion.

• Q1 is empty.

150



4.3 DDR Algorithms

4.3.1 Introduction

The algorithms discussed in this section assume that the system has a knowledge state KS that contains

B,B∪, I,�, and Q.

In the following algorithms for implementing DDR, all changes to the system knowledge state are made

ONLY during the helper procedure Update-KS (which is called in line 18 of the DDR algorithm). Addition-

ally, because this update takes place at the end of each pass through the DDR loop, the current knowledge

state during pass n through the DDR loop reflects all the changes made during during the previous n− 1

DDR loop iterations.

DDR is an anytime algorithm, because it can be stopped at any time without loss of information or dam-

age to the current knowledge state. Although I discuss many aspects of anytime algorithms (with regards

to DDR) later in this chapter20, a brief definition is: “Anytime algorithms [ [Dean & Boddy1988]] are algo-

rithms whose quality of results improves gradually as computation time increases” [Zilberstein1996], and

the current result is available at any point during the algorithm’s execution.

I assume that each line of an algorithm (which include primitive changes to the knowledge state) can be

successfully performed to completion, except in the case where it is a call to a helper algorithm (specifically,

one of the helper algorithms defined in this section). In this case, every line in that helper algorithm is

assumed to be successfully performed to completion. The proofs for the theorems that accompany these

algorithms show that if the DDR process is halted between any line of the DDR algorithm or the helper

algorithms, no anytime benefits are sacrificed, and the status of Proper-KS is maintained.

If the execution of any primitive change to the knowledge state is interrupted, it is possible that the

20Cf. Section 4.5.1.
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knowledge state may become inconsistent and/or no longer satisfy the Proper-Q requirements. It is up to

the system designers to implement safeguards to reduce the likelihood of this happening and/or implement

ways for the system to “self-correct” if halted mid-process. I draw special attention to the last line of the

Add-Remove algorithm (page 156) as an example of a line resulting in a change to the knowledge state that

should not be interrupted when only partially completed.

4.3.2 A General Diagram of a System Using DDR

Figure 4.1 is a diagram that illustrates how a system can expand its base beliefs (from KS0 to KS1), make

belief change decisions in series that may result in a non-optimal state (KS2, and then KS3), then use DDR to

restore optimality (KS4). It also shows the DDR process being stopped in the process of improving the belief

base credibility (improving from KS5 but stopped at non-optimal KS6). More belief change decisions are

made that reduce the credibility (KS7 and KS8 are less credible than KS6 relative to the optimal knowledge

state), and then DDR is called to finish optimizing the knowledge state resulting in KS9.

4.3.3 Helper-Functions/Procedures

The following procedures and functions are used by the DDR algorithm to gradually improve the credibility

of the belief base. To distinguish the knowledge state at the beginning of a procedure from the knowledge

state at the end of the procedure, I refer to them as KSpre and KSpost, respectively.

• Safe-Return (p,KS) returns the set of weaker beliefs that must be removed from the base to eliminate

any contradictions caused by returning the retracted belief p to the base.

• KS-Add-Remove(KS, p,R) alters the base by returning p to the base and removing all beliefs in R. It

also updates the queue accordingly: p 6∈ Qpost and (∀r ∈ R) : 〈r, justout〉 ∈ Qpost

• Process-Justout(KS, p) removes p from the queue and DDR-Q-Inserts retracted culprits of p’s NC-

NAND-sets into the queue to be considered for possible return.
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Figure 4.1: A diagram illustrating an overview of a system using DDR. The system can call DDR to optimize
the base of a knowledge state (optimal w.r.t. B∪, �, and I, for the knowledge state: see KS3 optimized to
KS4), or it can be stopped during the process (KS6) so that further reasoning and/or belief change operations
can be performed. When convenient, DDR can be recalled and will incrementally improve the credibility
of the base until it reaches the optimal knowledge state w.r.t. the current B∪, �, and I. DDR never makes a
change that results in a less credible belief base.

• Update-KS(KS,update, p,R) updates the knowledge state KS to a more credible state. The following

values for update trigger the related update operation:

– update= PopQ: the only change to the knowledge state is the removal the first element in the

priority queue;

– update= ProcJustout: calls Process-Justout(KS, p);

– update= AddRem: calls KS-Add-Remove(KS, p,R).

Note that Safe-Return is the only function, and it does not change the knowledge state. The procedures

all change some element of the knowledge state (the parameter KS which is passed by reference).
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The only changes by these procedures/functions and DDR that affect the elements of a DDR knowledge

state are (occasionally) changes to the base (B) and changes to the priority queue (Q). Although the top

element on the queue is removed from the queue with every pass through the DDR loop, the queue may be

altered in other ways as well—weaker culprit beliefs may be placed on the queue. . .

• if they are to be considered for possible return to the base, because the top element is no longer in the

base or

• if they are removed from the base so that the top element can return.

The remaining knowledge state five-tuple elements (B∪, I, and �) are unaffected during the entire DDR

process.

For all functions/procedures just discussed, all parameters are passed by reference. For example, a

pointer to the knowledge state is passed to the function/procedure being called. This way the procedures

can make alterations to the knowledge state directly. This saves the computational expense of duplicating

the knowledge state or any of its parts when calling procedures. Likewise, a belief that is represented as

p in the text may be implemented as a data structure with information to assist locating within or inserting

into ordered lists. Similarly, the assignment of the elements of the knowledge state tuple to their respective

variables within a procedure (e.g., 〈B,B∪, I,�,Q〉 ←re f KS ) is also a value copy of the pointer assignment.

I emphasize this by the←ref symbol, and it insures that any change to Q or B is reflected in KS. Additionally,

recall that many other operations that are called are destructive: Pop, Popped, Insert and DDR-Q-Insert.

In the pseudo-code of the algorithms, I use the following conventions:

• ← is used for assignment by value (e.g., update←PopQ)

• ←ref is used to emphasize pointer assignment (e.g., 〈B,B∪, I,�,Q〉 ←ref KS )

• ;;; is used to indicate a comment.

The helper functions and procedures begin on the next page.
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Safe-Return (p,KS)

Safe-Return (p,KS) returns a set of beliefs (R), where R contains the beliefs to be removed from B+ p for

consistency maintenance—it is possible for R to be empty. KS is unaffected by this function.

function Safe-Return(p,KS) ;;; returns a set of beliefs

〈B,B∪, I,�, Q 〉 ←ref KS

R←ref { } ;;; initializing R

NQ←ref NAND-set-Q(NC-NAND-sets(p,KS) , �) ;;; p’s NC-NAND-sets in a queue

loop until Empty(NQ)

N←ref Pop(NQ) ;;; First element in NQ removed into N

if (N \{p} ⊆ B AND N∩R = /0) then

R←ref R ∪ {Culprit(N,�)} ;;; culprit for N inserted into R

endif

end loop

return R

Theorem 4.3.1 (Proof in Appendix, Section A.2.1) Given KS and p and the following:

• Preconditions for Safe-Return(p,KS): KS = KSpre is a DDR knowledge state containing the elements

B,B∪, I,�, and Q; Proper-KS(KSpre); BadOut(p,KSpre); 〈p,τ〉= First(Qpre), where τ ∈ {in?,both}.

• R = Safe-Return(p,KS).

then the following postconditions hold:

• Postconditions for Safe-Return(p,KS) that returns a set of beliefs R: KS = KSpost = KSpre; Proper-

KS(KS); BadOut(p,KS); R ⊆ B; (∀S ∈ I) : S 6⊆ ((B∪ {p}) \ R); ∑pi∈((B+p)\R)Cred(pi,B∪,�) >

∑p j∈BCred(p j,B∪,�); (∀r ∈ R,) : p � r ; (∀r ∈ R,∃S ∈ I) : r = Culprit(S,�) ∧ S ⊆ (((B + p) \

R)+ r).
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KS-Add-Remove(KS, p,R)

KS-Add-Remove(KS, p,R) destructively alters the knowledge state KS (also referred to as KSpre) to be a new

knowledge state (KSpost) by making the following changes: adding p to the base, removing the set of beliefs

R from the base, and adjusting the priority queue to reflect these changes.

procedure KS-Add-Remove(KS, p,R),

〈 B , B∪ , I , � , Q 〉 ←ref KS

Q1←ref New-Q( )

for each r in R do

Q1←ref Insert( 〈r, justout〉 , Q1 , �) 〉 ;;;←ref for clarity, Insert is destructive.

endfor

KS ←ref 〈 B←ref (B∪{p})\R, B∪ , I , � , Popped(Merge-Qs(Q,Q1,�))〉

Theorem 4.3.2 (Proof in Appendix, Section A.2.2) Given KS, p,R and the following

• Preconditions for KS-Add-Remove(KS, p,R): KS = KSpre is a DDR knowledge state;

Proper-KS(KSpre); BadOut(p,KSpre); ∑pi∈((B+p)\R)Cred(pi,B∪,�) > ∑p j∈BCred(p j,B∪,�);

R⊆ Bpre; 〈p,τ〉= First(Qpre), where τ ∈ {in?,both}; (∀S ∈ I) : S 6⊆ ((Bpre + p)\R); and

(∀r ∈ R) : p� r, and (∃S ∈ I) : r = Culprit(S,�) ∧ S⊆ (((Bpre + p)\R)+ r).

• KSpost is the knowledge state resulting from KS-Add-Remove(KS, p,R)

then the following postconditions hold:

• Postconditions for KS-Add-Remove(KS, p,R): KSpost is a DDR knowledge state; Proper-KS(KSpost);

Bpost = (Bpre ∪ {p}) \ R; B∪post = B∪pre; Ipost = Ipre; �post=�pre; (∀r ∈ R) : JustifiedOut(r,KSpost);

QImpact(KSpre)> QImpact(KSpost) ; Bpost � Bpre ; KSpost �KS KSpre ; p 6∈Qpost ; (∀r ∈ R) : p �

r ∧ 〈r, justout〉 ∈ Qpost ; (∀b 6∈ (R∪{p})) : ((〈b,τ〉 ∈ Qpre)≡ (〈b,τ〉 ∈ Qpost)).

156



Process-Justout(KS, p)

Process-Justout(KS, p) destructively alters the knowledge state KS (also referred to as KSpre) to be a new

knowledge state (KSpost) by making the following changes: its queue is updated s.t. p 6∈ Qpost and all

disbelieved culprits of p’s NC-NAND-sets are inserted into the queue by the function DDR-Q-Insert.

procedure Process-Justout (KS, p)

〈 B , B∪ , I , � , Q 〉 ←ref KS

for each N ∈ NC-NAND-sets(p,KS)

q←ref Culprit(N)

if q 6∈ B do ;;; Note: p� q

Q←ref DDR-Q-Insert(q,Q,�) ;;;←ref for clarity, DDR-Q-Insert is destructive.

endif

endfor

KS ←ref 〈 B , B∪ , I , � , Popped(Q) 〉

Theorem 4.3.3 (Proof in Appendix, Section A.2.3) Given KS and p and the following

• Preconditions for Process-Justout (KS, p): KS = KSpre is a DDR knowledge state; Proper-KS(KSpre);

JustifiedOut(p,KSpre); and 〈p,τ〉= First(Qpre), where τ ∈ {justout,both};

• KSpost is the knowledge state resulting from Process-Justout (KS, p);

then the following postconditions hold:
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• Postconditions for Process-Justout (KS, p): KSpost is a DDR knowledge state; Proper-KS(KSpost) ;

Bpost = Bpre ;B∪post = B∪pre ; Ipost = Ipre ;�post=�pre ; QImpact(KSpre)> QImpact(KSpost) ; KSpost �KS

KSpre ; Qpost resembles Qpre with the following changes:

– p 6∈ Qpost, and

– (∀N ∈NC-NAND-sets(p,KS),∃q =Culprit(N,�)): q ∈ X ⇒ 〈q, in?〉 ∈ Qpost ∨ 〈q,both〉 ∈ Qpost

Note: (∀N ∈ NC-NAND-sets(p,KS),∀b ∈ (X \ {p}),∀τ) : b 6=Culprit(N,�)⇒ ((〈b,τ〉 ∈ Qpre) ≡

(〈b,τ〉 ∈ Qpost)).

The proof is supplied in the Appendix in Section A.2.3.

Update-KS(KS,update, p,R)

Update-KS(KS,update, p,R) destructively alters the knowledge state KS (also referred to as KSpre) to be a

new knowledge state (KSpost) which is like the input KSpre but altered depending on the value of update.

procedure Update-KS (KS,update, p,R)

〈 B , B∪ , I , � , Q 〉 ←ref KS

Case update =

PopQ:

KS←ref 〈 B , B∪ , I , � , Popped(Q) 〉

ProcJustout:

Process-Justout(KS, p)

AddRem:

KS-Add-Remove(KS, p,R)
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Theorem 4.3.4 (Proof in Appendix, Section A.2.4) Given KS, update, p, and R and the following

• Preconditions for Update-KS(KS,update, p,R): KS = KSpre is a DDR knowledge state;

Proper-KS(KSpre); 〈p,τ〉= First(Qpre); update ∈ {PopQ,ProcJustout,AddRem}, and

– If update = PopQ: JustifiedOut(p,KSpre); and τ = in?.

– If update = ProcJustout: JustifiedOut(p,KSpre); and τ ∈ {justout,both}.

– If update = AddRem: BadOut(p,KSpre); R⊆ Bpre; τ ∈ {in?,both};

∑pi∈((B+p)\R)Cred(pi,B∪,�) > ∑p j∈BCred(p j,B∪,�);

(∀S ∈ I) : S 6⊆ ((Bpre + p)\R); and

(∀r ∈ R) : p� r, and (∃S ∈ I) : r = Culprit(S,�) ∧ S⊆ (((Bpre + p)\R)+ r);

• KSpost is the knowledge state resulting from Update-KS (KS,update, p,R);

then the following postconditions hold:

• Postconditions for Update-KS(KS,update, p,R): KSpost is a DDR knowledge state;

p 6∈ Qpost; QImpact(KSpre)> QImpact(KSpost); B∪post = B∪pre; Ipost = Ipre; �post=�pre;

Proper-KS(KSpost); KSpost �KS KSpre . Also:

– If update = PopQ : Bpost = Bpre.

– If update = ProcJustout : Bpost = Bpre; (∀N ∈NC-NAND-sets(p,KS),∃q =Culprit(N,�)):

q∈X⇒ (〈q, in?〉 ∈Qpost ∨ 〈q,both〉 ∈Qpost); (∀N ∈NC-NAND-sets(p,KS),∀b∈X \{p},∀τ) :

b 6=Culprit(N,�)⇒ ((〈b,τ〉 ∈ Qpre)≡ (〈b,τ〉 ∈ Qpost)).

– If update = AddRem : Bpost = (Bpre∪{p})\R; (∀r∈R) : p� r ∧ JustifiedOut(r,KSpost); (∀r∈

R) : 〈r, justout〉 ∈ Qpost; and (∀b 6∈ (R∪{p})) : ((〈b,τ〉 ∈ Qpre)≡ (〈b,τ〉 ∈ Qpost)).

The proof for Theorem 4.3.4 is in the Appendix in Section A.2.4.
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If Update-KS(KS,update, p,R) alters the base of the knowledge state, the only addition can be the first

belief in the queue, and, any retracted beliefs must be a culprit beliefs that are weaker than the belief that

was added.

Corollary 4.3.5 Given KS = 〈 B , B∪ , I , � , Q 〉, 〈p,τ〉 = First(Q), and KS′ is the knowledge base

resulting from Update-KS(KS,update, p,R), then if B′ 6= B the following is true:

• (B′ \B) = {p};

• (∀r ∈ (B\B′),∃N ∈ I) : r =Culprit(N,�)∧ p� r. (Thm 4.3.4)

4.3.4 DDR Algorithm

DDR(KS) takes a DDR knowledge state (KS = 〈 B , B∪ , I , � , Q 〉, also referred to as KSpre) as input, and

improves it incrementally (with each pass throught the loop), until the queue is empty. For the purpose of

discussing this algorithm, the starting knowledge state is referred to as KSpre and the final knowledge state

is referred to as KSpost. Only the base B and the priority queue Q are affected by DDR. B∪, I, and � are not

affected by DDR.

The DDR algorithm is presented in its entirely on the following page.
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procedure DDR(KS)

1 loop until Empty(QKS)

2 〈p,τ〉 ←ref First(QKS)

3 if1 (τ = in? or τ = both) , then

4 can-return← BadOut(p,KS)

5 if2 can-return , then ;;; BadOut(p,KS)

6 R ←ref Safe-Return(p,KS)

7 update← ’AddRem

8 else2 ;;; JustifiedOut(p.KS)

9 if3 τ = both , then

10 update← ’ProcJustout

11 else3 ;;; τ = in?

12 update← ’PopQ

13 endif3

14 endif2

15 else1 ;;; τ = justout

16 update← ’ProcJustout

17 endif1

18 Update-KS(KS,update, p,R) ;;; DESTRUCTIVE—alters the DDR knowledge state KS

19 end loop
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Theorem 4.3.6 (Proof in Appendix, Section A.3.) Given the DDR knowledge state KS and the following:

• Preconditions for DDR(KS): KS = KSpre is a DDR knowledge state; Proper-KS(KSpre).

• KSpost is the knowledge state resulting from calling DDR(KS) and running it to completion.

then the following conditions hold:

• Postconditions for DDR(KS): KSpost is a DDR knowledge state; B∪post = B∪pre; Ipost = Ipre; �post=�pre;

I = Complete-I(KSpre)≡ I = Complete-I(KSpost); Proper-KS(KSpost); Empty(Qpost); KSpost�KSpre.

• Loop conditions for DDR(KS): Let KStop be the DDR knowledge state at the top of the DDR loop (just

after line 1). And let KSbot be the DDR knowledge state that results from KStop being processed by the

DDR loop (just after line 18). For each pass through the DDR loop: Proper-KS(KStop) and Proper-

KS(KSbot); QImpact(KStop)> QImpact(KSbot); KSbot �KS KStop . Additionally, if 〈p,τ〉 = First(Qtop)

and Btop 6= Bbot, then

– (B′ \B) = {p};

– (∀r ∈ (B\B′),∃N ∈ I) : r =Culprit(N,�)∧ p� r.

The proof for Theorem 4.3.6 is in the Appendix in Section A.3.

Note that each pass through the loop in the DDR algorithm processes the top element of the dynamically

changing priority queue. Each element is processed in turn and how it is processed depends on its tag, τ.

If τ = justout, then the belief p was retracted at some earlier time and the DDR process will insert onto

the queue the retracted culprits of its NC-NAND-sets to be considered for possible return to the base. If

τ = in?, then DDR determines whether the belief can return to the base and, if so, returns it (with appropriate

consistency maintenance). If τ = both, then the belief is first processed as if its tag is in?; only if the belief

cannot return to the base, will DDR, then, process it as if it has the tag justout.
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The result of DDR performed to completion is the Optimal-per-I knowledge state.

Theorem 4.3.7 Given that the DDR knowledge state KS = KSpost (containing the elements B,B∪, I,�,

and Q) is the knowledge state resulting from DDR(KSpre) running to completion,

Proper-KS(KSpre)⇒ Optimal-per-I(KSpost).

Proof.

Proper-KS(KSpre) (premise). KS is the result of DDR(KSpre) running to completion. Therefore, Empty(Qpost)

and Proper-KS(KSpost) (Thm 4.3.6). B∪post = B∪pre; Ipost = Ipre; �post=�pre (Thm 4.3.6). For any knowledge

state KS, Proper-KS(KS): Empty(Q)⇒ Optimal-per-I(KS) (Thm 4.2.54). Therefore, Optimal-per-I(KSpost).

2

The result of DDR performed to completion when I = Complete-I(KS) is the Optimal-per-⊥ knowledge

state.

Theorem 4.3.8 Given that the DDR knowledge state KS = KSpost (containing the elements B,B∪, I,�,

and Q) is the knowledge state resulting from DDR(KSpre) running to completion, Proper-KS(KSpre) ∧ I =

Complete-I(KSpre)⇒ Optimal-per-⊥(KSpost).

Proof.

Proper-KS(KSpre) and I = Complete-I(KSpre) (premise). KS is the result of DDR(KSpre) running to com-

pletion. Proper-KS(KSpre) ⇒ Optimal-per-I(KSpost) (Thm 4.3.7). Therefore, Optimal-per-I(KSpost). I =

Complete-I(KSpre) ≡ I = Complete-I(KSpost) (Thm 4.3.6). Therefore, I = Complete-I(KSpost).

I = Complete-I(KS)⇒ (Optimal-per-I(KS) ≡ Optimal-per-⊥(KS)) (Obs 4.2.53).

Therefore, Optimal-per-⊥(KSpost). 2

An example illustrating the DDR process begins on the next page.
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Figure 4.2: A graph showing the elements of B∪ (circles/ovals) of a knowledge state, KS = 〈B,B∪, I,�,Q〉,
connected to their NAND-sets (rectangles), where B∪ = ¬p, p, p→q, p→r,m→r,s,s→t,w→v,w→k, p→v,z→
v,n,¬q,¬r,w,¬v,m,z,¬t,¬k (in decreasing order of preference w.r.t. �). In this example, I = Complete-
I(KS).

4.4 DDR Example

Example 4.4.1 This example uses the knowledge state KS shown in the nearby Figure 4.2, where B∪ =

¬p, p, p→q, p→r,m→r,s,s→t,w→v,w→k, p→v,z→v,n,¬q,¬r,w,¬v,m,z,¬t,¬k and I =Complete-I(KS).

Consider a knowledge state KS1 where B∪1 = B∪ \{¬p},�1 is like� without the preference information for

¬p, I1 =Complete-I(KS1), and Empty(Q1). The base of KS1 (the optimal base w.r.t. B∪1 and �1) is B1 =

p, p→q, p→r,m→r,s,s→t,w→v,w→k, p→v,z→v,n,w,m,z.21

Now consider the optimized addition of ¬p to KS1 (KS1 +! 〈¬p,�¬p〉), with the ordering information

�¬p= ¬p� p. KS1 +! 〈¬p,�¬p〉 forces the retraction of p (to eliminate the contradiction of the NAND-set

{¬p, p}) to form KS2 whose base is B2 = ¬p, p→q, p→r,m→r,s,s→t,w→v,w→k, p→v,z→v,n,w,m,z. At

this point, note that I = Complete-I(KS2) as mentioned in the caption of the figure.

Most systems stop here (with a sub-optimal base) because they focus on maintaining consistency but

do not review previous belief change decisions to see if they could be improved using hindsight. The set

of retracted base beliefs (X2) is {p,¬q,¬r,¬v,¬t,¬k}, B∪2 = B∪ (from Figure 4.2), and �2=�. It is clear

21B1 must be optimal—both Optimal-per-⊥ and Optimal-per-I—because Empty(Q1). Cf. Theorems 4.2.54 and 4.2.55.
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that B2 is sub-optimal, because the removed belief ¬q can be returned to the belief base without raising an

inconsistency: (B2 +¬q)� B2 .

The optimal base w.r.t. B∪ and �, would be: B = ¬p, p→q, p→r,m→r,s,s→t,w→v,w→k, p→

v,z→v,n,¬q,¬r,w,z. DDR can be performed on KS2 (with the result being KS2!∪) to produce this opti-

mal base. When KS1 +! 〈¬p,�¬p〉 produces KS2, then B2 is as described above, and Q2 contains the single

pair 〈p, justout〉. DDR on KS2 goes through the following steps:

1. Process 〈p, justout〉. This DDR-Q-Inserts the retracted culprits of p’s NC-NAND-sets (¬q,¬r,¬v)

into the queue and pops p (and its tag) off the queue. The belief base is unaffected.

Result: KS3 = 〈B2,B∪2 , I,�,Q3〉, where Q3 = 〈¬q, in?〉,〈¬r, in?〉,〈¬v, in?〉

2. Process 〈¬q, in?〉. Since ¬q can return to the base without raising an inconsistency (because p is

now removed), it is returned to the base and popped off the queue.

Result: KS4 = 〈(B3∪{¬q}),B∪2 , I,�,Q4 = 〈¬r, in?〉,〈¬v, in?〉〉

3. Process 〈¬r, in?〉. Because p is now removed, ¬r’s IC-NAND-set will not become active if ¬r is

returned to the base. The NC-NAND-set for ¬r, however, will become active, so its culprit (m) gets

placed into R by the function Safe-Return and is removed from the base when ¬r is returned (during

the procedure Add-Remove). Note: ¬r � m, so this is considered a good trade: B4 � B3. The queue

is adjusted to reflect the changes: ¬r is popped off the queue, and m is inserted with a tag of justout.

Result: KS5 = 〈(B4∪{¬r})\{m},B∪2 , I,�,Q5〉, where Q5 =〈¬v, in?〉,〈m, justout〉.

4. Process 〈¬v, in?〉. Although the removal of p makes one of ¬v’s IC-NAND-sets no longer precarious,

the other IC-NAND-set remains precarious, which means that its culprit, ¬v, cannot return to the base

or it will become active. The only change made to the knowledge state is popping ¬v off the queue.

Result: KS6 = 〈B5,B∪2 , I,�,Q6 = 〈m, justout〉〉.

5. Process 〈m, justout〉. The only IC-NAND-set for m is precarious, so m cannot return to the base; so m
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is popped off the queue, the queue is empty, and DDR exits.

Result KS7 = 〈B6,B∪2 , I,�,Q7〉, where Empty(Q7) and B7 = B, which is optimal w.r.t. B∪ and �.

Note: B∪ = B∪7 .

In step 4, once DDR determines that ¬v cannot return to the base (due to its being the culprit for the

precarious NAND-set {w→ v,w,¬v}), there is no need to examine ¬v’s NC-NAND-set containing z. This

shows how NC-NAND-sets for a belief that might return are only examined after the examination of its

IC-NAND-sets indicates that it truly can return to the base. Note, also, that if ¬v’s IC-NAND-set containing

w happened to be the first IC-NAND-set examined when processing ¬v, the examination of ¬v’s other

IC-NAND-set would have been pruned.22

The set containing ¬k would also not be examined or affected, even though it is distantly connected to

p. The fact that ¬k never gets looked at is an example of how the NAND-sets to be examined during DDR

are determined dynamically—i.e., the examination of some beliefs during DDR is dependent on the result

of DDR’s processing of a stronger, connected belief. This saves time and computational expense over first

selecting all NAND-sets connected to p and, then, examining them in turn.

The NAND-set containing s would also be ignored by DDR, because it is not connected to p in any way.

This last case is representative of the possibly thousands of unrelated NAND-sets for a typical belief base

which would be checked during a naive operation of reconsideration, but are ignored by DDR.

An implemented run of the above example is in the Appendix in Section A.5 on page 289.

22I have not developed any criteria for determining an efficient order when processing IC-NAND-sets to see if a belief can return
to the base. I am unsure whether one exists; each check for a precarious state has a complexity of O(1) (assuming each NAND-set
N keeps a count of the number of its elements in X : 1 means precarious, 0 means active), so any attempt to control the order of
examination would probably increase the complexity; and, I currently assume that the number of IC-NAND-sets for any one belief
is typically too small to make any such analysis worth the effort. I mention this here, because there may be uses in the future where
such an analysis would be beneficial.

