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Abstract

Training multimodal large language models (LLMs) is computationally intensive often re-

quiring thousands of GPU hours and poses challenges in resource allocation and efficiency.

Additionally, the centralized handling of training data in traditional approaches poses pri-

vacy risks, particularly when dealing with sensitive information. To address these issues,

this thesis introduces a federated learning approach that enhances privacy through decen-

tralized data processing, allowing for model fine-tuning without compromising user data

security. Additionally, it extends foundational research on visual instruction tuning by ap-

plying fine-tuning to multimodal language-image instruction-following data, thereby creating

multimodal LLMs. The fine-tuning process is optimized for computational efficiency, com-

pleting in ∼36 hours on a single 2-A100 node.

Utilizing these multimodal capabilities, we introduce an assistive application tailored for

visually impaired individuals that enables real-time, interactive, and descriptive engagement

with users’ surroundings, thereby enhancing their understanding and interaction with the en-

vironment. More broadly, this research underscores the effectiveness of combining federated

learning with visual instruction tuning to build secure, computationally efficient multimodal

LLMs. These advancements make significant strides in highly sensitive and personal con-

texts such as assistive technology in more adaptable, secure, and personalized way for the

visually impaired.

x



Chapter1

Introduction

The emergence of artificial intelligence (AI) has sparked a revolution across various domains

of technology [1], with particularly profound implications in the field of assistive technologies

[2]. In the United States, approximately 25% of adults live with some type of disability, with

an estimated 12 million of these individuals actively using various assistive technologies

in their daily lives to enhance mobility, communication, and daily functioning [3]. These

technologies, which range from simple aids to complex interactive systems, are essential for

enhancing the quality of life and independence of individuals with disabilities. To further

enhance the capability and effectiveness of these assistive technologies, there have been

significant advancements in the AI domain [4].

Among the most recent developments in AI are multimodal large language models (LLMs),

which offer the capability to process and synthesize information from multiple sensory modal-

ities such as images, audio, and text at the same time [5]. These models have proven effective

in various real-world applications, including robotics [6], education [7], and assistive tech-

nologies [8], significantly enhancing interaction capabilities for individuals with disabilities.

Training these sophisticated models is a formidable challenge. It requires vast compu-

tational resources and access to diverse, extensive datasets, which can be expensive and

pose significant privacy concerns [9]. For instance, the pre-training of large-scale models like

LLaMa-2-70B demands immense amounts of energy and computational time, consuming

approximately 1.7 million GPU hours and 2.5 trillion joules of energy, leading to signifi-

1



INTRODUCTION 2

cant CO2 emissions estimated at 291 tons [10]. Such resource-intensive processes highlight

the environmental impact and the high cost of developing foundation models.Furthermore,

the need for large-scale, high-quality instruction data to fine-tune these models for specific

tasks or user intents complicates the development of multimodal (LLMs) [11]. For example,

in healthcare settings, creating multimodal LLMs that can handle sensitive patient data

for diagnosis assistance involves strict privacy measures to prevent any potential misuse of

personal health information [12]. This requirement often deters medical institutions from

sharing valuable data, thus limiting the scope of AI’s potential benefits.

To address these challenges, there is a growing interest in innovative model training

architectures and privacy-preserving techniques. Multimodal instruction tuning is a tech-

nique that aligns LLMs with specific user instructions across different modalities, enhancing

their applicability and performance in targeted tasks. However, implementing this technique

across distributed data sources brings us to the pivotal role of federated learning. Federated

learning [13] presents a solution by decentralizing the training process of machine learning

models. Instead of pooling data into a single location, federated learning allows data to

remain securely on local devices, with only the model’s updates being shared across the

network. By integrating federated learning with multimodal instruction tuning, this thesis

aims to address both the performance enhancements needed for effective AI applications and

the stringent privacy requirements crucial in sensitive sectors like healthcare and assistive

technologies.

The subsequent sections of this thesis are structured to provide a comprehensive overview

of the research conducted, divided into several key areas. Chapter 2 provides a detailed back-

ground on the current state of multimodal (LLMs), exploring their capabilities, the specific

challenges they face and related works in this field. Chapter 3 details the system archi-

tecture, data preparation, and the assistive application components. Chapter 4 describes

the experimental setup and methodologies employed in this study, including the innovative

application of federated learning to visual instruction tuning for multimodal LLMs.
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Chapter 5 presents the results of the experiments, offering an analysis of the perfor-

mance enhancements and the efficiency of the privacy-preserving techniques used. Chapter

6 discusses these results in the context of their impact on assistive technologies for the vi-

sually impaired, highlighting how federated learning can mitigate the risks associated with

traditional model training methods.

Finally, Chapter 7 concludes the thesis with a summary of findings and a discussion on

the implications of this research for the future deployment of multimodal LLMs in real-world

applications. This final chapter includes an in-depth discussion on how federated learning

can be effectively implemented to optimize both the utility and confidentiality of multimodal

LLMs, ensuring their adaptability and security in sensitive applications.

1.1 Background

Multimodal large language models (LLMs) stand at the forefront of artificial intelligence (AI)

research, offering unprecedented capabilities to integrate and process information across dif-

ferent sensory modalities such as visual, auditory, and textual data [5]. These models play

a crucial role in bridging the gap between sensory data processing and computational in-

telligence, enabling more intuitive human-machine interactions. However, they face compu-

tational and resource allocation challenges, especially when handling complex multimodal

data [10].