166



4.5 Discussion

4.5.1 Benefits of DDR

In this section, the discussion of knowledge state optimality carries the following caveat:

1. if I =Complete-I(KS), then optimality equates to true optimality: Optimal-per-⊥ (Def 4.2.52).

2. if I 6=Complete-I(KS), then optimality can only refer to Optimal-per-I (Def 4.2.51)

3. the optimality designated by KS-Optimal (defined in Chapter 5: Def 5.5.6 on page 206) is equivalent

to Optimal-per-I.

DDR Produces Optimality

If run to completion, DDR(KS) produces an optimal knowledge state. It is Optimal-Per-I (Theorem 4.3.7),

and if I = Complete-I(KS), then it is also Optimal (Optimal-per-⊥) (Theorem 4.3.8).

DDR is an Anytime Algorithm

The key elements of an anytime algorithm [Dean & Boddy1988] are that (1) the answer is available at any

point and (2) the quality of the answer must improve as a function of time.

DDR starts with the current knowledge state, KS, which is required to be properly maintained. With

each pass through the algorithm loop, the knowledge state for the system gets updated with any changes

dictated by the processing of the top element in the queue. If DDR is interrupted, the system knowledge

state is the same as it was at the start of that single loop pass — incorporating all the improvements of the

previous passes through the DDR loop. Thus, the answer—the most recent answer—is available at any

point (1). Recall, however, that, although DDR and its helper procedures/function can be interrupted, no

individual line of the code is left uncompleted due to an interruption. The line most likely to be implemented

in several steps (which must NOT be only partially completed) is the last line in the procedure Add-Remove.
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Let KStop← KS at the top of the DDR loop (just after line 1). Let KSbot← KS just after the knowledge

state update is performed at line 18. For each pass through the DDR loop: KSbot � KStop (Thm 4.3.6).

Therefore, (2) is satisfied. Additionally, these incremental improvements towards optimality (whether

Optimal-per-I/KS-Optimal or truly optimal/Optimal-per-⊥) are both measurable and recognizable (using

Cred(B,B∪, I,�) and QImpact(KS))—desirable attributes for an anytime algorithm [Zilberstein1996].

DDR offers diminishing returns with time

With each pass through the DDR loop, the changes to the base and exbase involve less and less preferred

beliefs. From Thorem 4.3.6, we can see that during any single pass through the DDR loop, the queue

changes from Qtop to Qbot :

• the only belief that can possibly move from the exbase to the base is the most credible belief in Qtop;

• each belief that moves from the base to the exbase must be a culprit belief that is strictly weaker than

the first belief in Qtop;

• and the first belief on Qbot is strictly weaker than the first belief on Qtop.

Thus, each pass through the loop manipulates weaker and weaker beliefs, until the queue is empty.

Any beliefs more credible than the first belief in Q will (for the current B∪ and�) remain in their current

set (the base or the exbase)—it is the set they will inhabit in the optimal knowledge state (the Optimal-per-

I/KS-Optimal knowledge state; and, if I = Complete-I(KS), the Optimal-per-⊥ knowledge state).

Diminishing returns is another attribute mentioned in [Zilberstein1996].

DDR is interruptable, preemptable, interleavable, and still optimizing

Whenever DDR is interrupted, the system is left with a knowledge state KS whose Q has been properly

maintained. This can be seen from the proofs for DDR algorithm and its helper algorithms—at all times,
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throughout the lines of the algorithms, the current knowledge state is Proper and therefore it must have

a properly maintained queue (Proper-KS(KS) ⇒ Proper-Q(KS); Def 4.2.33). Performing DDR to com-

pletion on KS will still result in the optimal knowledge state (w.r.t. B∪ and �)—again if I =Complete-

I(KS), then the resulting knowledge state is truly optimal (Optimal-per-⊥), otherwise the knowledge state is

Optimal-per-I/KS-Optimal. Therefore, it is interruptable and preemptable; features also recommended by

[Dean & Boddy1988] and [Zilberstein1996].

If semi-revision is performed on the knowledge state KS after DDR is stopped, we can still call DDR on

the new knowledge state (KS1). This is because the semi-revision process maintains a proper priority queue

and a consistent base. DDR(KS1), if run to completion, will still result in an optimal state (optimal w.r.t. the

current B∪1 and ordering,�1 at the time that DDR is re-started).23 Therefore, DDR is also both interleavable

and optimizing—two bonus features that are neither required nor expected from an anytime algorithm.

DDR’s dynamic selection of beliefs to process reduces computational expense

As discussed in the example above, the examination of some beliefs during DDR is dependent on the result

of DDR’s processing of a stronger, connected belief.

The belief ¬k is not considered for possible return to the base, even though it is distantly connected to p.

Only the ordering keeps ¬k from returning to the base. If the order of ¬v and w were switched in the linear

ordering so that ¬v� w, then

• ¬v would return to the base along with the simultaneous removal of the weaker w, which would be

placed on the queue with a tag of justout;

• processing the retracted w would place the weaker ¬k onto the queue with a tag of in?; and

• processing ¬k would result in its return to the base.

23And, again, if I =Complete-I(KS), then the resulting knowledge state is truly optimal (Optimal-per-⊥), otherwise the knowl-
edge state is Optimal-per-I/KS-Optimal.
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Recall that Wassermann’s anytime algorithm (cf. Section 2.2.6) was a method for selecting the relevant

belief set upon which to perform a belief change operation. For example, contraction by p would only affect

beliefs “related” (e.g., logically connected) to p—first, this set of beliefs was selected, then the contraction

operation was performed on that set. But, that set would include ¬k (unless the anytime algorithm was

stopped in progress).

Though both Wassermann’s algorithm and DDR eliminate the involvement of unconnected or unrelated

beliefs (like s), DDR’s dynamic selection of beliefs further reduces the set of beliefs that are processed

during reconsideration. For systems that do not maintain NAND-sets, DDR is not an option. A more naive

algorithm for reconsideration would be used and Wassermann’s algorithm for focusing on a relevant subset

would be very useful.

Using the DDR queue as a measure of confidence

Because of the diminishing returns, the base elements more credible than the top belief in the queue are also

elements of the optimal base. Because only culprits of the current B∪ can be retracted from the base (recall

that contraction is for consistency maintenance, only), all non-culprit base beliefs are in the optimal base.

This means that we can use the DDR queue as an indicator of when we are reasoning with a recognizable

subset of the optimal base—even if we have yet to attain that optimal base.

Observation 4.5.1 Given a knowledge state KS, where 〈p,τ〉 = First(Q), and B′ ⊆ B s.t. (∀b ∈ B′) : b �

p ∨ b 6∈ Culprits(KS), then (∀d) : B′ ` d ⇒ KS!∪ ` d.

Using DDR to Handle Preference Re-ordering

If the preference ordering of an optimal DDR knowledge state KS is altered, the base of that knowledge state

may not be optimal w.r.t. the new ordering. DDR can re-optimize a base when the preference ordering is
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changed.

Given a DDR knowledge state KS where Proper-KS(KS) and a new ordering �1 for the beliefs in B∪, a

new DDR knowledge state KS1 = 〈B,B∪, I,�1,Q1〉 can be formed so that Proper-KS(KS1). The only change

(other than from � to �1) is to the priority queue. Q1 is similar to Q, except for the following additions:

(∀q ∈ X) : if ∃N ∈ I s.t. q =Culprit(N,�) and q 6=Culprit(N,�1), then q ∈ Q1 with a tag of in? or both as

determined by DDR-Q-Insert.

Theorem 4.5.2 Let us consider two DDR knowledge states KS and KS1, where Proper-KS(KS), B = B1,

B∪ = B∪1 , I = I1, �6=�1, and Q1 is similar to Q with the following changes: (∀q ∈ X) : if ∃N ∈ I s.t.

q =Culprit(N,�) and q 6=Culprit(N,�1), then q ∈ Q1 with a tag of in? or both as determined by DDR-Q-

Insert. Note: ∀q,∀τ : ¬(q =Culprit(N,�)∧q 6=Culprit(N,�1))⇒ 〈q,τ〉 ∈ Q≡ 〈q,τ〉 ∈ Q1. Based on these

given assumptions, Proper-(KS1).

Proof.

Because Proper-KS(KS), any belief that was designated as BadOut in KS was Protected-by-Q in KS. Any

belief that was already designated as BadOut remains Protected-by-Q, because either

1. it retains a tag of in? or both (it satisfied lines Q1 or Q2),

2. it remains the culprit of some NAND-set whose more credible retracted beliefs are tagged with justout

or both, or

3. is is bumped out of the culprit position of the NAND-set just described, and it is DDR-Q-Inserted into

the priority queue, which protects it.

Any removed belief that becomes designated as BadOut due to the re-ordering24 is in Q1 with a tag of either

in? or both, which allows it to be considered for possible return to the base. Therefore, Proper-Q(KS1).

24To become BadOut, it must have been Justified-Out before the re-ordering. If it remains the culprit of a NAND-set designating
it as JustifiedOut, then it is still JustifiedOut. Therefore, to now be BadOut, the new ordering must have moved it out of the culprit
position for at least one of its NAND-sets. In which case, it will have been DDR-Q-Inserted into the priority queue, which protects
it.
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Since Proper-KS(KS), (∀S ∈ I) : ¬Active(S,KS). Since B1 = B and I1 = I, we also know that (∀S ∈ I1) :

¬Active(S,KS1). Thus, Safe-per-I(KS1) Therefore, Proper-KS(KS1), and DDR running to completion will

optimize the base w.r.t. B∪ and the new preference ordering. 2

If the analysis to determine what beliefs have shifted out of a culprit spot proves too computationally

expensive, a simpler algorithm is to DDR-Q-Insert all elements of X into the queue. This might be more

appropriate if the re-ordering resembles a re-shuffling of all the beliefs in the ordering as opposed to just a

few beliefs sliding up or down in the order.

Either adjustment for dealing with a re-ordering saves steps over consolidation of B∪ using �1—

including consolidation by reviewing of all NAND-sets in order (using a NAND-set-Q) to determine which

culprits should be removed—by not looking at sections of the base that have been unaltered by the re-

ordering.25 Only a reordering within an inconsistent set and affecting a removed culprit could possibly

effect a change in the base. But that change could then result in other adjustments to the base. DDR will

also catch any changes that are perpetuated by these initial changes in the same way that it dealt with cas-

cading changes in Example 4.4.1—when the removal of p was later followed by the assertion of ¬r with the

simultaneous retraction of m.

4.5.2 DDR Optimized-Addition Differs from Other Two-step Belief-change Algorithms

DDR optimized-addition is a two-step belief change operation much like those discussed in Section 3.1.4:

saturated kernel contraction [Hansson1994], safe contraction [Alchourrón & Makinson1985], standard ad-

justment [Williams1994a], and hybrid adjustment [Williams & Sims2000]. DDR optimized-addition returns

beliefs to the base (possibly exchanging them with less credible beliefs that become retracted) after first ex-

25This is because | I |≥|Culprits(KS1) |≥| X |.
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panding the base by adding some belief. However, it also differs from those operations in several key ways.

The differences are

• the beliefs that return to the base start out in the exbase at the start of the DDR optimized-addition

operation, whereas the two-step operations mentioned in Section 3.1.4 are “returning” beliefs that

start out in the base—they are only “removed” from the base during the first step of the belief change

operation;

• the second step of DDR-optimized addition is DDR, which can be interrupted—although that stops

the DDR-optimized addition process, DDR can be recalled later to finish optimizing the knowledge

state;

• if run to completion, DDR-optimized-addition will produce the Optimal-per-I knowledge state w.r.t.

B∪ and �; and, if I =Complete-I(KS), the the knowledge state would also be Optimal-per-⊥.

4.5.3 Issues Regarding Implementing DDR in Existing KR&R Systems

Adding DDR to an Existing TMS

Making an existing truth maintenance system26 DDR-capable involves very little additional computational

load. The reasoning system is unaffected. The contradiction handling system must add a few steps: main-

taining the priority queue and the detected NAND-sets with links to and from their elements.

I assume the TMS already has some technique for determining the culprit in each NAND-set; I merely

require that the technique is consistent (resulting in a partial ordering over the culprits—no cycles in the or-

dering). Any arbitrary linear ordering over B∪ that is consistent with this pre-established partial ordering will

work with the DDR algorithm and will produce the same final and optimal results (though the intermediate

changes to the base may differ based on which linear ordering is chosen).

26By truth maintenance system, I am referring to systems that already compute NAND-sets: such as JTMS, ATMS and LTMS as
discussed in [Forbus & de Kleer1993] and the system described in [Martins & Shapiro1988]. Cf. Section 2.4.
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Recall that DDR can be started, stopped, and continued at any time. If DDR is performed only during

“down times” (times when reasoning and belief change are not being performed) there will be no perceivable

effect (no slowing of the reasoning process) during regular, daily operation; the only difference to the user

is that of reasoning with a more credible base.

If it is determined that DDR must be performed prior to executing any further reasoning or belief change

operations, then this decision implies that the cost of DDR is obviously preferred over that of reasoning with

a less credible base, and DDR is computationally less expensive than a naive batch consolidation over all

base beliefs in an effort to determine the optimal base.

Reconsideration for Non-TMS Implementations

Implementing DDR in a system that does not already detect NAND-sets might be computationally expen-

sive. Such a system does not compute NAND-sets for some reason that may include the resulting compu-

tational load; thus, adding NAND-set detection and maintenance might be disadvantageous. These systems

may operate with more restricted domains or logics, however, where a naive implementation of reconsider-

ation would be helpful (provided the computational load is not prohibitive).27

4.5.4 DDR as an Alternative to Iterated Belief Revision

DDR offers a solution (at least for TMS systems) to many of the issues explored by researchers in iterated

belief revision (iterated BR)—issues regarding belief change operations performed in series [Williams1994b,

Darwiche & Pearl1997, Chopra, Ghose, & Meyer2002]. Research in the area of iterated BR focuses mainly

on two different areas. I mention both areas below, but the focus of this section is on the second of the two.

The first iterated BR research area deals with the need for the decision function used by belief revision

27See SATEN examples in Section 3.5.
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operations to be a global function. Belief change theories [Alchourrón, Gärdenfors, & Makinson1985] ini-

tially focused on belief change operations that were being performed on a deductively closed set of beliefs

using a decision function specific to that set. Once the set was altered (through retraction or addition), the

decision function no longer was applicable to the new set. One focus of iterated BR research is how to

define global decision functions that can make BR decisions for various knowledge states. An example of a

global decision function is the optimizing restriction for my DDR KS consolidation operation: to maximize

the credibility of the knowledge state belief base w.r.t. a linear ordering of those base beliefs.28 Defining a

global decision function is essential to being able to address the second issue dealt with by iterated BR.

The second area of iterated BR research is an attempt to define and improve the results of a series of be-

lief change operations in order to reduce the negative side-effects of operation order [Darwiche & Pearl1997,

Chopra, Ghose, & Meyer2002]. This is the same goal for which DDR was developed, and thus this area is

the focus of this sub-section. Typically, iterated BR has approached this issue by defining the effect that

a specific series of operations should have on a set of beliefs. Some complications associated with this

approach are:

• Where do you stop in the determination of a series? After two operations? Three?

• What is done in the meantime—handle the first of a series then adjust when the second comes along

and you recognize the series’ pattern? What preceded the first operation? What if patterns overlap?

What if a pattern is interupted by another pattern then continued at a later time?

• Must effects be defined for all possible combinations of operations?

DDR handles all these complications. DDR allows operations to be performed individually (as a series

of operations), but it also allows the repair that hindsight offers. Additionally, DDR can optimize following

28This is merely one example of a global decision function, but any such function that can produce a linear ordering on the culprits
of B∪ can be utilized by the DDR algorithm, provided that ordering is independent of the makeup of the base of the knowledge
state.
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a series of operations interrupted in the middle by another series—something that iterated BR has yet to

tackle.

One example of the DDR operations adhering to an iterated BR axiom is optimized addition performed

in series adhering to axiom (R3) in [Chopra, Ghose, & Meyer2002] as discussed in Section 3.3.3—the dis-

cussion was in the chapter on reconsideration, but applies equally to DDR (a specific algorithm for per-

forming reconsideration). In DDR terms, (R3) states that ¬p 6∈Cn(KS)⇒Cn(KS)⊆Cn((KS+!∪ ¬p)+!∪ p),

where recency determines order (i.e., p � ¬p, because p was added most recently). As discussed in Chap-

ter 3, however, DDR not only recovers the original belief space after the two optimized additions, but the

original belief base would also be contained in the final base.

Another example is (C3) in [Darwiche & Pearl1997] which can be restated to say: q ∈Cn(KS +!∪ p)⇒

q ∈Cn((KS +!∪ q)+!∪ p), again, assuming recency ordering.

Note that iterated BR assumes recency ordering of beliefs (i.e., the more recent the belief, the higher

its preference). DDR allows orderings that differ from recency to produce alternate results that are hard to

imagine in an iterated BR form.

4.5.5 DDR as a CSP

The optimization of a DDR knowledge state can be framed as a boolean Constraint Satisfaction Problem

(CSP) to obtain a knowledge base KS = 〈B,B∪, I,�,Q〉 [Russell & Norvig2003]. The beliefs in B∪ are the

variables of the CSP. Their domain of possible values consists of: true (in the base) and false (in the

exbase). Therefore, this is a boolean CSP, because the domain contains only two possible “values”.

The NAND-sets represent multiary hard constraints—multiary, because they are multi-variable con-

straints (constraints affecting more than one variable and of varying sizes); hard, because they must be

adhered to.
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Figure 4.2 is a constraint hyper-graph, where the boxes represent constraints and circles/ovals represent

variables. The lines connect the constraints to their variables. e.g., NAND-set {¬p, p} is the constraint

¬(¬p∧ p). Note: These constraints can yield multiple bases that are consistent, but not necessarily optimal.

There are two ways to optimize the result:

(1) Require Cred(B,B∪, I,�) be implemented as an objective function, which must be maximized.

(2) Add a hierarchy of unary constraints: (∀p ∈ B∪) : p = true , where the ordering of these constraints is

identical to the ordering of the beliefs in B∪—(∀pi, p j ∈ B∪) : pi = true� p j = true iff pi � p j.

When new beliefs are added to the knowledge state, we may derive new NAND-sets. In this case, the

number and type of constraints may always be increasing. This is called an iterated CSP.

4.6 In Summary

DDR is a TMS-friendly algorithm, which performs reconsideration by examining only a dynamically de-

termined subset of base beliefs that are actually affected by changes made since the last base optimization

process. DDR is an efficient, anytime, belief base optimizing algorithm that eliminates operation order ef-

fects. If the reasoner is ideal—i.e., it stores all the minimal NAND-sets in B∪—then the result of running

DDR to completion is a knowledge state that is Optimal (a.k.a. Optimal-per-⊥). Chapter 5 contains a for-

malization of a non-ideal system and how that system can use DDR to become optimal w.r.t. its limited

knowledge. Chapter 6 presents the extended case study of such an implementation of DDR in an existing

TMS system.
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Chapter 5

A Deductively Open Belief Space

This chapter contains material that was originally published in [Johnson & Shapiro2001]. It has since been

expanded and altered for clarity and to include concepts for applying the DDR algorithms to a Deductively

Open Belief Space.

5.1 Introduction

Implemented knowledge representation and reasoning, KR&R, systems run into danger when they attempt

to implement traditional belief change theories. These theories are defined in terms that assume (or require)

that the reasoning agent (or system) can perform ideal reasoning—i.e., it can reason completely and instan-

taneously [Alchourrón, Gärdenfors, & Makinson1985, Nebel1989, Hansson1993, Hansson1999]. Resource

limitations may cause a real world system that guarantees consistency to fail: logic complexities and/or

memory or time restrictions may prevent complete consistency checking. This is especially true of systems

with a large knowledge base and a complex logic and reasoning system. Due to this size and complexity, im-

plemented systems cannot guarantee deductive closure, completeness, or decidability in a resource-limited

world. These limitations prevent real world systems from being able to guarantee that they accurately im-
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plement all of the belief change theories that have been developed assuming the reasoning agent is ideal.

One example of this kind of limitation occurs when a new belief is added to the belief space for the

purpose of reasoning with that belief. For a system with a large base and complex logic, there must be

a trade-off between using this new information and adhering to the belief change concepts discussed in

Chapter 2. Either

• reasoning with the new belief must be delayed until the base is checked and adjusted for consistency

(and it may be that such a check is not guaranteed to be complete, though it must be sound1),

or

• the system must reason with a possibly inconsistent base.

In Chapter 4, I defined optimality for an ideal agent—one that reason’s completely, where I = Complete-

I(KS), and DDR run to completion guarantees that the resulting knowledge state is Optimal-per-⊥. I also

showed that, for a non-ideal agent, I cannot be guaranteed to be complete, so DDR run to completion can

only guarantee that the resulting knowledge state is Optimal-per-I. In other words, it is possible that, even if

Optimal-per-I(KS), KS may be inconsistent if (∃S ∈ Complete-I(KS)\ I) : S⊆ B.

If this is the case, one must consider what happens when further reasoning from the current base exposes

a previously undetected inconsistency (i.e., discovers some S⊆B `⊥ that was previously undetected when

reasoning was performed). DDR can also optimize a deductively open belief space after new inconsistencies

are discovered—making it optimal w.r.t. the current ordering (�) and whatever inconsistencies are now

currently known. This is discussed in Section 5.5.2.

Another question arises from this discussion, however. A knowledge state KS can be inconsistent even

though it is Optimal-per-I. There is no term for this in the literature, though it can be referred to as “consistent

as far as is known.” Optimal-per-I might reflect the concept of “optimal as far as is known.” The purpose

1Checking for consistency is sound if every inconsistency found is truly an inconsistency; it is complete if all inconsistencies
are found.
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of this chapter is to provide the terminology that bridges the gap between consistency and inconsistency for

implemented systems that cannot guarantee complete reasoning.

In the following sections, I present a knowledge state formalization that incorporates the facts that

1. its belief space is not guaranteed to be deductively closed,

2. it does not guarantee that it can determine if a belief is derivable (it is not complete),

3. it cannot guarantee to know all ways that a belief can be derived,

4. and, therefore, it cannot guarantee to know all minimally inconsistent sets of its base beliefs.

This knowledge state defines a deductively open belief space (DOBS) that, at any given time, consists

of its currently asserted explicit beliefs. These beliefs are comprised of the set of base beliefs that are

currently asserted (B) and only those derivations that have been performed up to that point that follow from

B. Even when the belief base is not growing (i.e., no new input is being added), the belief space can grow

as more beliefs are derived. I use this formalization to redefine some of the belief change terminology that

is discussed in Chapter 2 so that it can apply to a DOBS.

Then, Section 5.5 discusses how the DDR algorithms presented in chapter 4 can also be used to optimize

a DOBS (making it optimal w.r.t. the inconsistent sets it is aware of).

5.1.1 A Deductively Open Belief Space (DOBS)

A DOBS is a belief space that is by definition not guaranteed to be deductively closed. It contains (1) the

currently asserted set of core beliefs (the belief base B) and (2) the beliefs that have been derived from them

so far. For example, a DOBS might include the base beliefs p and p→q∧ s along with the derived belief

s but without the derivable (but not yet derived) belief q. There is a marked difference between the concept

of a DOBS and that of a belief base [Nebel1989, Hansson1999]. A belief base B is a finite set of beliefs
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that represents a larger set of beliefs K called its belief space which is its deductive closure: Cn(B) = K.

The DOBS is its belief space of explicit beliefs only and can grow through additional derivations without

expanding its base beliefs.

However, the DOBS for some belief base B does form a finite set of beliefs whose deductive closure is the

same as that of B — thus, technically, both the DOBS and B are belief bases for the same deductively closed

belief space. The concept for a belief base that I use, however, refers to some core set of beliefs which are

asserted with independent standing (as opposed to any finite set of beliefs whose closure is a predetermined

belief space). See [Hansson1999] or my discussion in Chapter 2 for a more complete discussion of base

beliefs.

5.1.2 The Need for a DOBS Formalization

Most belief change approaches use the concept of retaining (or returning) consistency to define their be-

lief revision operations. A belief base is considered inconsistent if an inconsistency exists in its deductive

closure. Whether the inconsistency is found by deductive closure or some procedure, such as resolution

refutation, it still requires looking past what is known explicitly into the implicit beliefs to find an inconsis-

tency. This requires time and space as well as a logic and reasoning system that guarantee completeness.

Even a system using classical propositional logic could fail if the process requires more memory/time than

the system/user has available.

I address the question of how to implement ideal techniques in a non-ideal system. I do this by formal-

izing theories that take into account the fact that deductive closure cannot be guaranteed in a real-world,

need-based, resource-bounded, implemented system. These theories need to define a belief maintenance

system that:

1. is not dependent on deductive closure

182



2. takes time and computational limitations into account

• recognizing that these limitations might result in revision choices that are poor in hindsight

3. catches and corrects these sub-optimal choices as efficiently as possible.

5.2 Formalizing a DOBS

Because a DOBS cannot guarantee completeness, it cannot guarantee that it is consistent. This prevents a

DOBS from being able to satisfy the guidelines described in Section 2.2, which center on the concept of

guaranteeing consistency.

Once I present my formalization for a DOBS, I can redefine the terminology used in the basic constraints

and postulates for belief change so that the revised versions can be adhered to by a DOBS. This results in

guidelines that real world implementations can achieve, and by which real world systems can be compared.

5.2.1 Defining a DOBS

A deductively open belief space consists of a set of base beliefs (B) and the beliefs that are known to be

derived from them (D). These beliefs are derived gradually over time, so D can increase monotonically

even as B remains unchanged. Derived beliefs are typically generated as a result of some query process or

inference, such as:

• a query from a user to the system (e.g., “Does Tweety fly?”)

• a query generated by the system during backward inference (e.g., a user asks “Does Tweety fly?”, and

the system—knowing that birds fly—asks itself, “Is Tweety a bird?”... if so, then Tweety flies)

• the system performing forward inference (e.g., the system is told “Tweety is a bird” with a request to

perform forward inference, so it reasons that “Tweety flies”, because it knows that birds fly).
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I am currently defining a DOBS system as one that stores beliefs it has derived rather than continually

re-deriving them when needed. This assumes that the cost to re-derive a belief is higher (e.g., takes longer)

than the cost to access the stored derivation information from memory. I discuss an alternative approach

later in Section 5.4. If the system stores derivations, obviously, it can only store derivations that it has

actually performed (or inferred)—not all possible derivations. For example: given B = {p, p→q,r,r→q}

and D = {q} (derived from p and p→q), the system is currently unaware that r and r→q also imply q.