The concept of multimodal LLMs was pioneered by early efforts such as Visual Question

Answering (VQA) models proposed by Antol et al. in 2015 combined image recognition with

natural language processing to answer questions about images [14]. Another significant mile-

stone was the development of the CLIP (Contrastive Language–Image Pre-training) model

by OpenAI, which aligned images and text in a shared embedding space, enabling zero-shot

transfer to a variety of vision tasks [15]. These foundational models demonstrated the po-

tential of integrating different modalities to enhance machine understanding and interaction
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capabilities.

Following these pioneering efforts, several advanced multimodal LLMs were developed.

For example, DALL-E by OpenAI, which could generate images from textual descriptions,

showcased the creative potential of such models [16]. The ALIGN model by Google further

pushed the boundaries by using massive datasets to achieve high performance on cross-modal

tasks, setting new benchmarks in the field [17].

Despite these advancements, multimodal LLMs continue to face computational and re-

source allocation challenges. The pre-training of large-scale models like LLaMa-2-70B, for

instance, demands huge amounts of energy and computational time, consuming approxi-

mately 1.7 million GPU hours and 2.5 trillion joules of energy, leading to significant CO2

emissions [10].

Given these challenges, there is a pressing need for more efficient approaches to training

and deploying multimodal LLMs. LLaVA, a state-of-the-art multimodal LLM [18], utilizes

visual instruction tuning to effectively bridge visual and linguistic information, setting a

new standard in multimodal learning efficiency and performance. This model serves as an

exemplar for addressing computational intensity and resource constraints in multimodal LLM

deployment. However, the deployment of such advanced technologies also raises concerns

about data privacy and security, particularly when processing sensitive personal data.

To mitigate these concerns, federated learning emerges as a pivotal solution. Federated

learning allows for the decentralized fine-tuning of models on local devices without the need

to centralize user data [13]. This approach not only preserves the privacy of individual data

but also enables personalized model adjustments based on localized data, thus enhancing

the model’s effectiveness and applicability in diverse real-world environments.

While federated learning has been explored within the scope of conventional LLMs, its

application to visual instruction tuning in multimodal LLMs remains underexplored. Our

research builds upon foundational concepts by applying federated learning to the visual

instruction tuning within multimodal large language models for the first time as of our
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knowledge. We demonstrate how federated learning can enhance privacy and adaptability

in the tuning of these complex models, offering significant benefits for developing assistive

technologies for the visually impaired.

This integration of federated learning into multimodal LLMs using visual instruction

tuning represents a significant advancement for assistive technologies. It addresses not only

computational and resource challenges but also enhances privacy and personalization of user

data, which are critical in applications for visually impaired users. This approach underscores

the potential of multimodal LLMs to transform assistive technology, making it more secure,

adaptable, and closely aligned with users’ specific needs.

1.2 Problem Statement

Visually impaired individuals face challenges in understanding and navigating their envi-

ronment, underscoring the necessity for advanced assistive technologies. Multimodal(LLMs)

have the potential to revolutionize assistive solutions through their ability to process and

integrate diverse data types, including visual information. Yet, the development and deploy-

ment of such models are hindered by their substantial computational requirements and the

complexities of resource allocation and efficiency. These challenges are compounded in real-

time applications crucial for assistive technologies, where delay or inefficiency can diminish

the user experience and practicality.

Moreover, the centralized handling of sensitive personal data in traditional AI training

methods raises significant privacy concerns. Ensuring the privacy and security of user data

is paramount, especially in applications involving vulnerable populations such as the visually

impaired. Federated learning presents a promising approach to mitigate these privacy risks

by enabling decentralized training of models directly on local devices, thus eliminating the

need to share raw data.

This research seeks to address both the computational and privacy challenges inherent
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in applying multimodal LLMs to the development of assistive technologies. By leveraging

the visual instruction tuning approach exemplified by models like LLaVA and integrating

federated learning, this study aims to create effective, real-time, and privacy-preserving

solutions for visually impaired users.

1.3 Significance of the Study

This study aims to bridge the gap between advanced AI technologies and practical assistive

solutions, potentially setting a precedent for future research in the field and aims to advance

the application of multimodal LLMs in real-world assistive technologies, addressing the chal-

lenges of computational intensity and resource allocation while enhancing the quality of life

for visually impaired individuals.



Chapter2

Related works

2.1 Assistive Technologies for the Visually Impaired

The advent of artificial intelligence (AI) technologies offers promising avenues to mitigate the

challenges faced by visually impaired individuals. Recent research underscores the deploy-

ment of AI to develop assistive tools that enhance navigation and environmental perception

for the visually impaired, addressing a significant gap in existing technological aids [19].

These advancements illustrate how AI can process and transform raw data into actionable

insights, enabling users to navigate and interact with their surroundings more effectively.[20,

21, 22].

As the field of AI progresses, large language models (LLMs) have gained prominence,

leading to the development of multimodal LLMs that incorporate visual, textual, and some-

times auditory data to provide richer, more context-aware responses. This evolution marks

a significant step towards creating assistive technologies that are more intuitive and user-

friendly for visually impaired individuals [23, 24, 25].