5.2.2 The Knowledge State That Determines a DOBS

The information required by a DOBS system is represented by a knowledge state, KS. The DOBS is the

belief space of the knowledge base, BS(KS). Given the language L as described in Section 1.2, I define a

DOBS knowledge state as:

KS =de f 〈B,B∪,D∪,H〉,

where B∪ ⊆ L ,D∪ ⊆ Cn(B∪),B ⊆ B∪, and H contains a record of the derivations performed to derive the

propositions in D∪.

Unless otherwise noted, assume that all future examples and definitions of belief change operations are

using KS = 〈B,B∪,D∪,H〉 as their starting belief state.

B∪ is identical to the B∪ discussed in Chapter 4. It consists of all the hypotheses (also called assumptions)

ever introduced into the knowledge state as self-supporting beliefs. For further discussion of what kinds of

beliefs can be self-supporting, see [Hansson1999]. B∪ contains both currently believed hypotheses (the

belief base of the DOBS) as well as those that have been retracted from the belief space.

D∪ consists of every proposition p ever derived from some set A⊆ B∪\{p} using one or more inference

steps. Whenever a proposition is derived, it becomes a member of D∪ and a record of its derivation is stored

in H: 〈p,A〉 ∈ H means that p was derived from the set A. A proposition can exist in both B∪ and D∪.
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B consists of all propositions that are currently asserted as being self-supporting beliefs (i.e., the current

base beliefs). Therefore, B∪\B contains propositions that are no longer believed to be self-supporting,

although some of these may be in the current belief space as derived beliefs if they have derivation histories

in H showing that they can be derived from B.

H consists of the derivation histories for all elements of D∪. There are multiple ways in which this

could be implemented (e.g., ATMS, JTMS, derivation tree), but I will formalize it as 〈p,A〉∈H is the im-

plementation independent record of a derivation of p from the set A, where p 6∈ A—although a belief can

(through identity) be derived from itself, that information is excluded from H, and I assume that the system

does not bother to make that kind of derivation. Every proposition d in D∪ must have at least one derivation

history stored in H indicating it is derived from some B′ ⊆ (B∪ \ {d}). A proposition can have more than

one derivation history.

D is a subset of D∪ that need not be maintained in the DOBS system knowledge state, because it can be

determined using B and H. D is the set of beliefs that the system knows can be derived from the base beliefs

in B according to the information stored in H.

The key parts of a DOBS knowledge state are illustrated in Figure 5.1 and described below. The fact

that B∪D is the belief space (BS) is proved later in this section. Cn(B) is included for clarity, but it is not

an actual part of a knowledge state, and the knowledge state has no information regarding which elements

are in Cn(B) outside of BS = B∪D.

L all well-formed formulas (WFFS) in the language

B∪ asserted propositions with independent standing

—both believed and disbelieved

B the currently believed hypotheses

Cn(B) the complete deductive closure of B
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Cn(B)

B D

L

Bu Du

Figure 5.1: This figure shows the different designations for beliefs stored by a system that reasons with a
Deductively Open Belief Space (DOBS). The lightly shaded area that forms Cn(B) is included for clarity
and comparison purposes—its information is not stored by a DOBS system. The actual belief space (BS) is
the darkly shaded area formed by B∪D.

—potentially infinite (depending on the logic used)

—included here for conceptualization (not part of KS)

D∪ beliefs known to be derived from B∪

D beliefs known to be derived from B

BS the current belief space, THE DOBS: B∪D (darkly shaded)

— a finite subset of Cn(B)

Note: B∪D = BS = the DOBS

DOBS – Coherence Version

I distinguish the propositions in B∪ from those in D∪ to allow a foundations approach for belief mainte-

nance. Recall that a foundations approach says that derived beliefs that lose their support are no longer
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believed. A coherence approach can be implemented, however, by inserting each derived belief into B∪ as

a self-supporting belief. B should also include all beliefs known to be derivable from B (determined by the

derivation histories in H). In this sense, B is the belief space (the DOBS). Cf. Sec 2.2.1 for a discussion of

foundations vs. coherence theories.

Inserting derived beliefs into B allows a belief that loses its support to remain in the belief space unless

it needs to be removed to eliminate an inconsistency. Note, however, that the derivation histories of any

derived beliefs must still be retained in H to aid in belief change operations, because they are the only

record of how to retract a derivable belief from a DOBS—not only must the belief be removed from B, but

some of its supporting beliefs must be removed as well, or it would be re-derived.

5.2.3 DOBS Terminology

KS-derivability

Since a DOBS can have propositions that are derivable but not, yet, derived, I use the concept of a proposition

p being known to be derivable from a set of propositions A. This is denoted as A`KS p, read as “A KS-derives

p”, and is defined by the rules below:

1. {p} `KS p.

2. If there exists some 〈p,A〉 ∈ H, then A `KS p.

3. A `KS B means that (∀p) : p ∈ B⇒ A `KS p.

4. A superset of a set that KS-derives a proposition also KS-derives that proposition:

(A `KS p)∧ (A ( B)⇒ B `KS p.

5. (A `KS B)∧ (B `KS p)⇒ A `KS p.
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ha
ca
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c

Figure 5.2: Expanding on the diagram in Figure 5.1, this figure shows an example of a DOBS where B∪ =
{a, a→ h, a→ c, c, c→ h}, B = B∪ \ {c→ h}, D∪ = {c, h}, and H contains the following derivations:
〈c, {a, a→ c}〉, 〈h, {c, c→ h}〉, and 〈h, {a, a→ c, c→ h}〉. The system has derived h using c → h,
which is no longer in the base—this places h within D∪. The system is not yet aware that h is derivable from
the current base using the beliefs a and a→ h—this places h outside D. The belief c is both a base belief
and derivable from other beliefs in the current base—this places c within B∩D.

An example of a knowledge state and its DOBS are illustrated in Figure 5.2—an expansion of the

diagram shown in Fig 5.1. The proposition h is not currently in BS, because, although it is derivable from B,

it is only KS-derivable using the retracted belief c→ h. This is why the system places it in D∪, but not in D.

Because this is a foundations approach representation (as opposed to coherence), the fact that h is not in B∪

means that it has never been designated as a base belief. Section 5.2.3 contains a more detailed explanation

with more examples.
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Recall that the elements of Cn(B) are mostly unknown to the system. The system only knows that

(B∪D) ( Cn(B)—no matter what is in B∪D, Cn(B) must be larger, because it contains an infinite number

of beliefs. The system knows c→ h ∈ B∪ and h ∈ D∪. The placement of c→ h and h within Cn(B) is for

clarity and is not something that is known from the knowledge state itself.

For any p 6∈ B∪D, the system has not yet determined whether p ∈Cn(B)—unless the system somehow

determined that B 6 `p. This is typically computationally expensive, and deals with completeness issues; so,

for the purpose of this chapter, I will assume that a system cannot guarantee that a belief p is not derivable

from a given base, merely that it has not yet been so derived. Many other beliefs could be placed in Cn(B),

but none that would be represented in the DOBS tuple.

KS-closure

Because I am removing the omniscient aspect of a DCBS and its consequence operation, I want the DOBS

to “remember” as much as possible, including propositions that are no longer believed. Once a base set of

hypotheses, B, is chosen, the implementable closure of B is limited by KS (i.e., by its derivation histories in

H). I call this KS-closure, and its consequence operator is CKS. Its definition is: CKS(B) =de f {p|B `KS p}.

The belief space of a DOBS is defined by its belief state, KS, as the KS-closure of its base beliefs (B):

BS(KS) =de f CKS(B) = the DOBS

D(KS) is the set of derived propositions that are currently believed:

D(KS) =de f {p|B\{p} `KS p}

In other words, KS represents all the propositions that exist in the system along with a record of how

they were derived, and BS(KS) represents only those propositions that are currently believed — therefore, it

is the DOBS. The DOBS must keep track of the disbelieved propositions and derivations to avoid having to
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repeat earlier derivations if disbelieved propositions are returned to the belief space (assuming that memory

space is a more plentiful resource than computing speed/time).

For shorthand purposes, BS(KS) and D(KS) can be written as BS and D respectively when their KS is

clear from the context. The information that p ∈ B∪∪D∪, can be written in a shorthand version as p ∈ KS.

This is not to be confused with p ∈ BS, though the latter implies the former.

Observation: BS = B∪D

Proof. By the definitions above, B `KS A⇒ A⊆ BS.

a) Prove B∪D ⊆ BS. (∀p) : p ∈ B⇒ B `KS p. Therefore, B ⊆ BS. (∀p) : p ∈ D⇒ B\{p} `KS p. And, of

course (∀p) : B\{p} ⊆ B. Therefore, (∀p) : p ∈ D⇒ B `KS p. Thus, D⊆ BS, and B∪D⊆ BS.

b) Prove BS ⊆ B∪D. (∀p) : p ∈ BS⇒ (B `KS p). (∀p) : (p ∈ B)∨ (p /∈ B). Therefore, (∀p) : p ∈ BS⇒

(B `KS p)∧ ((p ∈ B)∨ (p /∈ B)). Therefore, (∀p) : p ∈ BS⇒ ((B `KS p)∧ (p ∈ B))∨ (B `KS p)∧ (p /∈ B)).

If p /∈ B, then B `KS p⇔ B\{p} `KS p. Therefore, if p /∈ B, then B `KS p⇔ p ∈ D; and (∀p) : p ∈

BS⇒ ((B `KS p)∧ (p ∈ B))∨ (B `KS p)∧ (p ∈ D)). Therefore, (∀p) : p ∈ BS⇒ (p ∈ B)∨ (p ∈ D). Thus,

(∀p) : p ∈ BS⇒ p ∈ B∪D. 2

KS-consistency

Any set is inconsistent if a contradiction has been or can be derived from its beliefs. Thus, checking for

an inconsistency requires examining implicit beliefs. This is time consuming for a DOBS, which can never

guarantee a complete exploration of its implicit beliefs.

A DOBS knowledge state (and its base, as well as the DOBS itself) is KS-inconsistent if and only if it is

known to derive an inconsistency.

Definition 5.2.1 KS-inconsistent(KS) ≡ B `KS⊥.
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If a DOBS is not KS-inconsistent, then it is called KS-consistent — i.e., there are no explicit inconsis-

tencies in CKS(B), so it is not known to be inconsistent.

Definition 5.2.2 KS-consistent(KS) ≡ B 6 `KS ⊥.

This means a DOBS can be both inconsistent and KS-consistent at the same time: For example, B =

{q, p, p→¬q}, but ¬q has not, yet, been derived. Note that you can also refer any set, A, as KS-consistent

or KS-inconsistent as long as there is a DOBS knowledge state associated with that set from which you can

determine the KS-closure of the set (CKS(A)).

KS-consolidation

Whenever an inconsistency must be resolved in a DOBS, some beliefs must be removed. Which beliefs

are removed is often determined by examining the entire belief space and using some guidelines (such as

integrity constraints 3 and 4 from Section 2.2.2). A DOBS, however, is incomplete, because of the lack of

deductive closure. It is possible that newly derived beliefs would add information that might have altered

the belief contraction choices made in an earlier operation.

The DOBS version of Hansson’s kernel consolidation2 operation is called KS-consolidation, and it re-

turns a belief base that is KS-consistent and follows the following postulates (for a belief base, B that is

consolidated to produce B!KS):

KS-C1 B!KS is KS-consistent KS-consistency

KS-C2 B!KS ⊆ B inclusion

KS-C3 If p∈B\B!KS, then there is some B′ such that B!KS⊆B′⊆B, CKS(B′) is KS-consistent, and CKS(B′+

p) is KS-inconsistent Core-retainment

2Cf. Section 2.2.5 and/or [Hansson1997].
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In Section 5.5, I discuss how the DDR algorithms can be used to perform reconsideration on a DOBS

knowledge state to maintain the most preferred state (per the current information stored in the knowledge

state) without having to preform a full consolidation over all of B∪—assuming we have a linear ordering

over the base beliefs as described in chapters 3 and 4.

An Example of a DOBS Knowledge State

Figure 5.3 is a further expansion of the DOBS diagrams from Figures 5.1 and 5.2. Its explanations and

examples, which follow, should help clarify the many parts of a DOBS and its knowledge state, KS. Many

sections of the KS are described below with examples of the type of propositions that might be in them. For

the sake of simplifying this example, assume all propositions inside the circle B∪ were at one time asserted

(also in the base) after which the formulas in D∪ were derived (using these base beliefs) as recorded in H.

The derivations in H are stored as pairs containing the belief and the base beliefs underlying its deriva-

tion. For example, the pair 〈c,{a,a→ c}〉 expresses that c was derived from the base beliefs a and a→ c.

This is an ATMS style of recording justification for a derived belief, though these derivations also match the

JTMS style, since they are all one step derivations from base beliefs (cf. Section 2.4 for a TMS discussion).

After these derivations took place, some propositions were retracted from the belief base to produce

the current base B. These retracted propositions are now in B∪ \B, and consist of p,a→ f ,c→ d,c→

h,e, f ,y,z,z→w, and z→y.

Any propositions requiring one of these for support must not be in D, but is in D∪ \D, instead (foun-

dations theory; cf. Section 2.2.1). These propositions that are no longer known to be derivable from B are

f ,h,y, and w (plus d which is asserted in B, but not known to be derivable from B\{d}).

Beliefs in the base B are asserted as self-supporting. Two of these propositions, c and d, are also in D∪,

because of the two derivations stored in H: 〈c,{a,a→ c}〉 and 〈d,{c,c→d}〉, respectively. The first is a
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Figure 5.3: This figure is a further expansion of the DOBS diagrams in Figures 5.1 and 5.2. The shaded
area represents the DOBS = BS = B∪D. Remember that Cn(B) is included for comparison purposes, only.
Information regarding its boundaries and contents (with the exception of BS) are not a part of the knowledge
state KS. For this KS, H contains the following derivations: 〈c,{a,a→c}〉, 〈d,{c,c→d}〉, 〈e,{a,a→e}〉,
〈 f ,{a,a→ f}〉, 〈g,{a,a→g}〉, 〈h,{c,c→h}〉, 〈w,{z,z→w}〉, 〈y,{z,z→y}〉.

currently believed derivation, but the second is disbelieved due to the retraction of the proposition c→d.

This is shown by c being in B∩D whereas d is only in B∩D∪.

The three beliefs in D — c,e, and g — are in three different sections All are known to be derived from

B, but c is also asserted as a hypothesis and e is disbelieved as a hypothesis .

The propositions not mentioned, yet, are p∧¬p, a→ ¬h, and h→ g. The first two are located in

L \ (B∪∪D∪∪Cn(B)) and the third is located in Cn(B) \ (B∪∪D∪). These propositions are, actually, not

known by KS, but they are included in the diagram as examples of the type of propositions that would be in
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these areas conceptually. A DOBS knowledge state only has information about the beliefs that exist in the

union of its B∪ and D∪. A DOBS system that guarantees completeness (which, typically, requires a simple

logic and a small base) might be able to calculate/determine some subset of the infinite number of elements

outside B∪∪D∪∪Cn(B).

5.3 DOBS Constraints

The key to understanding DOBS belief change constraints is to remember that they are applied in terms

of the DOBS terminology. When removing known inconsistencies, they deal only with known derivations

(stored in H) of known to be derivable propositions (stored in D∪). Deductive closure is not an option. For

the purposes of this dissertation I assume that KS-closure is possible, though, for an extremely large system,

time or space might restrict this.

Now that I have formalized a DOBS, I can assess the key changes necessary to adjust the list of integrity

constraints from Section 2.2.2 so that they can be used as belief revision guidelines for a DOBS. Alterations

are in boldface. Additions or clarifications are in italics. The revised constraints are:

1. a knowledge base should be kept KS-consistent whenever possible;

2. if a proposition is known to be derivable from the beliefs in the knowledge base using the derivations

currently known, then it should be included in KS-closure of that knowledge base (KS-closure);

3. there should be a minimal loss of the known information during belief revision;

4. if some beliefs are considered more important or entrenched than others, then belief revision should

retract the least important ones.

Constraint 1 suggests that a system should activate belief revision as soon as an inconsistency is detected.
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Constraint 2 recommends that a proposition should not need to be re-derived from a set of propositions from

which it had previously been derived.

Constraint 3 reminds us that the beliefs removed to insure consistency should be directly related to some

inconsistency—if unconnected to an inconsistency, a belief should remain in the base. Constraint 4 suggests

removing weaker or less credible beliefs rather than those that are more credible (if given the choice).3

How to satisfy both Constraints 3 and 4 is an ongoing debate. A typical consideration is when do many

weak beliefs overrule a single, more credible (up till now, that is) belief.

5.4 Dealing with Resource-Boundedness

The examples above are merely to illustrate that implemented systems are imperfect. Likewise, even an ideal

DOBS will run into resource limitation problems. Each system can alter the DOBS formalization to suit its

techniques for handling resource limitations. The following discussion involves implementation concepts,

but it addresses them at a general theoretical level without getting into the minute details of implementation.

These implementation adjustments to a DOBS must be understood when comparing different implemented

systems.

The key to comparing systems is to consider NOT the state at rest, but the state of the DOBS when

decisions need to be made.

5.4.1 Two Extremes

When implementing a KR&R system, one of the key questions is how to balance storage vs. re-derivation

— i.e., what gets saved in memory vs. what items should be rederived. A system with a large domain, fast

3I do not consider the concepts of “entrenchment” as described in [Williams1994a], where the possible results of belief change
are ordered specifically to include the fact that some beliefs cannot be removed without removing others.
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hardware and efficient processes might choose to only save its base beliefs and rederive other beliefs when-

ever they are needed. In this case, D∪ and B∪\B would remain empty, and H would only store information

during query or belief change procedures. After the procedure is completed, H could be emptied.

Alternately, a system that has lots of memory with fast look-up strategies but has a slow processor

or inefficient inference algorithms would favor retaining all derivations and their histories in D∪ and H,

respectively. This way, even beliefs that are retracted and then returned to the belief space will have any

previously performed relevant derivations immediately available to them. This is also favorable for a system

that alternates between several states (e.g., red light vs. green light; a video game for an experienced agent)

rather than always encountering new states (e.g., a video game that is new or unfamiliar to the agent playing

it).

Obviously, most systems fall somewhere between these two extremes. Cyc follows closely to the first,

and SNePS favors the second. In both cases, however, belief change decisions are made only when H is full

and active. During the decision process, these systems are very similar. SNePS focuses on only the relevant

information in H, while Cyc fills H with relevant information.

5.4.2 Freeing Memory

The system that stores information in memory might find a need to reduce information stored to free memory

space. The information most essential to maintaining the integrity of the knowledge state would be B, which

must be retained at all costs, though subcontexts that are rarely used could be stored in some secondary

storage location.

If KS-consolidation for review of previously discarded hypotheses is rarely used, B∪\B could be elimi-

nated. Both D∪ and D can be rebuilt from B and H, so these can go as well – D∪\D first. Any removal from

D∪\D could also include the removal of the relevant derivation information from H, since it is no longer
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essential to deriving BS.

The choice to drop D before H might be switched if the system is rarely removing beliefs from its BS.

In this case, storing B and D for quick access might be preferable and H could be emptied. This raises two

concerns.

1. The DOBS terminology is defined by knowing the derivation information in H. If that information

is discarded, then it should be recognized that the system is storing a sub-version of the knowldege

state, and that the presence of a belief, p, in D is evidence that B `KS p.4

2. When a belief p is to be retracted (or a contradiction detected), then, derivations relevant to the retrac-

tion (or contradiction) should be stored in H until the retraction process is completed and the new B

and D are established. After this point, H could then be emptied.

Summary

These issues illustrate the need to compare implemented systems by more than their logic, size and theories.

Systems should be analyzed according to their shortcomings as well. How do they handle these shortcom-

ings – with ignorance, aggressiveness, optimism or caution? The system must suit the needs of its user.

When resource limitations do arise, how does the system handle them?

By using a common formalization (like a DOBS), systems can be compared more easily and bench-

marks for analyzing DOBS alterations will allow a standard for comparing and measuring the efficiency and

accuracy as well as the shortcomings and potential hazards of implemented systems.

4This use of B∪D comes into question depending largely on the logic. If using a relevance logic, as in SNePS, the support set
underlying a belief determines how that belief can be used in future derivations, making H a necessity. For a non-monotonic logic,
the assertion of a new belief into B∪D requires questioning all beliefs in D (or at least those marked as defeasible).
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5.5 DDR in a DOBS

DDR can be implemented in a DOBS system with minimal changes to the system knowledge base and

algorithms. This assumes, however, that the system can calculate inconsistent sets and order beliefs linearly.

Given a DOBS knowledge state KS, KS-Complete-I(KS) is the set of inconsistent sets in B∪ that are

(believed to be) minimally inconsistent.

Definition 5.5.1 KS-Complete-I(KS) = {N | N ⊆ B∪, N `KS⊥ ∧ (∀N′ ⊂ N) : N′ 6 `KS ⊥}.

5.5.1 Defining a DOBS-DDR Knowledge State

To perform DDR in a DOBS, we need to expand the DOBS knowledge state to include the missing elements

from a DDR knowledge state as defined in Chapter 4 (Definition 4.2.1): A DOBS-DDR knowledge state is a

DOBS knowledge state with the additional elements (I,� and Q) that also designate it as a DDR knowledge

state. Or, in other words, a DOBS-DDR knowledge state is a DDR knowledge state with the additional

elements (D∪ and H) that also designate it as a DOBS knowledge state. Note that, although I is defined

w.r.t. KS-Complete-I(KS), the definition of I satisfies the definition of I for a DDR knowledge state in

Chapter 4.

Definition 5.5.2 A DOBS-DDR knowledge state KS is defined as KS = 〈B,B∪,D∪,H, I,�,Q〉, where

• B∪ ⊆ L .

• D∪ ⊆Cn(B∪) .

• B⊆ B∪.

• H contains a record of every derivation that has been performed to derive the propositions in D∪ .

• I = KS-Complete-I(KS).

• � is a linear preference ordering on the beliefs in B∪
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• Q is a priority queue consisting of a sequence, possibly empty, of tagged beliefs (〈p1,τ1〉, . . . ,〈pn,τn〉)

such that

– pi ∈ X

– i 6= j ⇒ pi 6= p j

– pi � pi+1 , 1≤ i < n

– τ ∈ {justout, in?,both}

Assume all DOBS-DDR knowledge states are in this form and subscripts (or prime quotes) can be used

to distinguish between multiple knowledge states as discussed in Chapter 4 (Section 4.2.2).

For the purpose of this chapter, a NAND-set of a knowledge base KS is any subset of B∪ that is (believed

to be) minimally inconsistent.

Definition 5.5.3 A set N is a NAND-set IFF N ∈ KS-Complete-I(KS).

This is consistent with the introduction of NAND-sets in Section 4.1 and Definition 4.2.2: A set N is a

NAND-set IFF N ∈ I.

A DOBS system cannot guarantee to know all minimally inconsistent subsets of B∪. Nor can it guarantee

that the elements in I are minimally inconsistent. It can only guarantee that the sets in I are minimally KS-

inconsistent. A DOBS system gradually builds I as contradictions are detected. The current state of I

represents the hard constraints for the system as far as is currently known, which is the best that a DOBS

can offer. In other words, I is where the system stores its knowledge regarding inconsistency. Note that

KS-Complete-I(KS) satisfies the definition of I for a DDR KS as defined in Chapter 4 (Definition 4.2.1).

If a system derives both p and¬p, The inconsistent set {p,¬p} stored in I has corresponding information

in H. If, however, the system uses other techniques for detecting inconsistent sets that do not translate into a

derivation of a belief and its negation (e.g., SATAN’s global adjustment strategy identifying NAND-sets; cf.
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Section 3.5.5), then there may be information in I that does not have a parallel representation in H5. For the

purpose of this dissertation, I will assume that the information in I contains a superset of the information in

H regarding the KS-consistency of that knowledge state.

In other words:

Observation 5.5.4 I determines KS-consistency: (∀S ∈ I,∀B′ ⊆ B∪) : S 6⊆ B′ ≡ B′ 6 `KS ⊥.

And, as in Definition 4.2.16, Safe-per-I(KS)≡ (∀S ∈ I) : ¬Active(S,KS) .

Because of this, Safe-per-I(KS) equates to KS-Consistent(KS).

Observation 5.5.5 For a DOBS-DDR knowledge state KS, Safe-per-I(KS)≡ KS-Consistent(KS).

5.5.2 Base and Belief Credibility Values and a Linear Ordering Over Bases

The credibility value for any belief in B∪ = p1, p2, . . . , pn can still be calculated as in chapter 3 (Defini-

tion 3.2.1): Cred(pi,B∪,�) = 2n−i. Again, as discussed in Chapter 3 (page 71), these credibility values

are merely a numerical representation of the linear ordering of the beliefs that simplifies the definitions and

proofs of belief base and knowledge state optimality.

The base credibility value of a DOBS-DDR knowledge state is defined the same way as defined in

Chapter 4 (Definition 4.2.23): For a DOBS-DDR knowledge state KS that has the elements B, I,�, and

B∪ = p1, p2, . . . , pn, Cred(B,B∪, I,�) =de f ∑pi∈B 2n−i (the bit vector indicating the elements in B) when

Safe-per-I(KS). Otherwise, when ¬Safe-per-I(KS), Cred(B,B∪, I,�) = -1.

The linear ordering over DDR-DOBS bases (�) is defined as it was in Def 4.2.24) in Chapter 4:

For two DOBS-DDR knowledge states KS and KS′ that have identical elements for B∪, I, and �: B � B′

IFF Cred(B,B∪, I,�) ≥ Cred(B′,B∪, I,�). Likewise, B � B′ IFF Cred(B,B∪, I,�) > Cred(B′,B∪, I,�).

As before, B� B′ implies B� B′.

5H can contain this information if, for every NAND-set N that is detected, 〈⊥,N〉 ∈ H.
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Comparing Bases of States with Different NAND-sets

Note that when ordering the bases of two knowledge states KS1 and KS2, not only must B∪1 = B∪2 and

�1=�2 (as in Chapter 3) but I1 = I2 as well. This is easy to accomplish, because any two knowledge states

with identical B∪ and � can merge the information in their elements for I, H, and D∪. Note, however that

merging I1 and I2 does not result in I′ = I1 ∪ I2, because I′ must then be adjusted for minimality—recall

that (∀S ∈ I′) : S `KS⊥, and (@S′ ⊂ S) : S′ 6 `KS ⊥}. This merging must be done before the bases of two

DOBS-DDR knowledge states can be compared or ordered.

Changing I May Require Updating Q

Unfortunately, changing a knowledge state from KS1 to KS2 by altering its I component from I1 to I2, can

result in an alteration of the status of retracted base beliefs—those previously designated as JustifiedOut or

Protected-by-Q may no longer be such, so the priority queue must also be adjusted when I is altered or it

may lose its Proper-Q status.

Assuming soundness6, any change taking I1 to I2 must either

1. add a new NAND-set (that is not a superset of an existing NAND-set) or

2. replace an existing NAND-set N1 with a proper subset N2 ( N1 that is also KS-inconsistent.