Multimodal large language models (LLMs) integrate various data types—text, images,

and sometimes audio—to enhance their performance and applicability in a range of contexts.

This integration enables multimodal LLMs to provide richer, more nuanced responses by

synthesizing information across different modalities, a capability that is especially beneficial

7
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for applications requiring an in-depth understanding of complex, multimodal inputs. For

instance, Wang et al. provide a comprehensive overview of multimodal LLMs, discussing

their architectures, training techniques, and applications, illustrating the breadth of their

potential uses [26, 27, 28].

Among the notable advancements in this domain is ViLBERT by Lu et al., which utilizes

a transformer-based model to learn joint visiolinguistic representations, showing significant

improvements in various vision-and-language tasks [29, 30, 31]. Such developments under-

score the effectiveness of multimodal LLMs in interpreting and interacting with complex

data.

However, the training and deployment of multimodal LLMs are not without challenges.

These models are computationally intensive and require substantial resources, which can

impede their scalability and practicality. Addressing these computational demands is crucial

for the advancement and broader adoption of multimodal LLMs in real-world applications

[32, 33, 34].

The LLaVA framework addresses these challenges by introducing visual instruction tun-

ing, a method that significantly advances the processing and interpretation of visual data

within multimodal LLMs [18]. This fine-tuning approach has proven effective in improving

LLaVA’s performance, making it a valuable asset for developing assistive technologies [35].

Building upon LLaVA’s achievements, our research aims to further harness and adapt

these multimodal strategies to create an assistive system for visually impaired users. By

focusing on LLaVA’s strengths in visual data processing and its potential for real-time, in-

teractive feedback, the project seeks to develop a technology that not only enhances spatial

awareness but also facilitates a more engaged and autonomous interaction with the environ-

ment for visually impaired individuals.
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2.2 Federated Learning in Assistive Technologies

Federated learning (FL) has emerged as a pivotal solution for addressing data privacy con-

cerns in the development of AI systems, including assistive technologies for the visually

impaired. By allowing data to remain on local devices and only sharing model updates,

federated learning ensures that sensitive information is not centralized, thereby enhancing

user privacy [13].

This approach is particularly relevant in the context of assistive technologies, where users’

visual data and other personal information are highly sensitive. Federated learning enables

the training of robust AI models without compromising the privacy of the individuals who

rely on these technologies. This is crucial in building trust and widespread acceptance among

users, especially those concerned with digital privacy [36, 37]

Recent advancements in federated learning have also focused on improving the efficiency

and effectiveness of these models under non-IID (non-identically and independently dis-

tributed) data conditions, which are common in real-world scenarios where data distribution

varies significantly across devices. These improvements are vital for assistive technologies

as they ensure that the AI systems can perform well across diverse environments and user

experiences [38].

Our research integrates federated learning with the LLaVA framework to further develop

an assistive system tailored for visually impaired users. By leveraging the strengths of both

federated learning and multimodal LLMs, this system aims to provide a highly effective,

secure, and personalized user experience. The ultimate goal is to create a scalable solution

that respects user privacy while offering advanced assistive capabilities, thereby paving the

way for more innovative applications in the field.



Chapter3

Methodology

3.1 System Component

The assistive technology system is designed to leverage an enhanced visual-linguistic model,

fine-tuned to process and interpret visual data alongside textual or auditory inputs, providing

users with descriptive feedback about their surroundings. The system architecture prioritizes

real-time processing and user-friendly interaction to deliver immediate, relevant feedback

based on user inputs and visual scene analysis.

Figure 3.1: System Components

The architecture, depicted in Figure 3.2, integrates several components:

10
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Figure 3.2: System Component

1. Chatbot Interface: Serving as the primary interaction point, this interface accepts

images and accompanying textual or audio inputs from users. It includes a speech-to-

text feature to process audio inputs into a standardized text format and text-to-speech

feature to give audio feedback about the scene to the users.

2. Multimodal LLM: Here there is fine tuned Multi modal LLM which takes input

image and text from the Chatbot and does inference to give back insight about the

visual scene.

3.1.1 System Workflow

The workflow is streamlined to enhance user experience and system efficiency:

1. Users interact with the system via the Chatbot Interface, providing image and optional

text or audio inputs.

2. The Data Processing Module standardizes the inputs, converting all information into

a format suitable for the Multi-Modal LLM.
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3. The Multi-Modal LLM interprets the combined data, focusing on providing a com-

prehensive understanding of the visual scene back to the users using text or audio

feedback.

3.2 Architecture Overview

The system’s architecture leverages advanced pre-trained large language models (LLM) and

visual models to optimize performance for assistive technologies aimed at supporting visually

impaired users. Both the initial and subsequent enhanced architectures are adopted from

the LLaVA framework as outlined in the foundational research [18].

The initial architecture employs the pre-trained CLIP visual encoder ViT-L/14 which

processes input images to extract visual features Zv. These features include grid features from

both before and after the last Transformer layer, noted for their effectiveness in capturing

detailed visual nuances.

Originally, the integration of visual features into the language model was achieved using

a simple linear projection:

Hv = W · Zv

where W is a trainable projection matrix that transforms visual features Zv into language

embedding tokens Hv, aligning them with the dimensionality of the word embeddings in the

LLM. This setup was designed to be lightweight and scalable, facilitating rapid iterations

and modifications, as detailed in [18].