Assume a change is made under category (2). For p =Culprit(N1,�), if p 6∈ N2, then p must be DDR-

Q-Inserted into the priority queue. There are two possible reasons for this—either

• N1 was precarious making JustifiedOut(p,KS1), and now p might be BadOut and thus need protecting;

or

• N1 was protecting p by satisfying lines Q3-Q8 for Protected-By-Q; and, since N2 cannot protect p (it

is not an IC-NAND-set for p in KS2), p must protect itself.

6This assumes that the reasoning system is sound: i.e., I is not being altered by either (1) adding a new set to I that is not
inconsistent or (2) removing some existing set in I that has just been discovered to be consistent.
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Performing a full analysis to determine if one of these situation holds and whether the only recourse is for p

to protect itself is computationally expensive and not necessary at this time. I suggest that p should merely

be DDR-Q-Inserted into the queue, because one of its IC-NAND-sets is replaced by a NAND-set that it is

not in (something easily determined when making the change from I1 to I2). The analysis of whether p can

return to the base will happen in due time when DDR processes p. We never need to spend the time to

analyze the details of how (or even whether) p is JustifiedOut until it is processed by DDR.

If making a change as described for category (1), there is no need to alter the queue. This is be-

cause (∀p ∈ X) : BadOut(p,KS2)⇒ BadOut(p,KS1), and the protection in KS1 is retained in KS2. The

new NAND-set cannot cause JustifiedOut(p,KS1) to be BadOut(p,KS2), because whatever precarious IC-

NAND-set for p that made it JustifiedOut in KS1 also exists in KS2. Alternatively, if the new NAND-set

is itself a precarious IC-NAND-set for p, it could convert BadOut(p,KS1) to JustifiedOut(p,KS2); but that

would not require any Protection-by-Q for p, so there is no need to alter the queue.

5.5.3 DOBS-DDR Knowledge State Belief Change Operations

The operations that can be performed on a DDR knowledge state (defined in Section 4.2.12) can also be

performed on a DOBS-DDR knowledge state. The operations affect B∪, �, and Q in the same way as for a

DDR knowledge state. D∪ and H are unaffected by DOBS-DDR knowledge state belief change operations.

The changes to B and I are similar to the changes for a DDR knowledge state with the following adjustments:

• The operation of kernel consolidation that is used in defining some DDR operation is replaced with the

KS-consolidation operation that was defined in Section 5.2.3. The DDR knowledge state belief change

operations that are affected by this alteration are: consolidation, semi-revision, reconsideration, and

optimized-addition.

• Belief change operations on a DOBS-DDR knowledge state are assumed to operate separately from
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the reasoning operations that might derive a new NAND-set. Therefore, I is unaltered by DOBS-DDR

belief change operations. Since I is unaltered by reconsideration, it is also unaltered by DDR.

As in Chapter 4, I assume that contraction is done for consistency maintenance only. Therefore, all

operations on a DOBS-DDR knowledge state consist of expansion, consolidation, semi-revision, recon-

sideration, and optimized addition; and these operations can be defined in terms of base expansion and/or

KS-consolidation.

DOBS-DDR Knowledge State Expansion

The expansion of a DOBS-DDR knowledge state KS by the pair 〈p,�p〉 is written as KS + 〈p,�p〉 and

results in the DOBS-DDR knowledge state KS1 containing the following elements:

• B1 = (B+ p), where + is the operation of belief base expansion.

• B∪1 = B∪+ p, where + is the operation of belief base expansion.

• I1 = I.

• �1 is similar to �, but adjusted to include the preference information �p as defined for DDR knowl-

edge state expansion on page 147.

• Q1 is similar to Q with alterations as defined for DDR expansion on page 147.

DOBS-DDR Knowledge State KS-Consolidation

KS!KS is KS-consolidation of the DOBS-DDR knowledge state KS which produces KS1, where B1 = B!KS

(recall that !KS is the operation of DOBS belief base KS-consolidation as defined on page 191), and Q1

is altered as described for DDR knowledge state consolidation on page 148. All other elements in KS are

unaltered by DOBS-DDR knowledge state KS-consolidation.
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DOBS-DDR Knowledge State KS-Semi-Revision

The operation of KS-semi-revision on a DOBS-DDR knowledge state KS is the addition of some belief p

(along with the preference ordering information regarding that belief, �p) followed by KS-consolidation. It

is written as KS +!KS 〈p,�p〉 and results in the DOBS-DDR knowledge state KS1 containing the following

elements:

• B1 = (B + p)!KS, where + is the operation of belief base expansion and !KS is KS-consolidation

performed using the information in �1.

• B∪1 = B∪+ p, where + is the operation of belief base expansion.

• I1 = I.

• �1 is similar to �, but adjusted to include the preference information �p as defined for DDR knowl-

edge state expansion on page 147.

• Q1 is similar to Q with alterations as defined for DDR knowledge state kernel semi-revision on

page 148.

DOBS-DDR Knowledge State KS-Reconsideration

KS!∪KS is the KS-reconsideration of the DOBS-DDR knowledge state KS which produces KS1 whose

elements are the same as those in KS with the following exceptions: B1 = B∪!KS (where !KS is the operation

of KS-consolidation) and Q1 is empty.

DOBS-DDR Knowledge State KS-Optimized-Addition

The operation of KS-optimized-addition on a DOBS-DDR knowledge state KS is the addition of a belief p

(along with the preference ordering information regarding that belief, �p) followed by the KS-optimizing
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operation of KS-reconsideration. It is written as KS+!∪KS〈p,�p〉 and results in a new DOBS-DDR knowledge

state, KS1 containing the following elements:

• B1 = (B∪+ p)!KS, where !KS is KS-consolidation, and !KS is performed using the information in �1.

Note, however, that the new base is a result of KS-semi-revision of B∪ by p (not semi-revision

of B by p)—this is the difference between KS-semi-revision of a DOBS-DDR knowledge state and

KS-optimized-addition to a DOBS-DDR knowledge state. Recall: p is not guaranteed to be in B1.

• B∪1 = B∪+ p

• I1 = I

• �1 is similar to �, but adjusted to include the preference information �p as defined for DDR knowl-

edge state expansion on page 147.

• Q1 is empty.

5.5.4 The QImpact and Preference Ordering for DOBS-DDR Knowledge States

QImpact(KS) for a DOBS-DDR knowledge state is defined as in definition 4.2.43 in Chapter 4—by the

credibility value of its first belief:

Given a DDR knowledge state KS with the elements B,B∪, I,�, and Q, if Empty(Q), QImpact(KS) =de f 0;

otherwise, given First(Q) = 〈p,τ〉, then QImpact(KS) =de f Cred(p,B∪,�).

For the purpose of this dissertation and the discussion of DDR on a DOBS-DDR system, I will define

knowledge state preference ordering assuming that D∪ and H have no effect on the preference ordering of

DOBS-DDR knowledge states. In reality, more information in H or D∪ is preferred over less information,

but this has no bearing on the DDR algorithm. This is because no reasoning is performed during DDR, so

D∪ and H remain unchanged during DDR. I leave the full discussion of their effect on preference ordering

and optimality for future work.
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Two DOBS-DDR knowledge states (KS1 and KS2) that share the same B∪, I, and � (and D∪, and H)

can be ordered as in chapter 4 (Definition 4.2.45):

Given the knowledge state KS containing elements B,B∪, I,�, and Q, if ¬Safe-per-I(KS), then

Cred(B,B∪, I,�)= -1, and @KS′ s.t. KS �KS KS′. Otherwise, Safe-per-I(KS), and given the knowledge state

KS1 with the elements B1,B∪, I,�, and Q1, and Proper-Q(KS) and Proper-Q(KS1):

• If B = B1 and QImpact(KS) = QImpact(KS1), then KS�KS KS1 and KS1 �KS KS. Their queues may

differ, as long as the first elements in their queues are the same.

• KS�KS KS1 if either

– B� B1 OR

– B = B1 and QImpact(KS) < QImpact(KS1).

• If KS�KS KS1, then KS�KS KS1.

A DOBS-DDR knowledge state KS is KS-Optimal w.r.t. B∪, I, � (assuming a set D∪, and H), if it is

preferred over all other knowledge states with the same B∪, I, � (and D∪, and H). This is identical to the

definition for five-tuple DDR knowledge state optimality (Definition 4.2.51).

Definition 5.5.6 Given a DOBS-DDR knowledge state KS containing the elements B,B∪, I,�, and Q, KS-

Optimal(KS) ≡ Optimal-per-I(KS) .

If I=Complete-I(KS), then the knowledge state has the complete set of minimally consistent NAND-sets

stored in I and KS-Optimality equates to true optimality.

Theorem 5.5.7 I=Complete-I(KS)⇒ (KS-Optimal(KS) ≡ Optimal-per-⊥(KS))

Proof.

I=Complete-I(KS) (prem.). I = Complete-I(KS)⇒ (Optimal-per-I(KS)≡Optimal-per-⊥(KS)) (Obs 4.2.53).

Therefore, Optimal-per-I(KS) ≡ Optimal-per-⊥(KS). KS-Optimal(KS) ≡ Optimal-per-I(KS) (Def 5.5.6).

Therefore, KS-Optimal(KS) ≡ Optimal-per-⊥(KS). 2
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For a large, complex real-world knowledge representation and reasoning system, however, it is unlikely

that I will ever be complete. If it is complete, though, then DDR run to completion results in the optimal

knowledge state—the Optimal-per-⊥ knowledge state—as presented in Theorem 4.3.8, which also applies

to a DOBS-DDR knowledge state. Typically, however, KS-Optimality is the best that a DOBS-DDR can

provide. It states that the base knowledge state is optimal given the information at hand (given I, the record

of all known inconsistencies that are KS-minimal). The only way for the base to be non-optimal is if it

contains an inconsistency that has yet to be detected.

The definitions for Protected-By-Q(p,KS), Proper-Q(KS) and Proper-KS(KS) for a DOBS-DDR knowl-

edge state are the same as those for a DDR knowledge state (except for the knowledge state having additional

parts)—cf. Definitions 4.2.31, 4.2.32, and 4.2.33.

Because we also know that Safe-per-I(KS) ≡ KS-Consistent(KS) (Obs 5.5.5), if KS is Proper-KS, it is

also KS-Consistent:

Observation 5.5.8 Given a DOBS-DDR knowledge state KS = 〈B,B∪,D∪,H, I,�,Q〉,

Proper-KS(KS) ≡ KS-Consistent(KS) ∧ Proper-Q(KS)).

The DDR priority queue is maintained as in Chapter 4.

The definitions for the DDR invariant relations Proper-Q and Proper-KS, as well as their helper relation

Protected-by-Q, also apply to a DOBS-DDR knowledge state (cf. Section 4.2.10). Their adjustment to the

DOBS version is inherent in their dependence on the make-up of I. The theorems and proofs presented in

that section also hold for a DOBS-DDR knowledge state.
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5.6 DDR for a DOBS-DDR Knowledge State

The DDR algorithm and its helper functions need not be altered for a DOBS-DDR knowledge state. The only

difference is that the knowledge state for a DOBS-DDR system is a 7-tuple rather than the 5-tuple assumed

in chapter 4. This difference is most obvious in the algorithms during assignments by reference—where

a knowledge state’s elements are assigned individual variable names for reference during the algorithm or

changes to these elements are assigned back into the knowledge base. In these instances, the elements of a

DOBS-DDR knowledge base that are neither accessed nor affected by the DDR algorithms (D∪ and H) are

not included in the chapter 4 algorithm assignments and are thus to be assumed unaltered when applying the

chapter 4 algorithms to the chapter 5 DOBS-DDR knowledge state 7-tuple.

All DDR algorithm theorems and proofs from Chapter 4 also apply to a DOBS-DDR knowledge state.

The result of DDR performed to completion on a DOBS-DDR knowledge state is the KS-Optimal

knowledge state.

Theorem 5.6.1 Given that KS = KSpost is the DOBS-DDR knowledge state resulting from the DDR(KSpre)

running to completion, Proper-KS(KSpre)⇒ KS-Optimal(KSpost).

Proof.

KS = KSpost is the DOBS-DDR knowledge state resulting from the DDR(KSpre) running to completion

(given). Proper(KSpre) (premise). Proper-KS(KSpre)⇒Optimal-per-I(KSpost) (Thm 4.3.7). KS-Optimal(KS)

≡ Optimal-per-I(KS) (Def 5.5.6). Therefore, KS-Optimal(KS). 2

DDR is a KS-optimizing algorithm for a DOBS-DDR system. All other anytime and additional benefits

of DDR that are discussed in Section 4.5 hold equally well for DDR on a DOBS-DDR knowledge state.

These benefits hold for para-consistent, monotonic logics like first-order-predicate logic and relevance logic

[Anderson & Belnap1975, Anderson, Belnap, & Dunn1992]. This is because KS-Optimality is based on
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what the system has detected and not on complete reasoning or deductive closure. Any system whose

detected NAND-sets are unaffected (except by proper subset refinement) by further knowledge acquisition

can use the DDR algorithm to become KS-Optimal.

Further work is needed to analyze whether the detected NAND-sets in systems using default logic might

be usable. The set {p, p→ q,¬q} might be a NAND-set, yet not if t is added to the base and p is a default

belief that is blocked by t. There are, however, ways that DDR might assist a default logic system. These

are discussed in Section 8.4.1 of Chapter 8.

5.7 In Summary

DDR can be implemented in a DOBS system. Performing DDR on a KS-consistent knowledge state (with

a properly maintained priority queue) results in a KS-optimal knowledge state. If I is complete, then the

result of running DDR to completion is a knowledge state that is Optimal (a.k.a. Optimal-per-⊥).

Chapter 6 presents the extended case study of such an implementation of DDR in an existing TMS

system.

209



210



Chapter 6

DDR in SNePS: An Extended Case Study

6.1 Introduction

This chapter deals with implementing the theories presented in this dissertation into an existing knowl-

edge representation and reasoning (KR&R) system called SNePS (Semantic Network Processing System)

[Shapiro & The SNePS Implementation Group2004]. SNePS is implemented in LISP and the logic for

SNePS is a relevance logic adaptation of first-order-predicate logic. Because this logic is monotonic and

the system can detect and save NAND-sets, DDR will work equally well as with classical propositional

logic. When run to completion, the knowledge state will be KS-Optimal.

The data structures used by DDR are the standard data structures for LISP (as defined by defstruct)

which can have multiple fields (or slots) for holding values. These fields can be accessed by the system in

order to perform reasoning, belief revision, actions, etc. When an item that is represented by such a data

structure is placed on a queue, in a list, in a binary search tree, etc., it is not a copy of the item that is placed;

the value of the pointer for that data structure is placed, instead. This saves both the space needed for holding

a copy and the time needed to make a copy.
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The key implementation issues are:

• implementing the KS including B∪,B,X , I,�,Q

– expanding existing data structures

– adding new data structures

• working with the current SNePS implementation

– using existing features: NAND set detection, user-selection of culprits

– implementing new features:

∗ developing a generic binary search tree (BST) data structure for storing ordered lists (sorted

by descending credibility of culprit beliefs)

∗ maintaining queues of active NAND-sets

∗ user-determined linear ordering of culprits

∗ automating belief ordering and culprit selection through use of source ordering

∗ maintaining minimal (KS-minimal) NAND-sets

• implementing consolidation

• implementing the DDR algorithm and helper functions

• maintaining backward compatibility and making DDR invisible to users not interested in using it.

One major simplification of the original DDR design as defined in Chapters 4 and 5 is that not all beliefs

are ordered linearly. The current implementation allows the user to select the culprit when a NAND-set is

detected by the system. Once selected, it is removed by the system (effectively a consolidation operation

on that NAND-set with the user’s selection as the decision function) and the user assigns the culprit to a

place in a linear ordering of culprits that gets built up as culprits are chosen. This is sufficient, because the

only beliefs that get ordered in DDR are the retracted beliefs; therefore, we only need retracted beliefs to be

linearly ordered.

Most of the implementation details in this chapter are the result of a close collaboration with Michael

Kandefer, who performed the actual implementation coding of my data structures and algorithms. Although
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the basic algorithms, data-structures, and validation and regression testing, were my domain, Michael was

solely in charge of dealing with the intricacies of integrating with the SNePS code, implementing a BST

data structure in SNePS,1 and developing new user commands.

6.2 Data Structures Altered and Added to Accommodate DDR

6.2.1 *ddr*

The global variable *ddr* allows the user who is not interested in DDR to be virtually unaffected by these

changes made to implement DDR. When *ddr* is set to “t” (by a user wishing to use DDR), the knowledge

state for DDR is maintained and DDR can be called by the user. When *ddr* is set to “nil” (the default

setting to allow for backward compatibility), the system works much as it did before DDR implementation,

though it still maintains a set of active NAND-sets (as described in Section 6.2.4) to support the addition of

the consolidation operation to the SNePS system (cf. Section 6.2.6 for discussion of consolidation).

6.2.2 Expanding the Belief Node Structure to Accommodate DDR

In the SNePS network, beliefs are stored as nodes (cf. [Shapiro & The SNePS Implementation Group2004]

for SNePS implementation details). Each SNePS node is made up of several fields that store information

including the actual belief that the node represents. These fields also include the origin sets for that belief

(ATMS-style), the name of the node, etc. To perform DDR in an efficient way, new fields are needed in the

SNePS node and will be utilized by the ddr-algorithm code.

The fields added to the SNePS node are:

1The BST code that was integrated with SNePS came from a website belonging to Stuart Russell at University of California:
http://www.cs.berkeley.edu/ russell/code/utilities/binary-tree.lisp. We are converting it to a red-
black tree to insure computational efficiency.
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• ddr-q-tag - a tag used to mark the state of this node on the ddr queue, nil if not in the queue

(ddr-q-tag∈ {justout, in?,both,nil})

• culprit-node - a pointer to the culprit node in the culprits BST (Sec 6.2.4) that contains this node,

nil if not a culprit node

• ddr-q-node - a pointer to the node in the ddr-q BST (Sec 6.2.4) that contains this node (saves time

when finding a node in the queue), nil if not in the queue

• ic-NAND-sets - the list of NAND-sets in I that this node is a culprit of

• nc-NAND-sets - the list of NAND-sets in I that this node is in, but is not a culprit of

There is also a new SNePS data structure, called an nv-pair, that contains the node for a culprit belief

along with its value:

• node - the ddr node in this structure (a SNePS node, with the added DDR fields)

• value - the value for this node; range is (0,1); the lower the value the weaker the credibility of the

belief.

The BSTs for culprit beliefs (Sec 6.2.4) store nv-pairs, not just the beliefs. The value is a real number

assigned by the system to insure that the ordering over the culprits remains linear.2

Comparing value and Credibility Value

Although the sum of these real number values of the culprits in no way represents the value of a base (unlike

the way credibility values were used in Section 5.5.2), a non-increasing ordering of the culprit beliefs by

these real number values matches the linear ordering of the culprit beliefs by Cred(pi,B∪,�): for culprit

beliefs pi and p j, pi � p j IFF Cred(pi,B∪,�) >Cred(p j,B∪,�) (from Sec 5.5.2) and pi � p j IFF value(pi)

> value(p j).

2Cf. Sec 6.2.7 for details on how and why this linear ordering is maintained in this way.
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6.2.3 The Data Structure for a NAND-set

The key DDR-related fields in the data structure for a NAND-set are:

• name - name of this NAND-set (includes a unique identifying number; e.g., N23)

• nodes - the set of nodes (beliefs) in this NAND-set (its inconsistent set; a SNePS nodeset)

• size - cardinality of nodes

• b-hyp-count - cardinality of (nodes∩B)

• test-num - (default = 0) assigned *NAND-set-test-num* for any procedure accessing this NAND-set

• temp-count - counter utilized by ddr functions; zeroed whenever test-num is re-assigned

• culprit - the culprit node for this NAND-set (its weakest element, currently selected by the user)

• culprit-strength - strength (culprit value) of this NAND-set’s culprit.

The fields for size and b-hyp-count are used to check whether a NAND-set is Active or Precarious. If

b-hyp-count = size, the NAND-set is Active. If b-hyp-count = size−1, then the NAND-set is Precarious.

test-num, temp-count and *NAND-set-test-num*

Several procedures access NAND-sets numerous times and keep track of how many times each NAND-set

is accessed. However, it is possible that only a small subset of all the NAND-sets will be accessed during

this procedure. Each NAND-set has a field for a temporary counter (temp-count) for keeping track of the

number of times it is accessed by the procedure; temp-count is incremented each time the NAND-set is

accessed.

To avoid having to zero all the NAND-sets’ temporary counters (computationally expensive if only a

small subset will be accessed), I make use of the global variable *NAND-set-test-num*, which is incre-

mented each time one of these procedures is called.3 Each NAND-set has another field (test-num) that is

3These procedures never overlap or call each other, so *NAND-set-test-num* is never incremented until the previous procedure
is completed (or stopped).
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assigned the value of *NAND-set-test-num* when that NAND-set is first accessed by the procedure. Only

when test-num gets a re-assignment is the value of temp-count reset to 0. This way, only the NAND-sets

that are actually accessed get their temporary counters zero-ed. The procedures using this technique are

Update-with-new-NAND-set (as shown in its algorithm on page 218) and Safe-Return (as mentioned in the

discussion following its algorithm on page 225).

This system of using the global *NAND-set-test-num* and two NAND-set fields permanently allocates

memory space for maintaining these counts. This could also be implemented using a hash table that uses

space only when the procedure is active. It can hash on the unique number in the name of the NAND-set

and can grow dynamically as more NAND-sets get accessed. My implementation sacrifices memory for a

guarantee of a lookup time (the time to increment NAND-set’s counter) that is worst case O(1), whereas the

look-up time for a hash table is average time O(1)—but, potentially worse. The choice between reducing

memory load vs. run-time is best handled by the system implementers. I describe the details here, because

they are essential to the complexity analysis that follows in Section 6.2.5.

6.2.4 Implementing the Knowledge State KS

The DDR knowledge state KS is defined as the five-tuple 〈B,B∪, I,�,Q〉.

SNePS already maintains a current context (= B) and all base beliefs (= B∪). The KS implementation

adds three BSTs for ordering culprit beliefs and three more BSTs for ordering NAND-sets. In all cases, the

elements in the BSTs are ordered by the value of the culprit (in non-increasing order). Culprit BSTs store

nv-pairs. NAND-set BSTs store NAND-sets ordered by the value (= culprit-strength) of their culprits. This

takes advantage of the linear ordering of the beliefs in the nv-pairs, and results in a total pre-order4 over

NAND-sets (total pre-order, because every NAND-set has a culprit, but two different NAND-sets can have

4Cf. Sec 2.5 for a review of different orderings.
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the same culprit—giving up anti-symmetry).

The three BSTs that store culprit belief nv-pairs for a knowledge state KS are:

• culprits - BST of all culprit nodes (= �) and

• removed-beliefs - BST of the beliefs removed from B (= X)

• ddr-q - BST of the culprits on the priority queue (= Q)5

When SNePS detects a NAND-set, the user is given the option of (1) resolving the inconsistency by

selecting one (or more) of the beliefs in the NAND-set and removing it from the base6 or (2) ignoring the

inconsistency (letting the NAND-set remain a subset of the current base). For the purpose of this dissertation,

I assume that the user chooses a single culprit for retraction to restore consistency. I leave the case of the

user selecting multiple culprits for a single NAND-set to future research.

In the second case, the knowledge state is KS-inconsistent, and no culprit has been selected. If such a

NAND-set becomes non-Active, the weakest of its retracted beliefs is designated as its culprit.

The three BSTs that store NAND-sets in a knowledge state KS are:

• all-NAND-sets - BST of all NAND-sets in the system (≡ I)

• active-NAND-sets - BST of active NAND-sets for this KS (used to implement consolidation)

• active-NAND-sets-nc - non-ordered list of NAND-sets with no culprits (where the user will need to

select culprits for retraction to eliminate the inconsistencies).7

6.2.5 Implementing I

The need for KS to contain three BSTs of NAND-sets foreshadows the complexity of maintaining I and the

subsets of I that are needed to implement DDR.

5The nv-pair is different from the pair assigned to the queue in the text (cf. Chapter 4). In the text, the pair includes a tag
τ ∈ {in?,both, justout}. In the implementation, the tag for a belief is stored in the belief’s ddr-q-tag field. This is helpful, again, for
debugging and code development as well as insuring a one-step lookup to determine the tag for any given belief. Recall that the tag
is nil if the belief is not on the queue.

6This is equivalent to performing kernel consolidation on that NAND-set.
7The use of this data structure was developed by Michael Kandefer.
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Storing and Updating Elements of I

I is a set of minimal (as far as is currently known; KS-minimal) NAND sets. To maintain this minimality,

any additions to I must be tested for minimality. If the addition is a superset of an existing NAND set, then

it is not added. If the addition is a proper subset of any existing NAND sets, it gets added and the supersets

get removed.

procedure Update-with-new-NAND-set(N,KS) ;;; N is the new NAND-set

*NAND-set-test-num*← (1+ *NAND-set-test-num*)

loop for each p in N

for each N′ in (nc-NAND-sets(p) ∪ ic-NAND-sets(p)) do

when test-num(N′) 6= *NAND-set-test-num* do ;;; is this first access of N′ for this update

test-num(N′)← *NAND-set-test-num* ;;; sets to the number for this update

temp-count(N′)← 0 ;;; zeros temp-count

temp-count(N′)← (1+ temp-count(N′)) ;;; increments temp-count

when temp-count(N′) = size(N′) do ;;; (N′ ⊆ N)

STOP - Exit Update-with-new-NAND-set — do NOT add new NAND-set to I

when temp-count(N′) = size(N) do ;;; N ( N′

if culprit(N′) ∈ N then

culprit(N)← culprit(N′)

Replace(N′,N,KS)

else

for each n′ ∈ N′ do

Remove N′ from nc-NAND-sets(n′) and ic-NAND-sets(n′)

218



Remove N′ from : all-NAND-sets, active-NAND-sets, and active-NAND-sets-nc

Add N to active-NAND-sets-nc

DDR-Q-Insert(culprit(N′),Q, �) ;;; insures Proper-Q; cf. Section 5.5.2

for each n ∈ N do

Add N to nc-NAND-sets(n)

endif

procedure Replace(old-N, new-N, KS)

;;; replaces an existing old-N with its proper subset new-N

;;; only called when when culprit(old-N) ∈ new-N

for each node n in new-N, do replace old-N with new-N in n’s NAND-set lists;

for each node n in old-N but NOT in new-N, do remove old-N from n’s NAND-set list

replace old-N with new-N on all NAND-set lists (all-NAND-sets and active-NAND-sets)

This algorithm used for maintaining minimality in I offers an improvement over the computational

complexity of traditional subset/superset testing. During this testing to insure that a new NAND-set A is

neither a subset nor a superset of any set Ni in the current I = {N1,N2, . . . ,Nn}:

• no element that is not in A is ever accessed, and

• the complexity of processing some p ∈ A is O( j), where j =| {Ni | Ni ∈ I ∧ p ∈ Ni} |.