Enhanced Architecture

Following the findings in [18], the architecture was enhanced by replacing the linear

projection with a two-layer MLP to increase the representation power of the vision-language

connector, thus improving the system’s multimodal capabilities.

The MLP configuration includes:
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� The first layer processes the visual embeddings to generate an enriched intermediate

representation, capturing a broader array of visual details.

� The second layer maps these enriched features into the language model’s embedding

space, ensuring a deeper integration of visual and textual data.

This modification, as recommended in [18], allows for a more sophisticated interpretation

of visual data, enabling the system to generate more accurate and contextually relevant

responses. The MLP vision-language connector has proven particularly effective in tasks

requiring complex spatial reasoning.

Federated Visual Instruction Tuning

The integration of federated learning into our system architecture allows for the decentralized

fine-tuning of the multimodal LLM using visual instruction tuning. This approach enhances

privacy and scalability by enabling model training directly on the users’ devices without

needing to share their data. Here, we outline the federated averaging algorithm adapted for

our specific use case.
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Input: Global model parameters θ, number of communication rounds R, number of

clients K, number of local epochs E, learning rate η

Output: Updated global model parameters θR

Initialize global model parameters θ0;

for each round r = 1, 2, . . . , R do

Randomly select a subset of K clients;

for each client k ∈ K in parallel do

Load local dataset Dk;

Preprocess data:

� Extract visual features from images

� Convert text data to embeddings

� Align visual and text data to create multimodal inputs

Initialize local model parameters θrk ← θr−1;

for each local epoch e = 1, 2, . . . , E do

for each batch b of data Dk do

Compute loss L(θrk; b) using visual instruction tuning objective;

Compute gradient ∇L(θrk; b);

Update local model parameters: θrk ← θrk − η∇L(θrk; b);

end

end

Send updated local model parameters θrk to the server;

end

Aggregate updates to form new global model parameters:

θr ←
K∑
k=1

nk

n
θrk

where nk is the number of samples in client k’s dataset and n =
∑K

k=1 nk;

end

Algorithm 1: Federated Learning for Fine-Tuning Multimodal LLMs Using Visual In-

struction Tuning
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This algorithm is critical for enabling our system to operate under the constraints of

data privacy regulations and network limitations, providing a robust solution for real-world

deployment in assistive technology for the visually impaired.

3.3 Data Collection and Processing

Building upon the approach outlined in the [18], we leveraged a similar methodology to

create a specialized instruction dataset tailored for visually impaired users.

3.3.1 Multimodal Data Representation

The Visual Instruction Tuning paper [18] discusses the creation of a large-scale multimodal

instruction-following dataset using a GPT-assisted approach. Specifically, they collected

158,000 unique language-image instruction-following samples, which included:

� 58,000 samples in conversational-style question-answering: Here, the model

engages in dialogue and answers visually-related questions, simulating real-life interac-

tions and enhancing its conversational capabilities.

� 23,000 samples providing detailed descriptions: These samples offer compre-

hensive descriptions of visual scenes, significantly improving the model’s ability to

understand and narrate complex visual information accurately.

� 77,000 samples focused on complex reasoning: These samples are designed to

elicit responses that require advanced logical reasoning based on the visual data pro-

vided, challenging the model’s cognitive processing skills.

The generated dataset served as the foundation for the subsequent model training and

fine-tuning, enabling the development of an assistive technology system that can accurately

interpret visual scenes and provide meaningful audio-based feedback for visually impaired

users.
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Converting dataset to a Non-IID nature dataset

To adapt this dataset for federated learning, particularly focusing on non-IID data distribu-

tions, we employed dimensionality reduction and clustering techniques:

1. Dimensionality Reduction with UMAP: We used Uniform Manifold Approxima-

tion and Projection (UMAP) to reduce the high-dimensional feature space of the visual

data to a more manageable form, facilitating more effective clustering [39].

2. Clustering with k-Means: Post-dimensionality reduction, k-means clustering was

applied to group the samples into clusters based on visual similarity. This step was

critical in creating diverse subsets of data that mimic real-world distributions, where

different clients may have data that is not representative of the population as a whole

[40].

These clusters were then strategically distributed among simulated clients to create a

non-IID condition, where each client’s data may differ significantly from others, presenting

more realistic and challenging conditions for federated learning [41].

Textual Data Preprocessing and Embedding

For the textual components of the dataset, a critical preprocessing step involved transforming

text into embeddings that could be efficiently processed alongside visual data. This process

was facilitated using the following approach:

1. Text Embedding with SentenceTransformer: We utilized the SentenceTrans-

former model, specifically ’all-MiniLM-L6-v2’, known for its efficiency and effective-

ness in generating meaningful sentence embeddings. This model is particularly suited

for our needs due to its balance between performance and computational efficiency,

making it ideal for the large-scale processing of textual data [42].
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2. Dimensionality Reduction with UMAP: After obtaining the sentence embed-

dings, we applied UMAP (Uniform Manifold Approximation and Projection) for di-

mensionality reduction. This step was crucial to reduce the computational load and

enhance the clustering process. UMAP was configured to use the cosine similarity

metric, which is particularly well-suited for high-dimensional data like text embed-

dings. The cosine similarity helps in maintaining the semantic similarity between the

embeddings, which is vital for the effective clustering of text data related to the visual

elements [43].

3. Visualization and Analysis: Post-reduction, the embeddings were visualized to an-

alyze the distribution and to verify the effectiveness of the preprocessing steps. This

visualization also aided in understanding the diversity and distribution of data, ensur-

ing that the non-IID nature of the dataset was appropriately represented [39].
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Figure 3.3: UMAP visualization of the text embeddings, highlighting the data’s semantic
distribution before clustering.
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Figure 3.4: K-means clustering on the UMAP-reduced text embeddings, illustrating the
formation of distinct data clusters.

Labeling and Categorization of Clusters

After applying UMAP for dimensionality reduction and k-means clustering to identify dis-

tinct groups within our dataset, we proceeded to label each cluster with specific categories

that reflect the visual content’s nature. This step was essential to simulate a non-IID data

distribution typically seen in real-world scenarios, where data heterogeneity can significantly

affect the learning process in a federated setting [38].

1. Cluster Labeling: Each cluster was assigned a label based on the predominant theme

or activity represented in the images. The labels and their corresponding cluster indices
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are as follows:

� Everyday (0): Images depicting daily activities and routines.

� Sports (1): Images related to various sports activities.

� Nature (2): Images showcasing natural landscapes and wildlife.

� Adventure (3): Images depicting adventurous activities and exotic locations.

� Transport (4): Images related to different modes of transportation and vehicular

movement.

2. Diversity and Non-IID Nature: The categorization into diverse themes ensures

that the dataset mirrors the variety of visual contexts individuals might encounter in

different settings. This diversity is crucial for testing and enhancing the robustness of

our federated learning model, as it prepares the model to handle a wide range of visual

information. Moreover, the non-IID distribution of the dataset—where different clients

may have data that is not representative of the population as a whole—introduces

realistic challenges that are often encountered in federated learning applications [41].
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Figure 3.5: Distribution of labeled clusters illustrating the diversity and non-IID nature of
the 80k dataset.

Converting dataset to a Non-IID Dataset for Llava Instruct 150

Similarly, for the Llava Instruct 150 dataset, we followed the same process of dimensionality

reduction and clustering:

1. Dimensionality Reduction with UMAP: We used UMAP to reduce the high-

dimensional feature space of the visual data.

2. Clustering with k-Means: K-means clustering was applied to group the samples

into clusters based on visual similarity.
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These clusters were then distributed among simulated clients to create a non-IID condi-

tion.

Figure 3.6: UMAP visualization of the text embeddings for llava instruct 150 dataset, high-
lighting the data’s semantic distribution before clustering.



HEADING ON CHAPTER PAGES 23

Figure 3.7: K-means clustering on the UMAP-reduced text embeddings for llava instruct 150
dataset, illustrating the formation of distinct data clusters.

1. Cluster Labeling: Each cluster was assigned a label based on the predominant theme

or activity represented in the images. The labels and their corresponding cluster indices

for the 150k dataset are as follows:

� Observations (0): Images depicting observational activities.

� Direct Queries (1): Images related to direct queries.

� Bounding Box Descriptions (2): Images providing bounding box descriptions.

� Books (3): Images showcasing books and related activities.

� Activity Analysis (4): Images depicting activity analysis.
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� Education (5): Images related to educational contexts.

� Quiz (6): Images depicting quiz-related activities.

2. Diversity and Non-IID Nature: The categorization into diverse themes ensures

that the dataset mirrors the variety of visual contexts individuals might encounter in

different settings. This diversity is crucial for testing and enhancing the robustness of

our federated learning model.

Figure 3.8: Distribution of labeled clusters for llava instruct 150 dataset illustrating the
diversity and non-IID nature of the dataset.

These steps not only ensure that our dataset is well-suited for federated learning but also
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enhance the model’s ability to generalize across different visual domains, which is vital for

developing effective assistive technologies for the visually impaired [39, 42, 38].

These preprocessing steps ensured that the textual data were optimally prepared for

integration with visual data, facilitating the multimodal learning process. By aligning the

text embeddings closely with the visual features, the system is better equipped to handle

the complex reasoning tasks required in our application, specifically tailored to assistive

technologies for visually impaired users.

The data processing module played a pivotal role in converting raw data into a format

suitable for the LLM, ensuring that both visual and textual components were optimally

integrated to produce high-quality training and validation sets.

This tailored approach to dataset creation and preprocessing not only enhances the train-

ing effectiveness of the multimodal LLM in a federated learning framework but also aligns

with the specific needs of visually impaired users, ensuring the assistive technology developed

is both effective and efficient.

3.4 Model Training and Fine-tuning

Training our model involved a two-stage process tailored to refine the model’s capabilities in

handling multimodal data for assistive technologies specifically designed for visually impaired

users. This process aligns closely with methodologies from prominent research, particularly

the use of a pretrained LLaVA model, which is fine-tuned to meet specific requirements.

Stage 1: Pre-training for Feature Alignment

Initially, we focused on aligning the visual features with textual embeddings efficiently:

� Training Objectives: In our adaptation, we utilized a pretrained projection matrix

from [18] while keeping the model’s visual encoder and LLM weights frozen. This
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modified approach allowed for the efficient integration of pre-aligned features, focusing

on enhancing the compatibility between visual and language modalities.

� Data Preparation: The authors curated a subset of the Common Crawl dataset,

filtering it down to 595K image-text pairs to balance concept coverage and training

efficiency. This subset was used to create instruction-following data resembling single-

turn conversations.