The only additional work occurs if the new NAND-set is a proper subset of an existing NAND-set.

An altered version of this algorithm might also be useful for maintaining the origin sets of derived

beliefs, which also require minimality.8

8The number and size of origin sets for any given belief may be so small it, it would not be worth the overhead. This would best
be determined by benchmarking with large, intricate and interconnected knowledge bases.
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6.2.6 Implementing Consolidation

The algorithm for consolidation of a knowledge state KS is similar to calling KS-Add-Remove and Safe-

Return with the following changes: no belief is being added to the base, and the set of beliefs being removed

(R) is determined by Safe-Return processing all active NAND-sets rather than the NC-NAND-sets of p.

Because there are no known culprits for the NAND-sets in active-NAND-sets-nc, these are processed

using an interactive user interface, where the user selects the culprits (as with standard culprit selection

in SNePS). NAND-sets in active-NAND-sets are processed in decreasing order of the credibility of their

culprits, and the culprit of an Active NAND-set is retracted.

As culprits are retracted during consolidation, any NAND-sets (in either active-NAND-sets or active-

NAND-sets-nc) that become non-Active are removed from their respective lists. The knowledge state is

KS-consistent IFF active-NAND-sets ∪ active-NAND-sets-nc= /0.

The current implementation performs consolidation only when the user explicitly calls for consolidation

to be performed. Similarly, the current implementation performs DDR only when the user explicitly calls

for DDR to be performed. Since DDR can only be run if the knowledge state is KS-consistent, and it is rea-

sonable that the user would prefer to save the effort of manually calling consolidation prior to calling DDR,

consolidation is the first step of the implemented DDR algorithm. This is a deviation from the algorithm in

Chapter 4, but it is practical given that SNePS allows the system to operate in a KS-inconsistent state.

6.2.7 Selecting Culprits and Ordering Beliefs

The Selection and Linear Ordering of Culprit Beliefs

The ordering in the ideal system introduced in Chapter 4 is a linear ordering over all beliefs. This was to

simplify the proofs using the credibility value of a base. Michael Kandefer gets full credit for the algorithm

and implementation that places a new culprit belief into the linear culprit ordering.
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In this implementation,

• any belief that is removed from the base is considered a culprit belief, and

• whenever a new culprit belief is selected by the user, the user is asked to place that belief in a linear

ordering of the existing culprit beliefs.

Since all BSTs are ordered based on culprit values, the lack of ordering among non-culprit beliefs will not

affect these data structures. We can redefine the credibility of the base B of a knowledge state KS as follows:

Definition 6.2.1 Given KS with the elements B, B∪, and culprits(KS)= c1,c2, . . . ,cn,

(∃B′ ⊆ B∪) : B′ = B∪\culprits(KS) and (∀KS1 = 〈B1,B∪,all-NAND-sets, culprits(KS), Q1 〉) : B′ ⊆ B1.

• If Safe-per-I(KS), then Cred(B,B∪, all-NAND-sets, culprits(KS)) =de f ∑ci∈(B∩culprits(KS)) 2n−i .

• If ¬Safe-per-I(KS), then Cred(B,B∪, all-NAND-sets, culprits(KS)) =de f −1.

Given a set B∪, I, and �, every possible base differs only in its culprit beliefs (all non-culprit beliefs

are present in all bases), the credibility value described above is sufficient to compare bases as in previous

chapters, but based on the linear ordering of culprit beliefs alone.

The interface for assisting the user in placing a new culprit into the pre-existing chain of culprits prints

out a linear representation of the pre-existing culprits with numbers for the spots between each culprit and

at either end of the ordering:

You have selected wff9: ¬q(a) as the culprit and an ordering

needs to be provided. The current culprit nodes are:

wff8: ¬r(a)

wff6: m(a)

From the list below, choose a numbered slot to insert wff9: ¬q(a)

node into. The beliefs are ordered from most preferred to least

preferred: [1] wff8: ¬r(a) [2] wff6: m(a) [3]
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Please, enter a number between 1 and 3. The culprit will be

inserted in the slot with the number specified:

The user then enters the number indicating the location in the chain where the new culprit should be

placed.9 Based on the user’s selection, the culprit node is given a value equal to the average of the values of

its two surrounding nodes. If assigned the leftmost position ([1]), the node value is the average of 1 and the

value of the node on its right. If assigned the rightmost position ([3] in the example above), the node value

is half the value of the node on its left (= averaging with 0). Real numbers are preferred to positive integers,

because insertion within the chain of culprits does not require shifting up the numerical values of the beliefs

that are more credible than the newly inserted node. Again, I emphasize that the value of a culprit node is

merely used to assist with placement within the various BSTs, and the linear ordering of culprits is to be

considered a qualitative ordering, not a quantitative one.

Once a new culprit node has a value, various BSTs are updated to reflect this new information:

1. culprits gets the new nv-pair (the culprit node and its value) inserted into it

2. the same nv-pair is also inserted into removed-beliefs

3. the same nv-pair is inserted into ddr-q and the ddr-q-tag for the belief is set to justout

4. the NAND-set whose inconsistency was just resolved is updated with its new culprit in all-NAND-sets;

along with any other NAND-sets containing the just selected culprit node that were on active-NAND-

sets-nc

5. for all NAND-sets containing the culprit node:

• if on an active list, they are removed—removed from active-NAND-sets and active-NAND-sets-

nc;

• their b-hyp-count is decremented.

9Although every culprit node has a value associated with it (ranging from 0 to 1), these values are used by the system to maintain
the chain only. They are visible in some output of the current implementation, but this is to allow error checking by the knowledge
engineers. In the final implementation, the user should never see the value of a culprit node.
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Automating Belief Ordering by Ordering Sources

In earlier work [Johnson & Shapiro1999b, Johnson & Shapiro1999a, Johnson & Shapiro2000b], belief or-

dering was achieved by ascribing beliefs to specific sources and/or categories and ordering those sources or

categories. The beliefs were then ordered as their source/category was ordered.

On the positive side, all beliefs were entered into the ordering, which allowed for an automatic belief

revision algorithm to be applied to resolve NAND-set inconsistencies—provided the ordering resulted in a

least element in each NAND-set that was derived.

On the negative side:

1. this required a lot of time preparing input, because every base belief needed a second base belief

assigning it to a specific source or category;

2. the ordering was a total pre-order, which could have resulted in a NAND-set having no least element

and thus requiring the user to select a culprit, anyway, albeit from the weakest subset in each NAND-

set;

3. this same pre-order also makes the definition for optimal and preferred knowledge states less clear, a

problem reserved for future research.

If the source or category information about base beliefs could be determined at input time (i.e., not requiring

additional input from the user), this technique would be very beneficial.

For the initial implementation of DDR, I elected to streamline the ordering process. The user need only

consider the ordering for culprits. I leave category ordering for use by DDR algorithms for future work.

6.2.8 Implementing Q

Q is implemented as the ddr-q of a knowledge state, which is a BST storing nv-pairs. Each node in an

nv-pair has a field that contains its priority queue tag ( ddr-q-tag).
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6.3 Implementing DDR

The implementation of DDR is straightforward—following the algorithms presented in Chapter 4. When

computing the complexity of the algorithms, all assignments take O(1) time, because they are simple value

assignments or pointer assignments (for data structures). The algorithms shown in the subsection below are

the algorithms presented in Chapter 4. The discussion following each algorithms explain any intricacies

regarding how they are implemented, and discusses the complexity of the implementation.

6.3.1 Safe-Return

function Safe-Return(p,KS) ;;; returns a set of beliefs

〈B,B∪, I,�, Q 〉 ←ref KS

R←ref { } ;;; initializing R

NQ←ref NAND-set-Q(NC-NAND-sets(p,KS) , �) ;;; p’s NC-NAND-sets in a queue

loop until Empty(NQ)

N←ref Pop(NQ) ;;; First element in NQ removed into N

if (N \{p} ⊆ B AND N∩R = /0) then

R←ref R ∪ {Culprit(N,�)} ;;; culprit for N inserted into R

endif

end loop

return R

The time to make the BST NQ is O(n lgn), where n =|NC-NAND-sets(p,KS)|. Incorporated into that

cost is the O(n) cost conversion of the BST to a list where Pop has a cost of O(1).10 Note that this cost

10O(n lgn+n) = O(n(lgn+1)) = O(n lgn).
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is incurred only if the belief p is being returned to the base, thus increasing the credibility of the base and

moving the knowledge state closer to its KS-optimal state.

The loop is a process that requires incrementing the global variable *NAND-set-test-num*. For each N

popped off NQ, if test-num6=*NAND-set-test-num*, then

test-num←*NAND-set-test-num* and temp-count← 0.

The test for N \{p} ⊆ B takes O(1) time by checking if b-hyp-count=size−1. The test for N ∩R = /0

also takes O(1) time, because it is merely a test for test-num= 0 (as explained below).

When a belief r is added to R, that addition is done in O(1) time, because r is merely pushed onto the

list R (no ordering is necessary, because all elements in R are removed from the base during the procedure

Add-Remove, regardless of their order).

There is a more complex step to the addition of the belief r to R, however. Each NAND-set containing r

must have temp-count incremented—indicating that it has a non-empty intersection with R. The cost of this

update for any given r added to R is O(m), where m =|ic-NAND-sets(r) ∪ nc-NAND-sets(r) |. This cost,

however, is only incurred when the belief r is determined to conflict with p’s return to the base—i.e., p’s

return to the base changes r into a belief designated as MustOut.

If the testing for N ∩R = /0 was performed using a subset-test that compared the elements of the two

sets, the expense of that comparison would be incurred for every test, as opposed to an expense incurred

only when a conflicting belief is found. This would be more expensive, computationally, assuming that the

number of beliefs in a NAND-set can be very large compared to the number of NAND-sets for any culprit

belief that is currently in the base.

6.3.2 Add-Remove

procedure KS-Add-Remove(KS, p,R),
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〈 B , B∪ , I , � , Q 〉 ←ref KS

Q1←ref New-Q( )

for each r in R do

Q1←ref Insert( 〈r, justout〉 , Q1 , �) 〉 ;;;←ref for clarity, Insert is destructive.

endfor

KS ←ref 〈 B←ref (B∪{p})\R, B∪ , I , � , Popped(Merge-Qs(Q,Q1,�))〉

The time to perform Add-Remove can be broken into several parts; and, for this analysis, let us assume the

implementation uses a BST for X , as well as for B and priority queues.

1. Building Q1 takes O(nR lgnR) time, where nR =| R |.

2. Merging Q and Q1 takes O(nR lg(nR +nQ)) time, where nQ =| Q |.

3. Popping the queue takes O(lg(nR +nQ)) time.

4. Removing R from the base takes O(nR(lgnB + lgnX)), where nB =| B | and nX =| X |.

5. Inserting p into the base takes O(lgnB + lgnX) time.

As in with Safe-Return, however, these expenses are only incurred if a belief is being inserted into the base

improving the credibility of that base. Also note that as R approaches /0, the total computation expense

approaches O(lgnB + lgnX), because expenses 1, 2, and 4 all approach O(0) and | X |≥| Q | which makes

the expense of 3 included in the expression of the expense of 5.

6.3.3 Process-Justout

procedure Process-Justout (KS, p)

〈 B , B∪ , I , � , Q 〉 ←ref KS
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for each N ∈ NC-NAND-sets(p,KS)

q←ref Culprit(N)

if q 6∈ B do ;;; Note: p� q

Q←ref DDR-Q-Insert(q,Q,�) ;;;←ref for clarity, DDR-Q-Insert is destructive.

endif

endfor

KS ←ref 〈 B , B∪ , I , � , Popped(Q) 〉

The for-loop in Process-Justout takes O(n lg(q + n)), where n =|NC-NAND-sets(p,KS)| and q =| Q |.

This is because the loop processes n times, DDR-Q-Insert has a worst case O(lgq) cost, and worst case has

every DDR-Q-Insert actually inserting a belief onto (rather that changing its tag or just leaving it alone). If

all the retracted culprits in NC-NAND-sets(p,KS) were already on the queue, the entire for-loop would take

O(n) time, because the Change-Tag procedure is O(1).

Popping the queue takes O(lg(q + n)) time. If all the retracted culprits in NC-NAND-sets(p,KS) were

already on the queue, it would reduce to O(lgq).

6.3.4 Update-KS

procedure Update-KS (KS,update, p,R)

〈 B , B∪ , I , � , Q 〉 ←re f KS

Case update =

PopQ:

KS←ref 〈 B , B∪ , I , � , Popped(Q) 〉

ProcJustout:

Process-Justout(KS, p)
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AddRem:

KS-Add-Remove(KS, p,R)

Popping the queue (when update =PopQ) takes O(lgn) time, where n =| Q |.

The other costs are discussed above.

6.3.5 DDR Algorithm

procedure DDR(KS)

1 loop until Empty(QKS)

2 〈p,τ〉 ←ref First(QKS)

3 if1 (τ = in? or τ = both) , then

4 can-return← BadOut(p,KS)

5 if2 can-return , then (note: BadOut(p,KS))

6 R ←ref Safe-Return(p,KS)

7 update← AddRem

8 else2 (note: JustifiedOut(p.KS))

9 if3 τ = both , then

10 update← ProcJustout

11 else3 (note: τ = in?)

12 update← PopQ

13 endif3

14 endif2

15 else1 (note: τ = justout)

16 update← ProcJustout
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17 endif1

18 Update-KS(KS,update, p,R) ;;; DESTRUCTIVE—alters the DDR knowledge state KS

19 end loop

Testing the queue to see if it is Empty (line 1) takes O(1) time.

Getting the first element off the queue (line 2) should take O(1) time assuming that the data-structure

for the queue includes a pointer to the first element. Resetting such a pointer during the Popped procedure

does not increase the cost of the procedure.

Determining the tag for the belief p (line 3) takes O(1) time, because it is in ddr-q-tag(p).

Determining can-return requires checking all NAND-sets in ic-NAND-sets(p) to see if any are precarious

(count=size−1). This takes O(n1) time, where n1 =|ic-NAND-sets(p)|.

All other costs are discussed above.

In summary, the computational cost for one pass through the DDR loop varies widely, but it is relatively

small unless the belief being processed is being returned to the base. The jump in cost is a reasonable

price to pay to improve the credibility of the knowledge state base. Additionally, the largest part of the cost

of returning p comes from (1) determining the set R which must be removed to maintain consistency, (2)

removing R from the base into the exbase, and (3) putting all elements of R onto the queue.

6.4 DDR Implementation Example Showing Anytime Features

The DDR example in this section is based on the graph of beliefs and NAND-sets shown in Figure 6.1, which

is a slightly altered subgraph of the graph shown in Figure 4.2 used in DDR Example 4.4 on page 164.

Due to system constraints, these beliefs have to be represented in predicate form, and implication ar-

rows are double-arrows: e.g., p→¬q in the graph (and in earlier chapters) becomes p(a)⇒¬q(a) in the
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system. The selections of output shown in the example below highlight the following aspects of the DDR

implementation (elements that were not newly added to the SNePS system for DDR are labeled as “basic

SNePS”):

• entering beliefs into the SNePS system (basic SNePS)

• querying the system to see what it knows (basic SNePS)

• choosing the culprit ordering after culprit selection produces a new culprit

• calling DDR

• stopping DDR before it is finished—highlighting anytime aspects of DDR

• adding more beliefs to the base, and deriving a new NAND-set (basic SNePS)

• removing another culprit, and ordering it as more credible that the top element in ddr-q

• calling DDR, running it to completion, and showing DDR is interleavable and optimizing.

All indented, non-bulleted typewriter font indicated sections of a single run in SNePS using the

SNePSLOG interface (cf. [Shapiro & The SNePS Implementation Group2004] for detailed information re-

garding SNePS and SNePSLOG). The SNePS run is very lengthy, so it has been edited in the following

ways:

• portions that do not illustrate the implementation of DDR are deleted;

• redundant sections or sections shown earlier are also deleted;

• sections have been interspersed with commentary in normal font with only beliefs in typewriter

font;

• the symbol for negation in the SNePS system (∼) is replaced with ¬ in the run below;

• input to SNePS is in bold typewriter font;

• but, other than these edits, the output shown below has not been altered.
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s¬s

¬q

p

¬r

m m→r

p→r p→q

{¬s, s}{m→r, ¬r, m}

{p, p→r, ¬r} {p, p→q, ¬q}

Figure 6.1: This graph shows the beliefs (circles/ovals) and NAND-sets (rectangles) that are used in the
implemented DDR example presented in Section 6.4. Due to system constraints, these beliefs have to be
represented in predicate form, and implication arrows are double-arrows: e.g., p→¬q in the graph becomes
p(a)⇒¬q(a) in the system. The culprit in each NAND-set is the right-most belief in the box. The linearly
ordered set of culprits is C = ¬q,¬r,s,m. The optimal base has all culprit beliefs retracted except for m.

The following beliefs are entered into the SNePS sytem using the SNePSLOG interface, which uses a colon

(:) as its prompt [Shapiro & The SNePS Implementation Group2004]:

: p(a) ⇒ q(a)

: p(a) ⇒ r(a)

: m(a)⇒ r(a)

: ¬r(a)

: ¬q(a)

: m(a)

Then the system is asked if r(a) is derivable.
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: r(a)?

When the NAND-set { m(a) ⇒ r(a), ¬r(a), m(a) } is detected, the user chooses to have

m(a) removed from the base. No ordering assistance from the user is needed, because m(a) is the

only culprit at this time. The interaction just described was deleted from this example, because it does not

illustrate DDR, but it can be seen in the Appendix in Section A.4.11

The system is then told to add p(a) with forward inference.

: p(a)!

The forward inference detects two NAND-sets (actual NAND-set resolution output not shown here):

• { p(a), p(a) ⇒ r(a), ¬r(a) }

• { p(a), p(a) ⇒ q(a), ¬q(a) }

The user chooses to remove ¬r(a), placing it as more credible than m(a). The user then removes

¬q(a) and places it above ¬r(a) in the ordering—this last interface was seen in the culprit ordering

interface example shown in Section 6.2.7 on page 221.

A knowledge engineer can examine the elements of the knowledge state, and these elements currently

show the value of the culprit beliefs. The final implementation will include a simpler set of commands for

the user that will hide the belief values The next command shows the removed beliefs (= X).

: (sneps::knowledge-state-removed-beliefs sneps::*default-ks*)

(wff9: ¬q(a) wff8: ¬r(a) wff6: m(a))

When DDR is called, the system first prints out the starting elements in ddr-q. It then prints out feedback

for each pass through the DDR loop—the belief that is being processed and its tag followed by ddr-q

11For a complete example of the SNePS NAND-set detection and culprit selection user interface, see [Shapiro2000].
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after processing. Note how the processing of ¬r(a) resulted in the tag for m(a) being changed

from justout to both. In this example, the option to pause after each loop completion is exercised. DDR is

continued following the processing of ¬q(a), but it is stopped by the user after the processing of ¬r(a)

(and before processing m(a)). This interaction is shown below.

: (sneps::ddr sneps::*default-ks* t)

Starting ddr... ddr-q (

wff9: ¬q(a): 0.875 (tag: justout)

wff8: ¬r(a): 0.75 (tag: justout)

wff6: m(a): 0.5 (tag: justout))

wff9: ¬q(a)

sneps::justout End of ddr loop... ddr-q (

wff8: ¬r(a): 0.75 (tag: justout)

wff6: m(a): 0.5 (tag: justout))

Continue running ddr? (y or n) y

wff8: ¬r(a)

sneps::justout End of ddr loop... ddr-q (

wff6: m(a): 0.5 (tag: both))

Continue running ddr? (y or n) n nil
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At this point, DDR has been stopped. The knowledge state is improved over that when DDR was first called,

even though the base is unchanged. This is because the top element on ddr-q is weaker than the element that

topped it when DDR was first called. This is an example of the knowledge state being available at any time

and the promise that it will always improve with each pass through the DDR loop. The fact that the beliefs

already processed are stronger than the belief on the queue is an example of diminishing returns.

Even though ddr-q is not empty, the system can receive input and perform reasoning and contradiction

handling. To show this, the user enters the following two beliefs:

: s(a)

: ¬s(a)

Following the detection of the NAND-set {¬s(a), s(a)}, the user selects s(a) as the culprit (so it

is removed from the base), and places it between ¬r(a) and m(a) in the ordering (not shown).

When DDR is re-called, the more credible s(a) is processed before m(a). When m(a) is processed,

though, it is returned to the base. DDR stops when ddr-q is empty.

: (sneps::ddr sneps::*default-ks* t)

Starting ddr... ddr-q (

wff11: s(a): 0.625 (tag: justout)

wff6: m(a): 0.5 (tag: both))

wff11: s(a)

sneps::justout End of ddr loop... ddr-q (

wff6: m(a): 0.5 (tag: both))
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Continue running ddr? (y or n)y

wff6: m(a)

sneps::both

"After add remove" End of ddr loop... ddr-q ()

Continue running ddr? (y or n) y

Finished ddr... ddr-q ()

By looking at the removed beliefs (the beliefs in the current exbase X), we can see that m(a) has been

returned to the base, even though it remains a culprit belief. This is shown below.

: (sneps::knowledge-state-removed-beliefs sneps::*default-ks*)

(wff11: s(a) wff9: ¬q(a) wff8: ¬r(a))

: (sneps::knowledge-state-culprits sneps::*default-ks*)

culprits (from strongest to weakest): (

wff9: ¬q(a): 0.875

wff8: ¬r(a): 0.75

wff11: s(a): 0.625

wff6: m(a): 0.5)

All removed beliefs are JustifiedOut—their return to the base would make one of their IC-NAND-sets

active. Therefore, the base is KS-optimal.

Note that the list of removed beliefs is not ordered by � at this time. This implementation decision
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was based on the assumption that most retracted beliefs stay retracted. If a large amount of movement is

expected in and out of the base, however, a BST would be a better choice.

In the Appendix (Section A.5, page 289), there is an implemented DDR run that shows the SNePS

computer system performing DDR (non-interactively) and duplicating DDR Example 4.4.1 from Chapter 4

(cf. Section 4.4 on page 164 and Figure 4.2).

236



Chapter 7

Conclusions

7.1 Reconsideration

Reconsideration is a belief base optimizing operation that eliminates operation order effects. Reconsidera-

tion improves the knowledge state by optimizing the belief base with the help of hindsight. The result is the

return of previously retracted beliefs reminiscent of the Recovery postulate.

The optimal base is the base whose credibility bitmap is maximal among all consistent bases. Defining

optimality by the maximal bitmap for a consistent base is a technique supported in belief revision research

[Williams & Sims2000, Chopra, Georgatos, & Parikh2001, Booth et al.2005].

The optimizing results are similar in some ways to the results of belief liberation [Booth et al.2005]

and mirror the effects of belief change operations on belief sequences [Chopra, Georgatos, & Parikh2001]

as well as those experienced by performing reconsideration on a a linear ordering of beliefs in SATEN

[Williams & Sims2000].

Reconsideration can be used to reformulate the Recovery postulate by first recognizing that Recovery

is an axiom about a pair of belief change operations (contraction and expansion), as opposed to just a
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contraction axiom. By replacing the expansion operation in Recovery with the operation of optimized-

addition (i.e., expansion followed by reconsideration), the new axiom of Optimized-Recovery is formed.

This axiom not only can be expressed in terms of a belief space (K ⊆ (K ∼ p)+!∪ p), but also in terms of a

belief base (B ⊆ (B ∼ p)+!∪ p). This is a a Recovery-like axiom that even belief bases can adhere to—as

long as adherence is not dependent on the inconsistency caused by B∪{p} `⊥.

An axiom that is always satisfied is: ¬a 6∈ B⇒ B ⊆ (B +!∪ ¬a) +!∪ a. This mirrors the Recovery-like

iterated revision postulate in [Chopra, Ghose, & Meyer2002].

Using a SATEN demonstration that offers six separate adjustment strategies for belief revision of a base

with a non-linear ordering (a total-preorder), reconsideration improved the base in five of the six cases. The

improvement was optimal in three of those cases—three cases that also showed adherence to Optimized-

Recovery. This indicates that reconsideration can be a useful tool even for systems that cannot fully meet

the belief ordering restrictions recommended.

7.2 DDR

DDR is an efficient, anytime, TMS-friendly algorithm that performs reconsideration by improving the belief

base in increments. It offers all the features of reconsideration with added benefits for implemented systems.

Implementing DDR in a TMS-style system allows optimization of the base in a computationally friendly

way.

• DDR optimizes the most important parts of the base first and makes incremental improvements to-

wards optimality.

• Each change made to the knowledge state by DDR truly is an improvement

• Each improvement is measurable.

• Each improvement is immediately available to the user for reasoning or belief change.
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• DDR can yield to urgent reasoning demands—it can be stopped and restarted without loss of optimal-

ity upon completion.

• DDR can be performed in multiple stages that can interleave with the addition of new information.

There no longer needs to be a trade-off between having a consistent base ready for reasoning and having an

optimal base (by delaying consistency maintenance until all information is gathered).

DDR provides an efficient method for re-optimizing a base if its beliefs are re-ordered. The DDR priority

queue is a simple indicator of when optimization may be needed: when the queue is not empty. The DDR

QImpact value provides a measure of the confidence in the current base and in derivations made from that

base:

• Non-culprit beliefs are never retracted.

• Any culprit belief whose credibility is strictly stronger than the current QImpact value is in its optimal

assignment regarding the base and exbase: i.e., it is in the base if and only if it will also be in the

optimal base.

• Given a consistent base, reasoning from a subset of that base that contains no culprit belief whose

credibility value is weaker than the QImpact value produces derivations that are entailed by the optimal

base—they will survive optimality. A user can have full confidence in these beliefs.

• Reasoning using a culprit base belief with a credibility value that is weaker than the QImpact value

will produce derivations that might be invalid in the optimal knowledge state, because their support

might be retracted during DDR. These derivations should be flagged as suspect.

By using the DDR queue, a belief space (both base and derived beliefs) can be partitioned into high and low

confidence designations that can be adjusted as the QImpact value changes.
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7.3 DOBS

The formalization of a deductively-open belief space (DOBS) provides terminology that allows a clearer

discussion of the shades of gray that implemented systems have regarding consistency—specifically the

differences between the following levels of consistency:

1. being consistent (KS-consistency and consistency),1

2. being inconsistent, but not knowing it (KS-consistency and inconsistency), and

3. being inconsistent and knowing it (KS-inconsistency and inconsistency).

DDR performed to completion in an ideal system guarantees optimality and consistency. This is opti-

mality at the first (top) level.

DDR performed in a DOBS can only guarantee KS-optimality—optimality at the second level—which

recognizes that there may be currently unknown contradictions that make the current state non-optimal

(because it is inconsistent). After a newly detected inconsistency negates KS-optimality, DDR can be used

to re-optimize (still at level two, but a “wiser” level two).

DDR can be implemented in any TMS-style system, and the system can run as it normally does until the

time to re-optimize is determined. It merely needs to maintain its priority queue and detected NAND-sets.