� Visual and Textual Integration: Each training sample was treated as a single-

turn interaction, where a visual query (image) was paired with a textual response

(caption). In the original methodology, the primary goal during this stage was to align

these multimodal inputs using a trainable projection matrix W designed to match the

dimensionality of the visual features with the textual embeddings in the LLM.

This pre-training stage acted as a foundation, setting up the model for more advanced

fine-tuning while ensuring that the visual tokenizer was compatible with the frozen LLM.

Stage 2: Fine-tuning End-to-End

After aligning the basic features, we proceeded to an end-to-end fine-tuning stage:

� Continued Training: With the visual encoder still frozen, we fine-tuned the projec-

tion layer and the LLM together, optimizing both for better integration and response

generation.

� Multimodal Chatbot: We developed a Chatbot by further fine-tuning the model on

158K language-image instruction-following data, focusing on enhancing its capabilities

for multimodal, multi-turn interactions.

� Use Case Scenarios: The fine-tuning process was adapted for specific scenarios,

including a multimodal chatbot for general interactions and a Science QA application,
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where the model was tasked with providing detailed responses based on textual or

visual prompts.

Federated Learning Integration

In addition to the standard training procedures, we incorporated federated learning tech-

niques to enhance privacy and model robustness:

� Non-IID Data Handling: Using the previously mentioned non-IID dataset, we fine-

tuned the model across multiple decentralized nodes, simulating real-world scenarios

where data distribution is uneven.

� Local and Global Updates: Training involved both local updates on client devices

and global aggregations to update the central model, ensuring comprehensive learning

across diverse data points.

3.5 Parameter-Efficient Fine-Tuning (PEFT)

Parameter-Efficient Fine-Tuning (PEFT) was employed to reduce the computational burden

and memory requirements during the fine-tuning process. PEFT focuses on adapting only a

small subset of the model parameters, which significantly improves training efficiency while

maintaining high performance [44, 45].

Principles of PEFT

PEFT aims to fine-tune large pre-trained models by adjusting only a fraction of their pa-

rameters, thereby achieving efficient training with minimal resource utilization. The key

principles include:

� Subset Selection: Instead of updating all parameters, PEFT selects a subset of

parameters that are most influential for the target task [46].
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� Low-Rank Adaptation: Incorporating low-rank matrices to approximate the full-

rank parameter updates, reducing the number of parameters to be fine-tuned [44].

� Layer-wise Adaptation: Focusing on specific layers that contribute most to the

model’s performance, rather than uniformly updating parameters across all layers [45].

Application in Assistive Technologies

For the assistive technology system, PEFT was applied as follows:

� Visual Encoder: Fine-tuning involved low-rank adaptation of the visual encoder’s

final layers, enhancing the model’s ability to extract and interpret complex visual

features [44].

� Language Model: Specific attention layers within the language model were fine-

tuned using low-rank matrices to improve the integration of visual and textual data

[45].

� Efficiency and Performance: The application of PEFT resulted in a significant

reduction in computational resources and training time, without compromising the

model’s ability to generate accurate and contextually relevant descriptions [46].

This comprehensive training approach not only enhanced the model’s performance in

specific tasks but also ensured its adaptability and effectiveness in real-world applications

for the visually impaired.
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Practical Application

Assistive technology User Interface (UI)

The user interface (UI) of the assistive technology system is designed with simplicity and

accessibility in mind, ensuring that visually impaired users can easily interact with the

system. The primary features of the UI include:

1. Chatbot Interface: The central element of the UI, where users can input images and

optionally provide textual or auditory inputs. This interface includes a speech-to-text

feature using OpenAI Whisper to convert audio inputs into text and a text-to-speech

feature using Amazon Polly to deliver audio feedback to users.

2. Voice Commands: Users can interact with the system using voice commands, en-

hancing accessibility for those who may find it challenging to use a keyboard or touch-

screen.

3. Screen Reader Compatibility: The UI is fully compatible with screen readers,

ensuring that visually impaired users receive auditory feedback for all interactions.

Gradio Web Server

To provide a seamless and interactive experience, the assistive technology system is hosted on

a Gradio web server. Gradio is a Python library that allows developers to create customizable

user interfaces for machine learning models. The advantages of using Gradio include:

29
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1. Ease of Use: Gradio simplifies the process of creating and deploying web interfaces

for machine learning models, making it easy to integrate various input and output

modalities.

2. Real-Time Interaction: The server enables real-time interaction with the model,

providing immediate feedback to users based on their inputs.

3. Customization: Gradio offers a high degree of customization, allowing the UI to be

tailored to the specific needs of visually impaired users.
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Figure 4.1: Screenshot of the Gradio web interface for the assistive technology system. On
the left part of the interface, users can upload an image or take a picture using the camera.
The right side of the interface displays the uploaded image along with a question about
the scene. Below the image, the system provides textual feedback describing the scene,
followed by an audio feedback option. Users can also interact with the system through audio
recording, and receive both text and audio responses.
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Quantization for Memory Footprint Reduction

To ensure that the assistive technology system can run efficiently on devices with limited

computational resources, we employed quantization techniques to reduce the memory foot-

print of the model. Specifically, we used 4-bit quantization, which involves the following

steps:

1. Model Conversion: The pre-trained model is converted to a quantized version using

a process that reduces the precision of the model’s weights from 32-bit floating point

to 4-bit integers [47].

2. Performance Optimization: Quantization significantly reduces the memory require-

ments and computational overhead, allowing the model to run on devices with lower

processing power without compromising performance [48, 49].

3. Experimental Results: The quantized model was tested to ensure that the reduction

in precision did not adversely affect the model’s accuracy or responsiveness. The results

indicated a minimal loss in performance with a substantial gain in efficiency [50].

Application Screenshots

To provide a comprehensive view of the assistive technology system in action, the following

screenshots illustrate various functionalities:
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Figure 4.2: User providing an image input
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Figure 4.3: User asking question about the image
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Figure 4.4: Voice command input and audio feedback output.

These screenshots demonstrate the system’s capability to provide real-time, contextu-

ally relevant feedback to users, enhancing their interaction with and understanding of their

surroundings.
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Experiments

This chapter explains the experimental procedures undertaken to adapt the LLaVA frame-

work for our specific assistive technology application. The experiments were designed around

two experimental settings: utilizing the LLaVA-Instruct-80K and LLaVA-Instruct-150K

datasets. Leveraging the Stage 1 Pre-trained projectors from the LLaVA model, Stage 2

fine-tuning was conducted to tailor the model’s performance to our use case.

5.1 Experimental Setup

The initial stage of our experiments involved utilizing the LLaVA Stage 1 Pre-trained pro-

jectors, which were originally trained on a 558K subset of the LAION-CC-SBU dataset. This

foundational training provided a robust starting point for further model refinement.

Federated Learning Implementation

For fine-tuning, the model was deployed on two NVIDIA A100 GPUs, chosen for their

powerful computational capabilities and efficiency in handling extensive training tasks. This

setup ensured that the model could be trained intensively without hardware limitations

impacting performance.

To explore the potential of federated learning in enhancing visual instruction tuning for

assistive technologies, we conducted an experiment leveraging the Federated Instruction Tun-

ing (FedIT) approach. This experiment was designed to refine the multimodal capabilities of

36
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the model under a federated learning framework, ensuring privacy and leveraging localized

data improvements.

The experiment involved multiple client simulations, each possessing a subset of the

multimodal instruction-following dataset. These clients participated in a federated learning

scenario where they performed local computations on their data without exchanging it.

This setup aimed to enhance the model’s generalization capabilities across diverse visual and

instructional contexts. We employed the Federated Average (FedAvg) algorithm to aggregate

the local updates from clients. Each client was equipped with a lightweight version of the

model, utilizing LoRA for parameter-efficient tuning, which was particularly suitable for the

limited computational resources available at the edge (local client level). This federated

fine-tuning approach allowed for personalized adaptations to the model while maintaining a

centralized performance standard.

5.2 Fine-Tuning Experiments

We conducted the following fine-tuning experiments to evaluate the performance of the

LLaVA model:

Experiment 1: LLaVA-Instruct-80K Dataset The model was fine-tuned on the

LLaVA-Instruct-80K dataset for 3 epochs. This dataset was specifically curated to enhance

the model’s ability to handle a range of instructive tasks relevant to assisting visually im-

paired users.

Experiment 2: LLaVA-Instruct-150K Dataset A more extensive fine-tuning was

conducted on the larger LLaVA-Instruct-150K dataset, also for 3 epochs. The additional

data provided a more comprehensive range of instructional scenarios, pushing the model to

adapt to more complex user interactions and requirements.

Experiment 3: Federated Fine-Tuning on LLaVA-Instruct-80K Dataset We

performed federated fine-tuning of the LLaVA model on the LLaVA-Instruct-80K dataset,
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leveraging the FedIT approach described earlier.

Experiment 4: Federated Fine-Tuning on LLaVA-Instruct-150K Dataset We

also conducted federated fine-tuning on the larger LLaVA-Instruct-150K dataset, following

the same FedIT approach.

The comparison of the model’s performance across these four experiments provided valu-

able insights into the impact of dataset size and the benefits of the federated learning ap-

proach for our assistive technology application.
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Results

Experiment 1: Fine-tuning on LLaVA-Instruct-80K Dataset

The LLaVA model was fine-tuned on the LLaVA-Instruct-80K dataset for one epoch. This

dataset is designed to test the model’s ability to handle a variety of instructional tasks that

are crucial for developing accessible technologies for visually impaired users.

Figures 6.1, 6.2, and 6.3 depict the training dynamics, including the training loss, learning

rate adjustments, and epoch progression. These graphs provide insights into the model’s

learning behavior and optimization potential during the fine-tuning process.

Figure 6.1: Training loss during Fine-Tuning

The performance of the model across various cognitive and perceptual tasks is detailed

in Table 6.6. The scores reflect the model’s effectiveness in interpreting complex visual data,

which is essential for enhancing spatial awareness and navigation aids for visually impaired

39
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Figure 6.2: Learning rate during Fine-Tuning

Figure 6.3: Epoch during Fine-Tuning

users.

Additionally, a summary of training metrics, shown in Table 6.1, provides a quantitative

overview of the training dynamics, including learning rate, average loss, and computational

efficiency.