7.4 Implementation of DDR

7.4.1 Complexity and Anytime Issues

Pointers and counters added to data structures (for beliefs and NAND-sets) reduce the complexity of the

algorithms used by the DDR process by eliminating searches within larger data structures and comparisons

1I always assume a sound reasoner, so the system can never be KS-inconsistent and consistent—though flaws in implementation
or inelegant halting could possibly result in such a state.
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between sets of beliefs. A global test-number counter reduces complexity and improves the recovery of

a system when procedures are halted part way through. By assigning the global counter number to each

element as it is dealt with, there is a way to determine if the contact with an element is a first contact

or a repeated contact. This eliminates the need for group counter zeroing at the beginning of procedures,

which reduces complexity when a procedure might access a small percentage of the elements in a group—

zeroing all counters is prohibitively expensive. It also insures that updating information in a large group, if

interrupted, has a record of which elements have been updated and which have not.

My algorithm for detecting subset/superset relationships between a belief set A and a collection of belief

sets {B1,B2, . . . ,Bn} improves the complexity of that operation. Traditional subset/superset testing involves

handling many beliefs that are not shared between sets. My algorithm reduces the complexity to (worst

case) the sum of the cardinality of the intersections: ∑ | A∩Bi |, for 1≤ i≤ n. Only intersecting beliefs are

handled and no belief in a set is handled more than once.

7.4.2 Ordering Beliefs

Ordering beliefs can be done in several ways. Requiring the user to order the beliefs at the time they are

entered into the base is the most cumbersome and invasive technique.

Ordering sources and categories of beliefs and associating each belief with a source and/or category

allows the user to develop a pre-ordering on the beliefs without having to examine, compare and order

individual beliefs. This works for sources of information (e.g., UAV, troops, INTEL,. . . ) and for belief

categories (e.g., rule, fact, sensor-reading, . . . ). If every NAND-set has a least element (i.e., each NAND-set

spans categories but never has two beliefs in its weakest category), DDR can run without assistance. If two

beliefs in the same category are being considered as culprits, further heuristics are needed or, as with our

implementation, the user can be asked to select the culprit(s).
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If the association to a belief credibility category or source is automated (e.g., the system recognizes the

difference between a sensor reading and a rule or between sources providing information to the system),

then much of the work involved in ordering the beliefs is eliminated. Categorizing each belief by hand is

time-consuming and should be avoided.

Asking the user to order beliefs that are actually selected as culprits (selected by the user or some

other agency) is a reasonable solution when categorizing is not an option, because it avoids ordering or

categorizing non-culprit beliefs. When a new culprit is chosen (again, this must be by the user), it is placed

within the ordering by the user.

When/How to Run DDR

DDR can be run after every belief change operation that involves base belief removal (optimized-additon;

favoring optimality), during downtime of the system (when input/query volume is low; favoring usability),

and/or upon user demand.

Because DDR alters the knowledge state that the user is familiar with, it is important to notify the user of

changes to the base. As with any DOBS system, there is a tradeoff between optimality and usability. DDR

changes/improvements can be implemented as found (favoring optimality), upon notification and acceptance

by the user (user-friendly, but invasive), or at some predetermined time (typically downtime; e.g., update

every night at 2:00 AM). Notifying the user of changes to the set of derived beliefs that are lost/regained due

to DDR-based changes might also be helpful, but potentially extensive. Filtering for relevance to current

projects may be helpful.

7.5 In Summary

Reconsideration can assist KR&R systems with hindsight base credibility improvement.
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DDR provides many improvements to a KR&R system that detects NAND-sets by

• eliminating operation order side-effects with an efficient, anytime, KS-optimizing process;

• offering a measurement of credibility for a KS-inconsistent base and its deductively open belief space;

and

• performing optimized adjustment to the continual influx of new information—whether it comes as as

new input or newly derived beliefs and NAND-sets.
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Chapter 8

Future Work

This chapter mentions areas and topics of further research that would build on the research presented in this

dissertation.

8.1 Non-Linear Orderings

The research in this dissertation assumed that base beliefs could be ordered linearly. Future research should

explore reconsideration and DDR for orderings that are non-linear. Specific issues should include

1. base beliefs in a partial order;

2. base beliefs in a total pre-order;

3. base beliefs in a pre-order that is neither antisymmetric nor comparable;

4. dealing with NAND-sets that do not have a unique weakest element.

It is possible to have (1), (2), or (3), without triggering (4). How best to define an optimal base and handle

culprit selection in situation (4) remains an open question.

The situation mentioned in (4) was discussed in Sections 3.4.2 and 3.4.3 along with the concepts of

credulous vs. skeptical reasoning. When presented with a non-singleton set A of equally viable culprits to
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choose from, the skeptical choice is to remove all beliefs in the set (B′= B\A), and the credulous choice is to

non-deterministically select only one belief in the set for removal (B′ = B\{p}, where p ∈ A). Future work

should explore and define the benefits reconsideration (and DDR) can provide to a system that performs

either skeptical or credulous reasoning. Let us assume that future knowledge acquisition and/or reasoning

identifies a set A′ ⊆ A as no longer containing viable culprits:

• In a skeptical system, reconsideration would return the beliefs in A′ to the base, provided there was

no other reason preventing their return. This allows a system to play it safe by removing all possible

culprits yet still recover those that are later deemed to be safe (in hindsight).

• In a credulous system, reconsideration (along with a new credulous selection) would swap the orig-

inally removed belief p with one of the less preferred beliefs in A \A′—returning p to the base and

removing some q ∈ A\A′.

8.2 Multiple Contexts

The research in this dissertation assumes one B∪ and one base B that is desired to be as credible as possible.

Future work should explore the possibility of maintaining a global B∪ (and, for DDR, a global I), but

allowing multiple sub-contexts to be defined using subsets of B∪ (and, for DDR, I ) along with possibly

differing orderings. Reflective of multi-context reasoning in an ATMS, a NAND-set S that is discovered in

one context would be added to the global I and made available to other contexts if and when S is a subset of

their B∪ elements. Each context would maintain its own knowledge state tuple.

8.3 Contraction and Disbelief in a System Using Reconsideration

It would be interesting to explore the role that user-initiated contraction (i.e., contraction that is not done for

consistency maintenance, only) can have in a system that performs reconsideration. Recall that traditional
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contraction of a belief from a base B is undone by reconsideration.

Contraction could be implemented as a removal from B∪. In this case, there is the issue of whether (for

a DOBS-DDR system) to remove elements in I that contain the contracted belief. If not removed, elements

in I are no longer subsets of B∪ as originally defined. If removed, then the resulting I is less informed that it

was before, and the removed information would not be available if the contracted belief is reasserted in the

future.

If maintaining subsets of B∪ for each context, user-initiated contraction could be performed on the

context specific B∪ with corresponding changes to the context-specific I. If the contracted belief is later

returned, the sets that were removed from the context-specific I would still be present in the global I for

re-acquisition.

There could be different contraction operations for contracting a base belief (e.g., input error) and con-

tracting a belief from the belief space (as with AGM or base contraction). Contractions might also be

considered permanent—e.g., removing a belief and disallowing its return. Note that permanent contraction

from a belief space should be compared to disbelief, and reasoning from such a contraction may be possible:

e.g., if q is forbidden to return to the belief space and p→ q, then ¬p may be derivable.

8.4 DDR-Specific Research Topics

8.4.1 DDR for Default Logic Systems

In a default logic system, the removal of a belief might allow a blocked default belief to return. A DDR-like

algorithm might be useful for processing the order in which various blocked default beliefs are considered

for possible return by focusing on the more important beliefs first as opposed to processing them in the order

they became (or, more accurately, may have become) un-blocked. If a default logic system has a section of
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its base that contains monotonic beliefs, DDR could be helpful in maximizing the credibility of that section.

8.4.2 Postulates Constraining DDR Belief Change Operations

Operations on a DDR knowledge state were defined using kernel consolidation. Future research should

develop postulates constraining the belief change operations performed on a DDR knowledge state. In

addition to changes to the current base and the priority queue, these should also include operations that

change other elements in the tuple.

8.4.3 Further Research on Knowledge State Preference Orderings

In this dissertation, the development and discussion of the DDR and DOBS-DDR knowledge states were

focused on elements that affect the DDR algorithm and its anytime features. Future work should explore

and define other aspects of these knowledge states. One key issue is how changes to I, D∪, and H should

affect knowledge state preference ordering (�KS). Recall that the definitions in this dissertation held those

elements constant.

Although B∪ was also held constant, it is impractical to compare two knowledge states with differing

values for B∪. Comparing knowledge states with different orderings (�) might also be possible provided

the orderings are not inconsistent with each other.

8.5 DOBS-Specific Research Topics

Research is needed to explore the changes to D∪ and H in a DOBS that results from reasoning. This work

should formalize the query process and forward inferencing of a DOBS that produce new derivations. This

would be an extension of the work presented in [Johnson & Shapiro2000a].

As with the DDR knowledge state, future work should include DOBS-adjusted versions of the standard
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belief change postulates for belief sets (recalling that a DOBS can be implemented in a coherence version)

and belief bases. This would be an extension of the work presented in [Johnson & Shapiro2001].

A currently unexplored area of DOBS research involves using the DOBS formalization to develop guide-

lines and benchmark tests for evaluating and comparing implemented systems. These descriptions can better

identify the strengths and weaknesses of a system so that potential users can choose the strengths and weak-

nesses that best fit their needs.

8.6 Implementation-Specific Research Topics

The following list contains action items that are specific to implementing DDR and automated belief revision

in SNePS:

• Implementing DDR in multiple contexts.

• Improving NAND-set detection. Explore other tests that can be added to improve inconsistency de-

tection. Note: be aware of cost/benefit trade-offs.

• Providing the user with an interface (text or GUI) for altering a belief ordering.

• Providing a GUI interface to assist with culprit selection.

• Implementing sufficient heuristics to assist (or eliminate) the user during culprit selection.

– Implementing DDR and automated belief change for reasoning and acting agents (robots, VR

agents, etc).

– Implementing an auto-ordering that develops a pre-order based on the user’s culprit selections.

This would replace or reduce the user having to manually insert a new culprit into an existing

order. This requires meta-checking to insure there are no cycles in the ordering. It also requires

redeveloping the DDR algorithms to work with a pre-order rather than a linear order—this affects

the ordering of the priority queues and NAND-set queues.

249



– Assisting the user during culprit selection of a NAND-set by providing existing culprit order-

ing of pertinent beliefs. This would include any pre-order information about the beliefs in the

NAND-set being processed.
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Appendix A

Appendix: Proofs for Chapter 4

A.1 Theorem Proofs

A.1.1 Theorem 4.2.36

Given the DDR knowledge state KS = 〈B,B∪, I,�,Q〉, Proper-Q(KS), 〈p, justout〉 ∈ Q, and KS1 =

〈B,B∪, I,�,Q1←ref Change-Tag(p,Q,both,�) 〉: Proper-Q(KS1).

Proof.

1. KS = 〈B,B∪, I,�,Q〉 (Premise)

2. Proper-Q(KS) (Premise)

3. 〈p, justout〉 ∈ Q (Premise)

4. Q1 = Change-Tag(p,Q,both,�) (Premise)

5. 〈p,both〉 ∈ Q1 (4,Def 4.2.30)

6. (∀q 6= p,∀τ) : 〈q,τ〉 ∈ Q⇔ 〈q,τ〉 ∈ Q1 (4,Def 4.2.30)

7. Q1 is a DDR priority queue (5,6,Def 4.2.1)

8. KS1 = 〈B,B∪, I,�,Q1〉 (Premise)
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9. B = B1 ∧ B∪ = B∪1 ∧ I = I1 ∧ �=�1 ∧ Q 6= Q1 ⇒ X = X1 ∧

(∀p): MustOut(p,KS) ≡MustOut(p,KS1) ∧ BadOut(p,KS) ≡ BadOut(p,KS1)

∧ JustifiedOut(p,KS) ≡ JustifiedOut(p,KS1) . (1,8,Obs 4.2.22)

10. Given a DDR knowledge state KS′, Proper-Q(KS′) ≡

∀b : BadOut(b,KS′) ⇒ Protected-by-Q(b,KS′). (Def 4.2.32)

11. ∀b : BadOut(b,KS) ⇒ Protected-by-Q(b,KS). (2,10)

12. Given a DDR knowledge state KS′, Protected-by-Q(b,KS′) ≡

Q1 (or 〈b, in?〉 ∈ Q′

Q2 〈b,both〉 ∈ Q′

Q3 ∃S s.t (and S ∈ I′

Q4 Weakest(S,�) = b

Q5 (S\{b})∩X ′ 6= /0

Q6 ∀s ∈ ((S\{b})∩X ′):

Q7 (or 〈s, justout〉 ∈ Q′

Q8 〈s,both〉 ∈ Q′ )))) (Def 4.2.31)

13. Let b be an arbitrary belief s.t. BadOut(b,KS1).

14. BadOut(b,KS) (1,8,9,13)

15. Protected-by-Q(b,KS) (11,14)

16. (b = p) ∨ (b 6= p) (tautology)

17. If b = p, then 〈b,both〉 ∈ Q1 (5,12)

18. If b = p, then Protected-by-Q(b,KS1) (12,17)

19. 〈b, in?〉 ∈ Q ∨ 〈b,both〉 ∈ Q ∨ (∃S) :
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( S ∈ I ∧ Weakest(S,�) = b ∧ (S\{b})∩X 6= /0 ∧

(∀s ∈ ((S\{b})∩X) : (〈s, justout〉 ∈ Q ∨ 〈s,both〉 ∈ Q ))). (12,15)

20. If b 6= p, then 〈b, in?〉 ∈ Q⇔ 〈b, in?〉 ∈ Q1 (6)

21. If b 6= p, then 〈b,both〉 ∈ Q⇔ 〈b,both〉 ∈ Q1 (6)

22. (∀s 6= p) : (〈s, justout〉 ∈ Q ∨ 〈s,both〉 ∈ Q)⇒ (〈s, justout〉 ∈ Q1 ∨ 〈s,both〉 ∈ Q1) (6)

23. (∀s = p) : (〈s, justout〉 ∈ Q ∨ 〈s,both〉 ∈ Q)⇒ (〈s, justout〉 ∈ Q1 ∨ 〈s,both〉 ∈ Q1) (3,5)

24. (∀s) : (〈s, justout〉 ∈ Q ∨ 〈s,both〉 ∈ Q)⇒ (〈s, justout〉 ∈ Q1 ∨ 〈s,both〉 ∈ Q1) (22,23)

25. If b 6= p, then 〈b, in?〉 ∈ Q1 ∨ 〈b,both〉 ∈ Q1 ∨ (∃S) :

( S ∈ I ∧ Weakest(S,�) = b ∧ (S\{b})∩X 6= /0 ∧

(∀s ∈ ((S\{b})∩X) : (〈s, justout〉 ∈ Q1 ∨ 〈s,both〉 ∈ Q1 ))). (19,20,21,24)

26. If b 6= p, then Protected-by-Q(b,KS1) (1,8,12,25)

27. Protected-by-Q(b,KS1) (16,18,26)

28. (∀b) : BadOut(b,KS1) ⇒ Protected-by-Q(b,KS1) (13,27)

29. Proper-Q(KS1) (10 ,28) 2
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A.1.2 Theorem 4.2.37

Given the DDR knowledge state KS = 〈B,B∪, I,�,Q〉, Proper-Q(KS), p∈X , p 6∈Q, and KS1 = 〈B,B∪, I,�

,Q1←ref Insert(〈p,τ〉,Q,�)〉, where τ ∈ {justout, in?,both}: Proper-Q(KS1).

Proof.

1. KS = 〈B,B∪, I,�,Q〉 (Premise)

2. Proper-Q(KS) (Premise)

3. p ∈ X (Premise)

4. p 6∈ Q (Premise)

5. Q1 = Insert(〈p,τ〉,Q,�)〉, where τ ∈ {justout, in?,both} (Premise)

6. Q1 is a DDR priority queue (3,5,Def 4.2.1,Def 4.2.29)

7. p ∈ Q1 (5,Def of Insert: Def 4.2.29)

8. (∀q,∀τ) : 〈q,τ〉 ∈ Q⇒ 〈q,τ〉 ∈ Q1 (5,Def of Insert: Def 4.2.29)

9. KS1 = 〈B,B∪, I,�,Q1〉 (Premise)

10. B = B1 ∧ B∪ = B∪1 ∧ I = I1 ∧ �=�1 ∧ Q 6= Q1 ⇒ X = X1 ∧

(∀p): MustOut(p,KS) ≡MustOut(p,KS1) ∧ BadOut(p,KS) ≡ BadOut(p,KS1)

∧ JustifiedOut(p,KS) ≡ JustifiedOut(p,KS1) . (1,9,Obs 4.2.22)

11. Given a DDR knowledge state KS′, Proper-Q(KS′) ≡

∀b : BadOut(b,KS′) ⇒ Protected-by-Q(b,KS′). (Def 4.2.32)

12. ∀b : BadOut(b,KS) ⇒ Protected-by-Q(b,KS). (2,11)

13. Given a DDR knowledge state KS′, Protected-by-Q(b,KS′) ≡

Q1 (or 〈b, in?〉 ∈ Q′

Q2 〈b,both〉 ∈ Q′

Q3 ∃S s.t (and S ∈ I′
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Q4 Weakest(S,�) = b

Q5 (S\{b})∩X ′ 6= /0

Q6 ∀s ∈ ((S\{b})∩X ′):

Q7 (or 〈s, justout〉 ∈ Q′

Q8 〈s,both〉 ∈ Q′ )))) (Def 4.2.31)

14. Let b be an arbitrary belief s.t. BadOut(b,KS1).

15. BadOut(b,KS) (1,9,10,14)

16. Protected-by-Q(b,KS) (12,15)

17. 〈b, in?〉 ∈ Q ∨ 〈b,both〉 ∈ Q ∨ (∃S) :

( S ∈ I ∧ Weakest(S,�) = b ∧ (S\{b})∩X 6= /0 ∧

(∀s ∈ ((S\{b})∩X) : (〈s, justout〉 ∈ Q ∨ 〈s,both〉 ∈ Q ))). (13,16)

18. 〈b, in?〉 ∈ Q⇒ 〈b, in?〉 ∈ Q1 (8)

19. 〈b,both〉 ∈ Q⇒ 〈b,both〉 ∈ Q1 (8)

20. (∀s) : (〈s, justout〉 ∈ Q ∨ 〈s,both〉 ∈ Q)⇒ (〈s, justout〉 ∈ Q1 ∨ 〈s,both〉 ∈ Q1) (8)

21. 〈b, in?〉 ∈ Q1 ∨ 〈b,both〉 ∈ Q1 ∨ (∃S) :

( S ∈ I ∧ Weakest(S,�) = b ∧ (S\{b})∩X 6= /0 ∧

(∀s ∈ ((S\{b})∩X) : (〈s, justout〉 ∈ Q1 ∨ 〈s,both〉 ∈ Q1 ))). (17,18,19,20)

22. Protected-by-Q(b,KS1) (1,9,13,21)

23. (∀b) : BadOut(b,KS1) ⇒ Protected-by-Q(b,KS1) (14,22)

24. Proper-Q(KS1) (11 ,23) 2
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A.1.3 Theorem 4.2.40

Given the DDR knowledge states KS = 〈B,B∪, I,�,Q〉 and KS1 = 〈B1,B∪, I,�,Q1〉, where Proper-Q(KS),

p ∈ X , p ∈ B1, p 6∈ Q1 and (∀q 6= p,∀τ) : (q ∈ B ≡ q ∈ B1)∧ (〈q,τ〉 ∈ Q ≡ 〈q,τ〉 ∈ Q1); then following

statement is true: Proper-Q(KS1).

Proof.

1. Proper-Q(KS) (premise)

2. p ∈ X (premise)

3. p ∈ B1 (premise)

4. p 6∈ Q1 (premise)

5. (∀q 6= p) : (q ∈ B≡ q ∈ B1) (premise)

6. (∀q 6= p,∀τ) : (〈q,τ〉 ∈ Q≡ 〈q,τ〉 ∈ Q1) (premise)

7. Given any knowledge state KS = 〈B,B∪, I,�,Q〉,

Proper-Q(KS) ≡ (∀b) : BadOut(b,KS) ⇒ Protected-by-Q(b,KS). (Def 4.2.32)

8. (∀b) : BadOut(b,KS) ⇒ Protected-by-Q(b,KS). (1,7)

9. Protected-by-Q(b,KS′) ≡

Q1 (or 〈b, in?〉 ∈ Q′

Q2 〈b,both〉 ∈ Q′

Q3 ∃S s.t (and S ∈ I′

Q4 Weakest(S,�) = b

Q5 (S\{b})∩X ′ 6= /0

Q6 ∀s ∈ ((S\{b})∩X ′):

Q7 (or 〈s, justout〉 ∈ Q′

Q8 〈s,both〉 ∈ Q′ )))) (Def 4.2.31)
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10. Let b be an arbitrary belief s.t. BadOut(b,KS) ∧ b 6= p.

11. Protected-by-Q(b,KS). (8,10)

12. X1 =de f B∪ \B1 (premise,Def 4.2.1)

13. Given any KS, BadOut(b,KS)≡ ((b ∈ X) ∧ (¬MustOut(b,KS))). (Def 4.2.19)

14. ¬BadOut(p,KS1) (3,13)

15. b ∈ X1 (5,10)

16. 〈b, in?〉 ∈ Q≡ 〈b, in?〉 ∈ Q1 (6,10)

17. 〈b,both〉 ∈ Q≡ 〈b,both〉 ∈ Q1 (6,10)

18. (〈b, in?〉 6∈ Q∧〈b,both〉 6∈ Q) ⇒

Q3 (∃S s.t (and S ∈ I

Q4 Weakest(S,�) = b

Q5 (S\{b})∩X 6= /0

Q6 ∀s ∈ ((S\{b})∩X):

Q7 (or 〈s, justout〉 ∈ Q

Q8 〈s,both〉 ∈ Q ))). Take such an S. (9,11)

19. p 6∈ S⇒ (∀s ∈ ((S\{b})∩X1) 6= /0 : 〈s, justout〉 ∈ Q1∨〈s,both〉 ∈ Q1) (5,6,18)

20. (S\{b, p})∩X 6= /0⇒ (∀s ∈ ((S\{b})∩X1) 6= /0 :

(∀s ∈ ((S\{b})∩X1) 6= /0 : 〈s, justout〉 ∈ Q1∨〈s,both〉 ∈ Q1) (3,6,18)

21. (S\{b, p})∩X = /0 ⇒ (S\{b})⊆ B1 = /0 (3)

22. If S ∈ I, then Culprit(S,�) =de f Weakest(S,�). (Def 4.2.6)

23. b = Culprit(S,�). (18,22)

24. Given any KS = 〈B,B∪, I,�,Q〉,

MustOut(b,KS)≡ (∃S ∈ I) : S\{b} ⊆ B and b = Culprit(S,�). (Def 4.2.18)
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25. (S\{b, p})∩X = /0 ⇒MustOut(b,KS1) (21,23,24)

26. (S\{b, p})∩X = /0 ⇒¬BadOut(b,KS1) (13,25)

27. ¬BadOut(b,KS1) ∨

(∀s ∈ ((S\{b})∩X1) 6= /0) : 〈s, justout〉 ∈ Q1∨〈s,both〉 ∈ Q1 (19,20,26)

28. (〈b, in?〉 6∈ Q∧〈b,both〉 6∈ Q) ⇒ (¬BadOut(b,KS1) ∨

Q3 (∃S s.t (and S ∈ I

Q4 Weakest(S,�) = b

Q5 (S\{b})∩X1 6= /0

Q6 ∀s ∈ ((S\{b})∩X1):

Q7 (or 〈s, justout〉 ∈ Q1

Q8 〈s,both〉 ∈ Q1 )))). (18,27)

29. 〈b, in?〉 ∈ Q1∨〈b,both〉 ∈ Q1 ∨ ¬BadOut(b,KS1) ∨

Q3 (∃S s.t (and S ∈ I

Q4 Weakest(S,�) = b

Q5 (S\{b})∩X1 6= /0

Q6 ∀s ∈ ((S\{b})∩X1):

Q7 (or 〈s, justout〉 ∈ Q1

Q8 〈s,both〉 ∈ Q1 )))). (16,17,28)

30. ¬BadOut(b,KS1) ∨ Protected-by-Q(b,KS1) (9,29)

31. (∀b) : (BadOut(b,KS)∧b 6= p)⇒ (¬BadOut(b,KS1) ∨ Protected-by-Q(b,KS1)) (10,30)

32. (∀b) : (¬BadOut(b,KS))∨ (b = p) ∨ (¬BadOut(b,KS1)) ∨ (Protected-by-Q(b,KS1)) (31)

33. b = p⇒ ¬BadOut(b,KS1) (14)

34. (∀b) : ¬BadOut(b,KS)∨ ¬BadOut(b,KS1) ∨ Protected-by-Q(b,KS1) (32,33)
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35. Given any KS, (∀b) : ¬BadOut(b,KS) ≡ (b ∈ B)∨ (MustOut(b,KS)). (13)

36. (∀b) : b ∈ B⇒ b ∈ B1 (2,5)

37. (∀b) : b ∈ B⇒¬BadOut(b,KS1) (35,36)

38. (∀b) : (S\{b} ⊆ B)⇒ (S\{b} ⊆ B1) (3,5)

39. (∀b) : MustOut(b,KS)⇒MustOut(b,KS1) (24,38)

40. (∀b) : MustOut(b,KS)⇒¬BadOut(b,KS1) (35,39)

41. (∀b) : ¬BadOut(b,KS) ⇒ ¬BadOut(b,KS1) (35,37,40 )

42. (∀b) : ¬BadOut(b,KS1) ∨ Protected-by-Q(b,KS1) (34,41)

43. (∀b) : BadOut(b,KS1) ⇒ Protected-by-Q(b,KS1) (42)

44. Proper-Q(KS1) (7,43) 2
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A.2 Helper-Functions: Theorems and Proofs

A.2.1 Theorem and Proof for Safe-Return (p,KS): Theorem 4.3.1

Theorem 4.3.1 Given KS and p and the following:

• Preconditions for Safe-Return(p,KS): KS = KSpre is a DDR knowledge state containing the elements

B,B∪, I,�, and Q; Proper-KS(KSpre); BadOut(p,KSpre); 〈p,τ〉= First(Qpre), where τ ∈ {in?,both}.

• R = Safe-Return(p,KS).

then the following postconditions hold:

• Postconditions for Safe-Return(p,KS): Returns a set of beliefs R ; KS = KSpost = KSpre; Proper-

KS(KS); BadOut(p,KS); R ⊆ B; (∀S ∈ I) : S 6⊆ ((B∪ {p}) \ R); ∑pi∈((B+p)\R)Cred(pi,B∪,�) >

∑p j∈BCred(p j,B∪,�); (∀r ∈ R,) : p � r ; (∀r ∈ R,∃S ∈ I) : r = Culprit(S,�) ∧ S ⊆ (((B + p) \

R)+ r).

Proof.

function Safe-Return(p,KS) ;;; returns a set of beliefs R

;;; Proper-KS(KS) KS is never altered; Proper-KS(KS) holds throughout; Call this axiom1.

〈B,B∪, I,�, Q 〉 ←ref KS

;;; p ∈ Q; ∴ p ∈ X (Preconditions; Def 4.2.1)

;;; Safe-per-I(KS) (Def 4.2.33)

;;;; (∀S ∈ I) : ¬Active(S,KS) (Def 4.2.16)

;;; ∴ (∀S ∈ I) : p ∈ S ∨ S 6⊆ (B+ p) (Def 4.2.12); Call this axiom2

R←{ } ;;; initializing R

;;; R⊆ B;R 6= /0⇒ ((∀r ∈ R) : p� r ∧ (((B+ p)\R)+ r) `⊥) holds vacuously

NQ←ref NAND-set-Q(NC-NAND-sets(p,KS) , �) ;;; NQ= p’s NC-NAND-sets in a queue
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;;; {S | S ∈ NQ}= {S | (S ∈ I) ∧ (p ∈ S) ∧ (p 6= Culprit(S,�))} (Def 4.2.1, Def 4.2.8,Def 4.2.11)

;;; ∴ (∀S ∈ NQ) : (S ∈ I) ∧ (p ∈ S) ∧ (p 6= Culprit(S,�))

;;; (∀S ∈ NQ) : p� Culprit(S,�) (Def 4.2.4, Def 4.2.6)

;;; NQstart ←NQ

;;; {S | S ∈ NQstart}= {S | (S ∈ I) ∧ (p ∈ S) ∧ (p 6= Culprit(S,�))} call this axiom3

;;; (∀S j,S j+1 ∈ NQ) : Culprit(S j ,�) � Culprit(S j+1 ,�) for 1 ≤ j < n . (Def 4.2.8)

;;; R⊆ B;R 6= /0⇒ ((∀r ∈ R) : p� r ∧ (((B+ p)\R)+ r) `⊥) still holds

;;; UNS←{ } ;;; for reference in this proof; UNS for Unsafe NAND-sets

;;; (∀S ∈ UNS) : S ∈ I (holds vacuously)

loop until Empty(NQ)

;;; ¬Empty(NQ); NQtop← NQ; Rtop← R (inside loop)

;;; R⊆ B;R 6= /0⇒ ((∀r ∈ R) : p� r ∧ (((B+ p)\R)+ r) `⊥) (still holds)

;;; (∀S ∈ NQ) : (S ∈ I) ∧ (p ∈ S) ∧ (p 6= Culprit(S,�)) (still holds)

;;; ∴ (∀S ∈ NQtop) : (S ∈ I) ∧ (p ∈ S) ∧ (p 6= Culprit(S,�))

;;; (∀S ∈ UNS) : S ∈ I (still holds)

N←ref Pop(NQ) ;;; First element in NQ removed into N

;;; NQ = Rest(NQtop); N =First(NQtop); N ∈ NQtop; N 6∈ NQ (Def 4.2.29)

;;; (N ∈ I) ∧ (p ∈ N) ∧ (p� Culprit(N,�)) (N ∈ NQtop ; Def 4.2.29)

;;; R = Rtop; R⊆ B; R 6= /0⇒ ((∀r ∈ R) : p� r ∧ (((B+ p)\R)+ r) `⊥) (still holds)

;;; (∀r ∈ R) : (r � Culprit(N,�)) (ordering of NQtop)

;;; (∀S ∈ NQ) : (S ∈ I) ∧ (p ∈ S) ∧ (p 6= Culprit(S,�)) (NQ = Rest(NQtop))

;;; (∀S ∈ UNS) : S ∈ I (still holds)

if (N \{p} ⊆ B AND N∩R = /0) then
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;;; (N ∈ I) ∧ (p ∈ N) ∧ (p� Culprit(N,�)) (still holds)

;;; ∴ p 6= Culprit(N,�) ∧ Culprit(N,�) ∈ B (preceding two lines)

;;; N \{p} ⊆ B; N∩R = /0; (inside if)

;;; ∴ N ⊆ ((B+ p)\R)

;;; MustOut( Culprit(N,�) , 〈(B∪{p})\R , B∪ , I, �, Q 〉) (Def 4.2.18)

;;; R = Rtop; R⊆ B; R 6= /0⇒ ((∀r ∈ R) : p� r ∧ (((B+ p)\R)+ r) `⊥) (still holds)

;;; (∀r ∈ R) : r � Culprit(N,�) (now, r � Culprit(N,�), because N∩R = /0)

;;; (∀S ∈ NQ) : (S ∈ I) ∧ (p ∈ S) ∧ (p 6= Culprit(S,�)) (still holds)

;;; (∀S ∈ UNS) : S ∈ I (still holds)

;;; (∀S ∈ UNS) : Culprit(N,�) 6∈ S (ordering of NQtop)

R←ref R ∪ {Culprit(N,�)} ;;; culprit for N inserted into R

;;; R 6= /0; R 6= Rtop; Rtop ( R; R = (Rtop+ Culprit(N,�));

;;; ∴ N∩R = { Culprit(N,�)} (N∩Rtop = /0; previous comment)

;;; R⊆ B; (∀r ∈ R) : p� r (Culprit(N,�) ∈ B; p� Culprit(N,�))

;;; N∩R 6= /0; N 6⊆ ((B∪{p})\R)

;;; UNS←ref UNS∪N

;;; (∀S ∈ UNS) : S ∈ I (still holds, because N ∈ I)

;;; (∀S ∈ UNS) : S∩R = {Culprit(S,�)} (ordering of NQtop)

;;; (∀S ∈ UNS) : S\ ((B+ p)\R) = Culprit(S,�) (S\{p} ⊆ B, from if condition)

;;; (∀r ∈ R,∃S ∈ UNS) : (S ∈ I) ∧ r = Culprit(S,�). . . (Preceding comments)

;;; . . .∧ S⊆ (((B+ p)\R)+ r) (Preceding comments)

;;; (∀r ∈ R,∃S ∈ I) : r = Culprit(S,�) ∧ S⊆ (((B+ p)\R)+ r) (Preceding comment)

;;; ∴ (∀r ∈ R) : (((B+ p)\R)+ r) `⊥ (Obs 4.2.13)

262



;;; (∀S ∈ NQ) : (S ∈ I) ∧ (p ∈ S) ∧ (p 6= Culprit(S,�)) (still holds)

endif

;;; N ∈ NQstart ; N 6∈ NQ (still holds)

;;; N 6⊆ ((B∪{p})\R) (either failed if condition, or Culprit(N,�) ∈ R)

;;; (∀S ∈ {S | S ∈ NQstart}\{S | S ∈ NQ}) : S 6⊆ ((B∪{p})\R) (Preceding comments)

;;; R⊆ B; (∀r ∈ R) : p� r (still holds)

;;; (∀r ∈ R) : (((B+ p)\R)+ r) `⊥ ( still holds)

;;; (∀S ∈ NQ) : (S ∈ I) ∧ (p ∈ S) ∧ (p 6= Culprit(S,�)) (still holds)

;;; (∀S ∈ UNS) : S ∈ I (still holds)

;;; (∀r ∈ R,∃S ∈ I) : r = Culprit(S,�) ∧ S⊆ (((B+ p)\R)+ r) (still holds)

end loop

;;; Proper-KS(KS) axiom1

;;; KS is unchanged since the beginning

;;; BadOut(p,KS); (Precondition: still holds)

;;; ∴ (6 ∃S ∈ I) : p = Culprit(S,�) ∧ S⊆ (B+ p) (Def 4.2.18 ;Def 4.2.19;)

;;; ∴ (6 ∃S ∈ I) : p = Culprit(S,�) ∧ S⊆ (B+ p)\R (set theory); call this safe1

;;; ∴ (∀S ∈ I) : p ∈ S ∨ S 6⊆ (B+ p) axiom2

;;; ∴ (6 ∃S ∈ I) : p 6∈ S ∧ S⊆ (B+ p)\R (set theory); call this safe2

;;; Empty(NQ) (out of loop)

;;; (∀S ∈ {S | S ∈ NQstart}\{S | S ∈ NQ}) : S 6⊆ ((B∪{p})\R) (still holds)

;;; {S | S ∈ NQstart}\{S | S ∈ NQ}= {S | S ∈ NQstart} (Empty(NQ) )

;;; {S | S ∈ NQstart}= {S | (S ∈ I) ∧ (p ∈ S) ∧ (p 6= Culprit(S,�))} axiom3

;;; ∴ (6 ∃S ∈ I) : (p ∈ S) ∧ (p 6= Culprit(S,�)) ∧ S⊆ ((B∪{p})\R) call this safe3
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;;; ∴ (6 ∃S ∈ I) : S⊆ ((B∪{p})\R) ( safe1;safe1;safe3)

;;; R⊆ B; (∀r ∈ R) : p� r ∧ (((B+ p)\R)+ r) `⊥ (still holds)

;;; ∴ ∑pi∈((B+p)\R)Cred(pi,B∪,�) > ∑p j∈BCred(p j,B∪,�)

;;; (∀r ∈ R,∃S ∈ I) : r = Culprit(S,�) ∧ S⊆ (((B+ p)\R)+ r) (still holds)

return R 2
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A.2.2 Theorem and Proof for KS-Add-Remove(KS, p,R): Theorem 4.3.2

Theorem 4.3.2 Given KS, p,R and the following

• Preconditions for KS-Add-Remove(KS, p,R): KS = KSpre is a DDR knowledge state;

Proper-KS(KSpre); BadOut(p,KSpre); ∑pi∈((B+p)\R)Cred(pi,B∪,�) > ∑p j∈BCred(p j,B∪,�);

R⊆ Bpre; 〈p,τ〉= First(Qpre), where τ ∈ {in?,both}; (∀S ∈ I) : S 6⊆ ((Bpre + p)\R); and

(∀r ∈ R) : p� r, and (∃S ∈ Ipre) : r = Culprit(S,� pre) ∧ S⊆ (((Bpre + p)\R)+ r).

• KSpost is the knowledge state resulting from KS-Add-Remove(KS, p,R)

then the following postconditions hold:

• Postconditions for KS-Add-Remove(KS, p,R): KSpost is a DDR knowledge state; Proper-KS(KSpost);

Bpost = (Bpre ∪ {p}) \ R; B∪post = B∪pre; Ipost = Ipre; �post=�pre; (∀r ∈ R) : JustifiedOut(r,KSpost);

QImpact(KSpre)> QImpact(KSpost) ; Bpost � Bpre ; KSpost �KS KSpre ; p 6∈Qpost ; (∀r ∈ R) : p �

r ∧ 〈r, justout〉 ∈ Qpost ; (∀b 6∈ (R∪{p})) : ((〈b,τ〉 ∈ Qpre)≡ (〈b,τ〉 ∈ Qpost)).

Proof.

procedure KS-Add-Remove(KS, p,R),

〈 B , B∪ , I , � , Q 〉 ←ref KS

;;; (∀b 6∈ (R∪{p})) : ((〈b,τ〉 ∈ Qpre)≡ (〈b,τ〉 ∈ Q)) (no changes, yet)

Q1←ref New-Q( ) ;;; A new priority queue unrelated to KS

for each r in R do

;;; r 6∈ Q1

Q1←ref Insert( 〈r, justout〉 , Q1 , �) 〉

;;; 〈r, justout〉 ∈ Q1 (Def of Insert: Def 4.2.29)

;;; (∀q 6= r) : 〈r,τ〉 ∈ Q1⇔ 〈r,τ〉 ∈ Q1 (Def 4.2.29)

;;; (∀q,τ) : 〈q,τ〉 ∈ Q1⇒ (q ∈ R) ∧ τ = justout
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endfor

;;; (∀q,τ) : 〈q,τ〉 ∈ Q1⇔ (q ∈ R) ∧ τ = justout (still holds; for loop results)

;;; ∴ (∀r ∈ R) : 〈r, justout〉 ∈ Q1

;;; KS = KSpre (no changes, yet)

;;; (∀b 6∈ (R∪{p})) : ((〈b,τ〉 ∈ Qpre)≡ (〈b,τ〉 ∈ Q)) (no changes, yet)

;;; Proper-KS(KS) (Precondition; still holds)

;;; BadOut(p,KS) (Precondition; still holds)

;;; R⊆ B (Precondition; still holds)

;;; ∴ (∀r ∈ R) : r 6∈ Q (Def 4.2.1)

;;; ∴ (∀r ∈ R) : 〈r, justout〉 ∈Merge-Qs(Qpre,Q1,�) (Def 4.2.30)

;;; 〈p,τ〉= First(Qpre), where τ ∈ {in?,both} (Precondition; still holds)

;;; (∀r ∈ R) : p� r (Precondition; still holds)

;;; ∴ 〈p,τ〉= First(Merge-Qs(Qpre,Q1,�)), where τ ∈ {in?,both} (Def 4.2.29,Def 4.2.30)

;;; ∴ (∀r ∈ R) : 〈r, justout〉 ∈Popped(Merge-Qs(Qpre,Q1,�)) (Def 4.2.29)

KS ←ref 〈 B←ref (B∪{p})\R, B∪ , I , � , Q←ref Popped(Merge-Qs(Q,Q1,�))〉

;;; p 6∈ Q; (∀q ∈ Q) : p� q (Def of Popped: Def 4.2.29)

;;; QImpact(KSpre) > QImpact(KS)) (Def 4.2.43)

;;; (∀b 6∈ (R∪{p})) : ((〈b,τ〉 ∈ Qpre)≡ (〈b,τ〉 ∈ Q)) (Def of Popped: Def 4.2.29)

;;; B∪ = B∪pre; I = Ipre; �=�pre

;;; B = (Bpre∪{p})\R

;;; ∴ p ∈ B (p 6∈ Q adheres to Sec 4.2.12 on semi-revision without re-ordering)

;;; (∀r ∈ R) : p� r (still holds)

;;; ∴ ∑pi∈((B+p)\R)Cred(pi,B∪,�) > ∑p j∈BCred(p j,B∪,�)
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;;; (∀S ∈ I) : S 6⊆ ((Bpre + p)\R) (Precondition; still holds)

;;; ∴ (∀S ∈ I) : S 6⊆ B

;;; ∴ Safe-per-I(KS) (Def 4.2.12,Def 4.2.16)

;;; Q = Popped(Merge-Qs(Qpre,Q1,�))

;;; (∀r ∈ R,∃S ∈ Ipre) : r = Culprit(S,� pre) ∧ S⊆ (((Bpre + p)\R)+ r) (Precondition; still holds)

;;; ∴ (∀r ∈ R,∃S ∈ I) : r = Culprit(S,�) ∧ S⊆ (B+ r)

;;; ∴ (∀r ∈ R) : B+ r `⊥ (Obs 4.2.13))

;;; ∴ (∀r ∈ R): MustOut(r,KS) (Def 4.2.18)

;;; (∀r ∈ R) : r 6∈ B (B = (Bpre∪{p})\R; adheres to (KSpre +! p) Def 4.2.12)

;;; (∀r ∈ R) : 〈r, justout〉 ∈ Popped(Merge-Qs(Qpre,Q1,�)) (still holds)

;;; ∴ (∀r ∈ R) : 〈r, justout〉 ∈ Q (follows queue maintenance for (KSpre +! p) Def 4.2.12)

;;; Proper-Q(KS) (Thm 4.2.40,Thm 4.2.41,Thm 4.2.42)

;;; and KS�KS KSpre (Def 4.2.23; Def 4.2.24); Def 4.2.45)

;;; Proper-KS(KS) (Def 4.2.33) 2
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A.2.3 Theorem and Proof for Process-Justout(KS, p): Theorem 4.3.3

Theorem 4.3.3 Given KS and p and the following

• Preconditions for Process-Justout (KS, p): KS = KSpre is a DDR knowledge state; Proper-KS(KSpre);

JustifiedOut(p,KSpre); and 〈p,τ〉= First(Qpre), where τ ∈ {justout,both};

• KSpost is the knowledge state resulting from Process-Justout (KS, p);

then the following postconditions hold:

• Postconditions for Process-Justout (KS, p): KSpost is a DDR knowledge state; Proper-KS(KSpost) ;

Bpost = Bpre ;B∪post = B∪pre ; Ipost = Ipre ;�post=�pre ; QImpact(KSpre)> QImpact(KSpost) ; KSpost �KS

KSpre ; Qpost resembles Qpre with the following changes:

– p 6∈ Qpost, and

– (∀N ∈NC-NAND-sets(p,KS),∃q =Culprit(N,�)): q ∈ X ⇒ 〈q, in?〉 ∈ Qpost ∨ 〈q,both〉 ∈ Qpost

Note: (∀N ∈ NC-NAND-sets(p,KS),∀b ∈ (X \ {p}),∀τ) : b 6=Culprit(N,�)⇒ ((〈b,τ〉 ∈ Qpre) ≡

(〈b,τ〉 ∈ Qpost)).

Proof.

procedure Process-Justout (KS, p)

〈 B , B∪ , I , � , Q 〉 ←ref KS

;;; (∀x ∈ Q) : x 6= p⇒ p� x (p is in first pair on Q)

;;; JustifiedOut(p,KS) (given)

;;; Proper-KS(KS) (given)

;;; Therefore Safe-per-I(KS) and Proper-Q(KS) (Def 4.2.33)

for each N ∈ NC-NAND-sets(p,KS)

q←ref Culprit(N)

;;; p� q and N ∈ I (Def 4.2.11)
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;;; JustifiedOut(p,KS) (still holds)

if q ∈ X do

;;; Proper-Q(KS) (still holds)

;;; JustifiedOut(p,KS) (still holds)

;;; (∀x ∈ Q) : x 6= p⇒ p� x (still holds)

;;; p� q (still holds)

Q←ref DDR-Q-Insert(q,KS) ;;; Destructively alters Q (and KS)

;;; (〈q, in?〉 ∈ Q ∨ 〈q,both〉 ∈ Q) (Defn of DDR-Q-Insert: Def 4.2.30)

;;; p� q (still holds)

;;; (∀x ∈ Q) : x 6= p⇒ p� x (still holds, because p� q)

;;; Proper-Q(KS) (Thm 4.2.38)

;;; JustifiedOut(p,KS) (still holds)

endif

;;; JustifiedOut(p,KS) (still holds)

;;; q ∈ X ⇒ 〈q, in?〉 ∈ Q ∨ 〈q,both〉 ∈ Q.

endfor

;;; (∀x ∈ Q) : x 6= p⇒ p� x (still holds)

;;; Therefore, 〈p,τ〉= First(Q) still holds

;;; Proper-Q(KS) (still holds)

;;; JustifiedOut(p,KS) (still holds)

;;; (∀N ∈NC-NAND-sets(p,KS),∃q =Culprit(N,�):

q ∈ X ⇒ 〈q, in?〉 ∈ Q ∨ 〈q,both〉 ∈ Q. (still holds)

;;; (∀N ∈ NC-NAND-sets(p,KS),∀b ∈ X ,∀τ) : b 6=Culprit(N,�)⇒
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((〈b,τ〉 ∈ Q)≡ (〈b,τ〉 ∈ Q)) (only culprits of NC-NAND-sets(p,KS) altered in Q)

KS ←ref 〈 B , B∪ , I , � , Popped(Q) 〉

;;; p 6∈ Q; (∀q ∈ Q) : p� q (Def of Popped: Def 4.2.29)

;;; QImpact(KSpre) > QImpact(KS)) (Def 4.2.43)

;;; Proper-Q(KS) (Thm 4.2.39)

;;; Safe-per-I(KS) (B and I unchanged, Def 4.2.16)

;;; Proper-KS(KS) (Def 4.2.33)

;;; and KS�KS KSpre (Def 4.2.23; Def 4.2.45)

;;; (∀N ∈NC-NAND-sets(p,KS),∃q =Culprit(N,�):

q ∈ X ⇒ 〈q, in?〉 ∈ Q ∨ 〈q,both〉 ∈ Q. (because p 6= q, still holds)

;;; (∀N ∈ NC-NAND-sets(p,KS),∀b ∈ X \{p},∀τ) : b 6=Culprit(N,�)⇒

((〈b,τ〉 ∈ Qpre)≡ (〈b,τ〉 ∈ Qpost)) (definition of Popped: Def 4.2.29) 2
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A.2.4 Theorem and Proof for Update-KS(KS,update, p,R): Theorem 4.3.4

Theorem 4.3.4 Given KS, update, p, and R and the following

• Preconditions for Update-KS (KS,update, p,R): KS = KSpre is a DDR knowledge state;

Proper-KS(KSpre); 〈p,τ〉= First(Qpre); update ∈ {PopQ,ProcJustout,AddRem}, and

– If update = PopQ: JustifiedOut(p,KSpre); and τ = in?.

– If update = ProcJustout: JustifiedOut(p,KSpre); and τ ∈ {justout,both}.

– If update = AddRem: BadOut(p,KSpre); R⊆ Bpre; τ ∈ {in?,both};

∑pi∈((B+p)\R)Cred(pi,B∪,�) > ∑p j∈BCred(p j,B∪,�);

(∀S ∈ I) : S 6⊆ ((Bpre + p)\R); and

(∀r ∈ R) : p� r, and (∃S ∈ I) : r = Culprit(S,�) ∧ S⊆ (((Bpre + p)\R)+ r);

• KSpost is the knowledge state resulting from Update-KS (KS,update, p,R);

then the following postconditions hold:

• Postconditions for Update-KS (KS,update, p,R): KSpost is a DDR knowledge state; KSpost �KS KSpre;

B∪post = B∪pre; Ipost = Ipre; �post=�pre; QImpact(KSpre) >QImpact(KSpost); Proper-KS(KSpost).

– If update = PopQ : Bpost = Bpre and Qpost =Popped(Qpre) , therefore, p 6∈ Qpost .

– If update = ProcJustout : Bpost = Bpre and Qpost resembles Qpre with the following changes:

(1) p 6∈ Qpost and (2) (∀N ∈NC-NAND-sets(p,KS),∃q =Culprit(N,�)): q ∈ X ⇒ (〈q, in?〉 ∈

Qpost ∨ 〈q,both〉 ∈ Qpost). Regarding unaltered elements of the queue:

(∀N ∈ NC-NAND-sets(p,KS),∀b ∈ X \{p},∀τ) :

b 6=Culprit(N,�)⇒ ((〈b,τ〉 ∈ Qpre)≡ (〈b,τ〉 ∈ Qpost)).

– If update = AddRem : Bpost = (Bpre∪{p})\R; Bpost � Bpre;

(∀r ∈R) : p� r ∧ JustifiedOut(r,KSpost); and Qpost resembles Qpre with the following changes:

∗ p 6∈Qpost;

∗ (∀r ∈ R) : 〈r, justout〉 ∈ Qpost.
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Proof.

procedure Update-KS (KS,update, p,R)

;;; KS = KSpre and contain the elements Bpre , B∪ , I , � , and Qpre (precondition)

;;; Proper-KS(KSpre) (precondition)

;;; Proper-Q(KSpre) (Def 4.2.33)

;;; 〈p,τ〉= First(Qpre) (precondition)

Case update =

PopQ:

;;; Proper-KS(KSpre) (still holds)

;;; Therefore, Safe-per-I(KSpre) (Def 4.2.33)

;;; JustifiedOut(p,KSpre) (precondition)

;;; τ = in? (precondition)

KS = KSpost←ref 〈 B , B∪ , I , � , Popped(Q) 〉

;;; Proper-Q(KSpost) (Thm 4.2.39)

;;; QImpact(KSpre)> QImpact(KSpost); (Thm 4.2.44)

;;; Safe-per-I(KSpost) (B, B∪, and I unchanged; Def 4.2.16)

;;; Proper-KS(KSpost) (Def 4.2.33)

;;; KSpost �KS KSpre (Bpost = Bpre;Def 4.2.45)

ProcJustout:

;;; Proper-KS(KSpre) (still holds)

;;; JustifiedOut(p,KSpre (precondition)

;;; τ ∈ {justout,both} (precondition)

Process-Justout(KS, p)
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;;; Proper-KS(KSpost) (Thm 4.3.3)

;;; QImpact(KSpre)> QImpact(KSpost); (Thm 4.3.3)

;;; Bpost = Bpre ;B∪post = B∪pre ; Ipost = Ipre ; �post=�pre ; (Thm 4.3.3)

;;; p 6∈ Qpost (Thm 4.3.3)

;;; (∀N ∈NC-NAND-sets(p,KS),∃q =Culprit(N,�)): q ∈ X ⇒

〈q, in?〉 ∈ Qpost ∨ 〈q,both〉 ∈ Qpost (Thm 4.3.3)

;;; (∀N ∈ NC-NAND-sets(p,KS),∀b ∈ X \{p},∀τ) : b 6=Culprit(N,�)⇒

((〈b,τ〉 ∈ Qpre)≡ (〈b,τ〉 ∈ Qpost)) (Thm 4.3.3)

;;; KSpost �KS KSpre (Thm 4.3.3)

AddRem:

;;; Proper-KS(KSpre) (still holds)

;;; BadOut(p,KSpre); R⊆ Bpre; τ ∈ {in?,both}; (preconditions)

;;; ∑pi∈((B+p)\R)Cred(pi,B∪,�) > ∑p j∈BCred(p j,B∪,�); (precondition)

;;; (∀S ∈ I) : S 6⊆ ((Bpre + p)\R); (precondition)

;;; (∀r ∈ R) : p� r, and (∃S ∈ I) : r = Culprit(S,�) ∧

S⊆ (((Bpre + p)\R)+ r); (precondition)

KS-Add-Remove(KS, p,R)

;;; Proper-KS(KSpost) (Thm 4.3.2)

;;; QImpact(KSpre)> QImpact(KSpost); (Thm 4.3.2)

;;; Bpost = (Bpre∪{p})\R; (Thm 4.3.2)

;;; B∪post = B∪pre; Ipost = Ipre; �post=�pre; (Thm 4.3.2)

;;; p 6∈Qpost (Thm 4.3.2)

;;; (∀r ∈ R) : 〈r, justout〉 ∈ Qpost (Thm 4.3.2)
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;;; (∀r ∈ R) : p� r ∧ JustifiedOut(r,KSpost) (Thm 4.3.2)

;;; KSpost �KS KSpre (Thm 4.3.2) 2
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A.3 Theorem and Proof for the DDR Algorithm: Theorem 4.3.6

Theorem 4.3.6 Given the DDR knowledge state KS and the following:

• Preconditions for DDR(KS): KS = KSpre is a DDR knowledge state; Proper-KS(KSpre).

• KSpost is the knowledge state resulting from calling DDR(KS) and running it to completion.

then the following conditions hold:

• Postconditions for DDR(KS): KSpost is a DDR knowledge state; B∪post = B∪pre; Ipost = Ipre; �post=�pre;

I = Complete-I(KSpre)≡ I = Complete-I(KSpost); Proper-KS(KSpost); Empty(Qpost); KSpost�KSpre.

• Loop conditions for DDR(KS): Let KStop be the DDR knowledge state at the top of the DDR loop (just

after line 1). And let KSbot be the DDR knowledge state that results from KStop being processed by

the DDR loop (just after line 18). For each pass through the DDR loop: Proper-KS(KStop) and Proper-

KS(KSbot); QImpact(KStop)> QImpact(KSbot); KSbot �KS KStop . Additionally, if 〈p,τ〉 = First(Qtop)

and Btop 6= Bbot, then

– (B′ \B) = {p};

– (∀r ∈ (B\B′),∃N ∈ I) : r =Culprit(N,�)∧ p� r.

Proof.

procedure DDR(KS)

;;; Proper-KS(KS). (precondition)

;;; Proper-Q(KS). (Def 4.2.33)

;;; Safe-per-I(KS) (Def 4.2.33)

;;; KS = KSpre (no changes yet)

1 loop until Empty(QKS)

;;; ¬Empty(QKS) (satisfies loop condition)
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;;; Proper-KS(KS). (still holds)

;;; KS = KStop (KSinside top of DDR loop)

2 〈p,τ〉 ←ref First(QKS)

;;; 〈p,τ〉= First(QKS) (from assignment)

;;; (∀q ∈ Q) : q 6= p⇒ p� q (Def 4.2.1,Def 4.2.29)

;;; p ∈ X (Def 4.2.1)

;;; KS = KStop (no change during loop, yet)

;;; Proper-KS(KS). (still holds)

3 if1 (τ = in? or τ = both) , then

;;; τ ∈ {in?,both} (satisfies condition)

;;; 〈p,τ〉= First(QKS) (still holds)

;;; (∀q ∈ Q) : q 6= p⇒ p� q (still holds)

;;; p ∈ X (still holds)

;;; KS = KStop (no change during loop, yet)

;;; Proper-KS(KS). (still holds)

4 can-return← Bad-Out(p,KS)

;;; can-return ≡ Bad-Out(p,KS) (from assignment)

;;; 〈p,τ〉= First(QKS), where τ ∈ {in?,both} (still holds)

;;; (∀q ∈ Q) : q 6= p⇒ p� q (still holds)

;;; p ∈ X (still holds)

;;; KS = KStop (no change during loop, yet)

;;; Proper-KS(KS). (still holds)

5 if2 can-return , then
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;;; BadOut(p,KS) (satisfies condition, can-return ≡ Bad-Out(p,KS))

;;; 〈p,τ〉= First(QKS), where τ ∈ {in?,both} (still holds)

;;; (∀q ∈ Q) : q 6= p⇒ p� q (still holds)

;;; p ∈ X (still holds)

;;; KS = KStop (no change during loop, yet)

;;; Proper-KS(KS). (still holds)

;;; Preceding comments constrained by: τ ∈ {in?,both} ∧ BadOut(p,KS)

6 R ←ref Safe-Return(p,KS)

;;; Proper-KS(KS); BadOut(p,KS); R⊆ B; (Thm 4.3.1)

;;; KS = KStop (no change, yet: Thm 4.3.1)

;;; (∀S ∈ I) : S 6⊆ ((B∪{p})\R) (Thm 4.3.1)

;;; (∀r ∈ R,) : p� r (Thm 4.3.1)

;;; (∀r ∈ R,∃S ∈ I) : r = Culprit(S,�) ∧ S⊆ (((B+ p)\R)+ r) (Thm 4.3.1)

;;; ∑pi∈((B+p)\R)Cred(pi,B∪,�) > ∑p j∈BCred(p j,B∪,�) (Thm 4.3.1)

;;; 〈p,τ〉= First(QKS), where τ ∈ {in?,both} (still holds)

;;; (∀q ∈ Q) : q 6= p⇒ p� q (still holds)

;;; p ∈ X (still holds)

;;; Preceding comments constrained by: τ ∈ {in?,both} ∧ BadOut(p,KS)

7 update← AddRem

;;; update = AddRem (from assignment)

;;; KS = KSpre; Proper-KS(KS); BadOut(p,KS); R⊆ B; (still hold)

;;; (∀S ∈ I) : S 6⊆ ((B∪{p})\R) (still hold)

;;; (∀r ∈ R,) : p� r (still hold)
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;;; (∀r ∈ R,∃S ∈ I) : r = Culprit(S,�) ∧ S⊆ (((B+ p)\R)+ r) (still hold)

;;; ∑pi∈((B+p)\R)Cred(pi,B∪,�) > ∑p j∈BCred(p j,B∪,�) (still holds)

;;; 〈p,τ〉= First(QKS), where τ ∈ {in?,both} (still holds)

;;; (∀q ∈ Q) : q 6= p⇒ p� q (still holds)

;;; p ∈ X (still holds)

;;; KS = KStop (no change during loop, yet)

;;; Preceding comments constrained by: τ ∈ {in?,both} ∧ BadOut(p,KS)

8 else2

;;; JustifiedOut(p.KS) (failed if2 condition at line 5; Obs 4.2.21)

;;; 〈p,τ〉= First(QKS), where τ ∈ {in?,both} (still holds)

;;; (∀q ∈ Q) : q 6= p⇒ p� q (still holds)

;;; p ∈ X (still holds)

;;; KS = KStop (no change during loop, yet)

;;; Proper-KS(KS). (still holds)

;;; Preceding comments constrained by: τ ∈ {in?,both} ∧ JustifiedOut(p,KS)

9 if3 τ = both , then

;;; τ = both (satisfies condition)

;;; JustifiedOut(p.KS) (still holds)

;;; 〈p,both〉= First(QKS) (still holds)

;;; (∀q ∈ Q) : q 6= p⇒ p� q (still holds)

;;; p ∈ X (still holds)

;;; KS = KStop (no change during loop, yet)

;;; Proper-KS(KS). (still holds)

278



;;; Preceding comments constrained by: τ = both ∧ JustifiedOut(p,KS)

10 update← ProcJustout

;;; update = ProcJustout (from assignment)

;;; JustifiedOut(p.KS) (still holds)

;;; 〈p,both〉= First(QKS) (still holds)

;;; (∀q ∈ Q) : q 6= p⇒ p� q (still holds)

;;; p ∈ X (still holds)

;;; KS = KStop (no change during loop, yet)

;;; Proper-KS(KS). (still holds)

;;; Preceding comments constrained by: τ = both ∧ JustifiedOut(p,KS)

11 else3

;;; τ = in? (fails if3 condition at line 9)

;;; JustifiedOut(p.KS) (still holds)

;;; 〈p, in?〉= First(QKS) (still holds)

;;; (∀q ∈ Q) : q 6= p⇒ p� q (still holds)

;;; p ∈ X (still holds)

;;; KS = KStop (no change during loop, yet)

;;; Proper-KS(KS). (still holds)

;;; Preceding comments constrained by: τ = in? ∧ JustifiedOut(p,KS)

12 update← PopQ

;;; update = PopQ (from assignment)

;;; JustifiedOut(p.KS) (still holds)

;;; 〈p, in?〉= First(QKS) (still holds)
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;;; (∀q ∈ Q) : q 6= p⇒ p� q (still holds)

;;; p ∈ X (still holds)

;;; KS = KStop (no change during loop, yet)

;;; Proper-KS(KS). (still holds)

;;; Preceding comments constrained by: τ = in? ∧ JustifiedOut(p,KS)

13 endif3

;;; τ = in?⇒ 〈p, in?〉= First(QKS) (from if/else3)

;;; τ = in?⇒ update = PopQ (from if/else3)

;;; τ = both⇒ update = ProcJustout (from if/else3)

;;; τ = both⇒ 〈p,both〉= First(QKS) (from if/else3)

;;; JustifiedOut(p.KS) (holds for τ = in? ∨ τ = both)

;;; (∀q ∈ Q) : q 6= p⇒ p� q (holds for τ = in? ∨ τ = both)

;;; p ∈ X (holds for τ = in? ∨ τ = both)

;;; KS = KStop (holds for all conditions, so far)

;;; Proper-KS(KS). (holds for τ = in? ∨ τ = both)

;;; Preceding comments constrained by: τ ∈ {in?,both} ∧ JustifiedOut(p,KS)

14 endif2

;;; JustifiedOut(p.KS) ∧ τ = both⇒ update = ProcJustout (from if/else2)

;;; JustifiedOut(p.KS) ∧ τ = in?⇒ update = PopQ (from if/else2)

;;; BadOut(p,KS)⇒ update = AddRem (from if/else2)

;;; BadOut(p,KS)⇒ R⊆ B; (from if/else2)

;;; BadOut(p,KS)⇒ (∀S ∈ I) : S 6⊆ ((B∪{p})\R) (from if/else2)

;;; BadOut(p,KS)⇒ (∀r ∈ R,) : p� r (from if/else2)
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;;; BadOut(p,KS)⇒ (∀r ∈ R,∃S ∈ I) :

;;; r = Culprit(S,�) ∧ S⊆ (((B+ p)\R)+ r) (from if/else2)

;;; BadOut(p,KS)⇒

;;; ∑pi∈((B+p)\R)Cred(pi,B∪,�) > ∑p j∈BCred(p j,B∪,�) (due to (∀r ∈ R) : p� r)

;;; τ = in?⇒ 〈p, in?〉= First(QKS) (JustifiedOut(p.KS) ∨ BadOut(p.KS))

;;; τ = both⇒ 〈p,both〉= First(QKS) (JustifiedOut(p.KS) ∨ BadOut(p.KS))

;;; (∀q ∈ Q) : q 6= p⇒ p� q (holds for all conditions, so far)

;;; p ∈ X (holds for all conditions, so far)

;;; KS = KStop (holds for all conditions, so far)

;;; Proper-KS(KS). (holds for all conditions, so far)

;;; Preceding comments constrained by: τ ∈ {in?,both}

15 else1 ;;; note: τ = justout

;;; τ = justout (failed if1 condition on line 3; Def 4.2.1)

;;; 〈p,τ〉= First(QKS) (still holds)

;;; (∀q ∈ Q) : q 6= p⇒ p� q (still holds)

;;; Therefore, ¬Protected-by-Q(p,KS) (Def 4.2.31; not protected in any way)

;;; p ∈ X (still holds)

;;; Proper-KS(KS). (still holds)

;;; Therefore, Proper-Q(KS) (Def 4.2.33)

;;; Proper-Q(KS) ≡ (∀p) : BadOut(p,KS) ⇒ Protected-by-Q(p,KS). (Def 4.2.32)

;;; Therefore, JustifiedOut(p,KS) (Obs 4.2.21)

;;; KS = KStop (no change during loop, yet)

;;; Preceding comments constrained by: τ = justout
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16 update← ProcJustout

;;; update = ProcJustout (from assignment)

;;; 〈p, justout〉= First(QKS) (still holds)

;;; (∀q ∈ Q) : q 6= p⇒ p� q (still holds)

;;; p ∈ X (still holds)

;;; Proper-KS(KS). (still holds)

;;; JustifiedOut(p,KS) (still holds)

;;; KS = KStop (no change during loop, yet)

;;; Preceding comments constrained by: τ = justout

17 endif1

;;; τ = justout⇒ update = ProcJustout (from if/else1)

;;; JustifiedOut(p.KS) ∧ τ = both⇒ update = ProcJustout (from if/else1)

;;; JustifiedOut(p.KS) ∧ τ = in?⇒ update = PopQ (from if/else1)

;;; BadOut(p,KS)⇒ update = AddRem (from if/else1)

;;; BadOut(p,KS)⇒ R⊆ B; (from if/else1)

;;; BadOut(p,KS)⇒ (∀S ∈ I) : S 6⊆ ((B∪{p})\R) (from if/else1)

;;; BadOut(p,KS)⇒ (∀r ∈ R,) : p� r (from if/else1)

;;; BadOut(p,KS)⇒ (∀r ∈ R,∃S ∈ I) :

;;; r = Culprit(S,�) ∧ S⊆ (((B+ p)\R)+ r) (from if/else1)

;;; BadOut(p,KS)⇒ ∑pi∈((B+p)\R)Cred(pi,B∪,�) > ∑p j∈BCred(p j,B∪,�) (frm if/else1)

;;; τ = in?⇒ 〈p, in?〉= First(QKS) (from if/else1)

;;; τ = both⇒ 〈p,both〉= First(QKS) (from if/else1)

;;; τ = justout⇒〈p, justout〉= First(QKS) (from if/else1)

282



;;; τ = justout⇒ JustifiedOut(p,KS) (from if/else1)

;;; (∀q ∈ Q) : q 6= p⇒ p� q (holds for all conditions)

;;; p ∈ X (holds for all conditions)

;;; KS = KStop (holds for all conditions)

;;; Proper-KS(KS). (holds for all conditions)

;;; Preceding comments satisfy the preconditions for Update-KS(KS,update, p,R)

18 Update-KS(KS,update, p,R) ;;; DESTRUCTIVE—alters the DDR knowledge state KS

;;; p 6∈ Qpost (Thm 4.3.4)

;;; QImpact(KStop)> QImpact(KSbot) (Thm 4.3.4)

;;; KSbot �KS KStop (Thm 4.3.4)

;;; B∪bot = B∪top; Ibot = Itop; �bot=�top; (Thm 4.3.4)

;;; Proper-KS(KS). (Thm 4.3.4)

;;; If Btop 6= Bbot, then

;;; (B′ \B) = {p};

;;; (∀r ∈ (B\B′),∃N ∈ I) : r =Culprit(N,�)∧ p� r. (Cor 4.3.5)

19 end loop

;;; Empty(Q) (loop condition in line 1 is no longer satisfied)

;;; B∪post = B∪pre; Ipost = Ipre; �post=�pre; (never change during loop)

;;; I = Complete-I(KSpre) ≡ I = Complete-I(KSpost) (I and B∪ unchanged; Def 4.2.3)

;;; For chapter 5: I = KS-Complete-I(KSpre) ≡ I = KS-Complete-I(KSpost) (Def 5.5.1)

;;; ¬Empty(Qpre)⇒ KSpost � KSpre one loop pass guarantees improvement

;;; KSpost � KSpre KSpost = KSpre if Empty(Qpre)

;;; Proper-KS(KS). (still holds) 2
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A.4 SNePS Belief Revision Interaction

The following code is an actual excerpt from the small DDR example demonstration run that was presented

in Section 6.4. This section covers the full interaction form the time the user asks the system if it can derive

r(a) until the system completes its exploration regarding the derivability of r(a). For a complete example

of the SNePS NAND-set detection and culprit selection user interface, see [Shapiro2000].

Input is in bold text type. Output is non-bold text type.

: r(a)?

I wonder if r(a)

holds within the BS defined by context default-defaultct

I know it is not the case that r(a)

I know m(a)

Since m(a) => r(a)

and m(a)

I infer r(a)

A contradiction was detected within context default-defaultct.
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The contradiction involves the newly derived proposition:

r(a)

and the previously existing proposition:

¬r(a)

You have the following options:

1. [C]ontinue anyway, knowing that a contradiction is derivable;

2. [R]e-start the exact same run in a different context which is

not inconsistent;

3. [D]rop the run altogether.

(please type c, r or d) =><= r

In order to make the context consistent you must delete at least

one hypothesis from each of the following sets of hypotheses:

(wff8 wff7 wff6)

In order to make the context consistent you must delete

at least one hypothesis from the set listed below.

An inconsistent set of hypotheses:

1 : ¬r(a)
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(1 supported proposition: (wff8) )

2 : m(a) => r(a)

(2 supported propositions: (wff7 wff4) )

3 : m(a)

(2 supported propositions: (wff6 wff4) )

Enter the list number of a hypothesis to examine or

[d] to discard some hypothesis from this list,

[a] to see ALL the hypotheses in the full context,

[r] to see what you have already removed,

[q] to quit revising this set, or

[i] for instructions

(please type a number OR d, a, r, q or i) =><= 3

m(a)

WFFS that depend on wff6:

m(a)

r(a)

What do you want to do with hypothesis wff6?

[d]iscard from the context, [k]eep in the context,

[u]ndecided, [q]uit revising this set, [i]nstructions
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(please type d, k, u, q or i) =><= d

The consistent set of hypotheses:

1 : ¬r(a)

(1 supported proposition: (wff8) )

2 : m(a) => r(a)

(2 supported propositions: (wff7 wff4) )

Enter the list number of a hypothesis to examine or

[d] to discard some hypothesis from this list,

[a] to see ALL the hypotheses in the full context,

[r] to see what you have already removed,

[q] to quit revising this set, or

[i] for instructions

(please type a number OR d, a, r, q or i) =><= q

The hyps before removal are:

(wff8: ¬r(a) wff7: m(a) => r(a) wff6: m(a))

The hyps after making them consistent are:

(wff8: ¬r(a) wff7: m(a) => r(a))
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The following (not known to be inconsistent) set of

hypotheses was also part of the context where the

contradiction was derived:

(wff9 wff5 wff3)

Do you want to inspect or discard some of them? =><= n

Do you want to add a new hypothesis? =><= n

I wonder if r(a)

holds within the BS defined by context default-defaultct

I know it is not the case that r(a)

I wonder if m(a)

holds within the BS defined by context default-defaultct

I wonder if p(a)

holds within the BS defined by context default-defaultct

I know it is not the case that m(a)

¬r(a)

:
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A.5 Large DDR Example 4.4.1 Implemented in SNePS

The following run shows the SNePS computer system performing DDR (non-interactively) and duplicating

DDR Example 4.4.1 from Chapter 4 (cf. Section 4.4 on page 164 and Figure 4.2).

The starting state of the system is equivalent to KS1 except that only the culprit beliefs are linearly

ordered. The steps that the system goes through when performing DDR are identical to those in the example.

Input is in bold text type. Output is non-bold text type.

The printout below has three parts: (1) showing that the system is in the state described as KS1 in

Example 4.4.1; (2) adding ¬p and performing belief revision to eliminate the contradiction; and (3) running

DDR (non-interactively) to re-optimize the belief state.

Showing the system is at a state equivalent to KS1

: show-nand-sets

all-ns:

nand-set7: (wff24: ¬k(a) wff15: w(a) => k(a)

wff11: w(a)), (culprit: wff24: ¬k(a)) (size: 3) (count: 2)

nand-set5: (wff23: ¬t(a) wff10: s(a) => t(a)

wff8: s(a)), (culprit: wff23: ¬t(a)) (size: 3) (count: 2)

nand-set10: (wff22: ¬v(a) wff18: z(a) => v(a)

wff17: z(a)), (culprit: wff17: z(a)) (size: 3) (count: 2)

nand-set3: (wff21: ¬r(a) wff7: m(a) => r(a)

wff6: m(a)), (culprit: wff6: m(a)) (size: 3) (count: 2)

nand-set6: (wff22: ¬v(a) wff13: w(a) => v(a)

wff11: w(a)), (culprit: wff22: ¬v(a)) (size: 3) (count: 2)
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nand-set8: (wff22: ¬v(a) wff16: p(a) => v(a)

wff1: p(a)), (culprit: wff22: ¬v(a)) (size: 3) (count: 2)

nand-set2: (wff21: ¬r(a) wff5: p(a) => r(a)

wff1: p(a)), (culprit: wff21: ¬r(a)) (size: 3) (count: 2)

nand-set1: (wff20: ¬q(a) wff3: p(a) => q(a)

wff1: p(a)), (culprit: wff20: ¬q(a)) (size: 3) (count: 2)

: show-removed-beliefs

¬k(a)

¬t(a)

¬v(a)

¬r(a)

¬q(a)

: show-ddr-q

ddr-q ()

: show-active-nand-sets

active-ns:

nil

active-ns-nc:

nil
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Semi-revision of KS1 by ¬p(a))

: ¬p(a).

"Updating DDR with asserted node information..."

A contradiction was detected within context default-defaultct.

The contradiction involves the proposition you want to assert:

¬p(a)

and the previously existing proposition:

p(a)

You have the following options:

1. [c] to continue anyway, knowing that a contradiction is derivable;

2. [r] to revise the inconsistent part of the context

3. [d] to discard this contradictory new assertion from the context

(please type c, r or d) =><= r

In order to make the context consistent you must delete at least

one hypothesis from each of the following sets of hypotheses:

(wff25 wff1)

In order to make the context consistent you must delete

at least one hypothesis from the set listed below.
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An inconsistent set of hypotheses:

1 : ¬p(a)

(1 supported proposition: (wff25) )

2 : p(a)

(4 supported propositions: (wff12 wff4 wff2 wff1) )

Enter the list number of a hypothesis to examine or

[d] to discard some hypothesis from this list,

[a] to see ALL the hypotheses in the full context,

[r] to see what you have already removed,

[q] to quit revising this set, or

[i] for instructions

(please type a number OR d, a, r, q or i) =><= 2

p(a)

WFFS that depend on wff1:

v(a)

r(a)

q(a)

p(a)
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What do you want to do with hypothesis wff1?

[d]iscard from the context, [k]eep in the context,

[u]ndecided, [q]uit revising this set, [i]nstructions

(please type d, k, u, q or i) =><= d

The consistent set of hypotheses:

1 : ¬p(a)

(1 supported proposition: (wff25) )

Enter the list number of a hypothesis to examine or

[d] to discard some hypothesis from this list,

[a] to see ALL the hypotheses in the full context,

[r] to see what you have already removed,

[q] to quit revising this set, or

[i] for instructions

(please type a number OR d, a, r, q or i) =><= q

The hyps before removal are: (wff25: ¬p(a) wff1: p(a))

The hyps after making them consistent are: (wff25: ¬p(a))

You have selected wff1: p(a) as a culprit and an ordering needs

to be provided. The current culprit nodes are:

wff20: ¬q(a)

wff21: ¬r(a)
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wff22: ¬v(a)

wff6: m(a)

wff17: z(a)

wff23: ¬t(a)

wff24: ¬k(a)

From the list below, choose a numbered slot to insert wff1: p(a) into.

The beliefs are ordered from most preferred to least preferred:

[1] wff20: ¬q(a) [2] wff21: ¬r(a) [3] wff22: ¬v(a) [4]

wff6: m(a) [5] wff17: z(a) [6] wff23: ¬t(a) [7] wff24: ¬k(a) [8]

Please, enter a number between 1 and 8, the culprit will be inserted

in the slot with the number specified: 1

You have select slot 1

The following (not known to be inconsistent) set of

hypotheses was also part of the context where the

contradiction was derived:

(wff19 wff18 wff17 wff16 wff15 wff13 wff11

wff10 wff8 wff7 wff6 wff5 wff3)

Do you want to inspect or discard some of them? =><= n

Do you want to add a new hypothesis? =><= n

294



¬p(a)

: show-removed-beliefs

¬k(a)

¬t(a)

¬v(a)

¬r(a)

¬q(a)

p(a)

: show-culprits

culprits (from strongest to weakest): (

[wff1: p(a): 0.99609375]

[wff20: ¬q(a): 0.9921875]

[wff21: ¬r(a): 0.984375]

[wff22: ¬v(a): 0.96875]

[wff6: m(a): 0.9375]

[wff17: z(a): 0.875]

[wff23: ¬t(a): 0.75]

[wff24: ¬k(a): 0.5])

295



SNePS System Performing DDR on KS2

: ddr

Starting ddr...

Current ddr-q (

[wff1: p(a): 0.99609375] (tag: justout)) Q2

Processing belief wff1: p(a)

...with tag: justout

Insert these beliefs into ddr-q for possible return to the context:

(wff20: ¬q(a) wff21: ¬r(a) wff22: ¬v(a))

End of ddr loop...

Current ddr-q (

[wff20: ¬q(a): 0.9921875] (tag: in?)

[wff21: ¬r(a): 0.984375] (tag: in?)

[wff22: ¬v(a): 0.96875] (tag: in?))

Processing belief wff20: ¬q(a)

...with tag: in?

wff20: ¬q(a) can return to the current context.

Returned wff20: ¬q(a) to the current context.

End of ddr loop...
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Current ddr-q (

[wff21: ¬r(a): 0.984375] (tag: in?)

[wff22: ¬v(a): 0.96875] (tag: in?))

Processing belief wff21: ¬r(a)

...with tag: in?

wff21: ¬r(a) can return to the current context.

Removing wff6: m(a) from the current context.

Returned wff21: ¬r(a) to the current context...

... and removed the following weaker conflicting beliefs:

(wff6: m(a))

End of ddr loop...

Current ddr-q (

[wff22: ¬v(a): 0.96875] (tag: in?)

[wff6: m(a): 0.9375] (tag: justout))

Processing belief wff22: ¬v(a)

...with tag: in?

wff22: ¬v(a) cannot return to the current context.
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End of ddr loop...

Current ddr-q (

[wff6: m(a): 0.9375] (tag: justout))

Processing belief wff6: m(a)

...with tag: justout

End of ddr loop...

Current ddr-q ()

Finished ddr... ddr-q () The queue is empty

: show-removed-beliefs

¬k(a)

¬t(a)

¬v(a)

m(a)

p(a)

: show-nand-sets

all-ns:

nand-set7: (wff24: ¬k(a) wff15: w(a) => k(a)

wff11: w(a)), (culprit: wff24: ¬k(a)) (size: 3) (count: 2)
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nand-set5: (wff23: ¬t(a) wff10: s(a) => t(a)

wff8: s(a)), (culprit: wff23: ¬t(a)) (size: 3) (count: 2)

nand-set10: (wff22: ¬v(a) wff18: z(a) => v(a)

wff17: z(a)), (culprit: wff17: z(a)) (size: 3) (count: 2)

nand-set3: (wff21: ¬r(a) wff7: m(a) => r(a)

wff6: m(a)), (culprit: wff6: m(a)) (size: 3) (count: 2)

nand-set6: (wff22: ¬v(a) wff13: w(a) => v(a)

wff11: w(a)), (culprit: wff22: ¬v(a)) (size: 3) (count: 2)

nand-set8: (wff22: ¬v(a) wff16: p(a) => v(a)

wff1: p(a)), (culprit: wff22: ¬v(a)) (size: 3) (count: 1)

nand-set2: (wff21: ¬r(a) wff5: p(a) => r(a)

wff1: p(a)), (culprit: wff21: ¬r(a)) (size: 3) (count: 2)

nand-set1: (wff20: ¬q(a) wff3: p(a) => q(a)

wff1: p(a)), (culprit: wff20: ¬q(a)) (size: 3) (count: 2)

nand-set13: (wff25: ¬p(a)

wff1: p(a)), (culprit: wff1: p(a)) (size: 2) (count: 1)

: list-asserted-wffs Currently believed base and derived beliefs: B∪D of a DOBS

¬p(a)

¬r(a)

¬q(a)

n(a)

z(a) => v(a)
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z(a)

p(a) => v(a)

w(a) => k(a)

k(a)

w(a) => v(a)

v(a)

w(a)

s(a) => t(a)

t(a)

s(a)

m(a) => r(a)

p(a) => r(a)

p(a) => q(a)

:
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