This comprehensive analysis demonstrates the model’s efficacy in enhancing navigational

aids and environmental interaction for visually impaired users. By showing significant per-

formance across various cognitive and perceptual tasks, the model validates its potential

as a crucial component in assistive technologies. Looking forward, extending the training
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duration or diversifying the training dataset could further enhance the model’s robustness

and generalizability, broadening its applicability in real-world scenarios.

Metric Value

Epochs 1
Global Steps 10,000
Learning Rate 2× 10−5

Average Loss 0.9704
Total FLOPs 2.1446e+18
Runtime (s) 27,869.96
Samples per Second 2.87
Steps per Second 0.359

Table 6.1: Summary of Training Metrics for Experiment 1 on LLaVA-Instruct-80K Dataset

This comprehensive analysis helps validate the model’s capability to meet the specific

needs of visually impaired users, enhancing their navigation and interaction with their en-

vironment through advanced assistive technologies. Future enhancements might include ex-

tending the training duration or enriching the dataset to further improve model robustness

and adaptability.

Experiment 2: Fine-tuning on LLaVA-Instruct-150K Dataset

A more extensive fine-tuning was conducted on the larger LLaVA-Instruct-150K dataset for 3

epochs. The additional data provided a more comprehensive range of instructional scenarios,

pushing the model to adapt to more complex user interactions and requirements.

These results and visualizations offer detailed insights into the model’s learning dynamics

and its ability to adapt to complex scenarios, further highlighting the potential for using such

a model in assistive technology applications for visually impaired users.

Experiment 3: Federated Fine-tuning on LLaVA-Instruct-80K Dataset

We performed federated fine-tuning on the LLaVA-Instruct-80K dataset using the Federated

Instruction Tuning (FedIT) approach. This method allowed multiple clients to collabora-
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Figure 6.4: Training loss during Fine-Tuning on LLaVA-Instruct-150K Dataset

Figure 6.5: Learning rate adjustments during Fine-Tuning on LLaVA-Instruct-150K Dataset

tively learn without sharing their local data, enhancing privacy and leveraging localized

improvements in model performance.

These figures and tables depict a detailed view of the model’s performance during fed-

erated fine-tuning. The results show the model’s resilience and adaptability in a federated

learning environment, highlighting the benefits of this approach in protecting user data pri-

vacy while still achieving significant learning outcomes.
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Figure 6.6: Epoch progression during Fine-Tuning on LLaVA-Instruct-150K Dataset

Table 6.2: Summary of Training Metrics for Experiment 2 on LLaVA-Instruct-150K Dataset

Metric Value

Epochs 3
Global Steps 5,197
Learning Rate 2× 10−4

Average Loss 0.5369
Total FLOPs 18.951 quintillion
Runtime (s) 161,386.42
Samples per Second 4.122
Steps per Second 0.032

Experiment 4: Federated Fine-tuning on Non-IID LlaVA-Instruct-

150K Dataset

This experiment involved federated fine-tuning on the LLaVA-Instruct-150K dataset using

the Federated Instruction Tuning (FedIT) approach. This approach enhances privacy and

data security by allowing multiple clients to collaboratively update the model without sharing

their individual data directly.

An integral part of assessing the efficiency of our fine-tuning process for each experiment

involves analyzing the computational resources consumed, particularly the runtime. The

following table presents the total runtime for each experiment, reflecting the computational
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Figure 6.7: Training loss during Federated Fine-Tuning on Non-IID LLaVA-Instruct-80K
Dataset

Table 6.3: Summary of Training Metrics for Federated Fine-Tuning (Experiment 3)

Metric Value

Epochs 1
Global Steps 5,197
Learning Rate 2× 10−5

Average Loss 1.2485
Total FLOPs 578.446 trillion
Runtime (s) 5,724.15
Samples per Second 6.988
Steps per Second 0.055

demand and efficiency of the fine-tuning process under different configurations and federated

settings 6.5.

The data reveals significant variations in runtime across the experiments, highlighting

the impact of different training strategies and data configurations. Experiment 2 and 4,

for instance, required substantially more time, which can be attributed to the complexity

of the tasks and the larger dataset sizes involved. Conversely, Experiments 1 and 3, which

might have involved simpler tasks or smaller datasets, completed in much shorter times.

These metrics are crucial for understanding the scalability and practicality of deploying

these models in real-world applications, particularly in environments where computational
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Figure 6.8: Learning rate adjustments during Federated Fine-Tuning on Non-IID LLaVA-
Instruct-80K Dataset

Table 6.4: Summary of Training Metrics for Federated Fine-Tuning (Experiment 4)

Metric Value

Epochs 1
Global Steps 2,440
Learning Rate 2× 10−4

Average Loss 0.7623
Total FLOPs 8.2475 exaFLOPs
Runtime (s) 67,686.25
Samples per Second 4.614
Steps per Second 0.036

resources are a constraint.

Evaluation

Multimodal Evaluation (MME) Benchmarking

The Multimodal Evaluation (MME) scores, reflecting cognitive and perceptual task perfor-

mance, are presented in the table 6.6. These scores are indicative of the model’s improved

capability in interpreting complex visual data, crucial for assisting visually impaired users.

[51]



HEADING ON CHAPTER PAGES 46

Figure 6.9: Epoch progression during Federated Fine-Tuning on Non-IID LlaVA-Instruct-
80K Dataset

Table 6.5: Summary of Runtime Metrics for Various Experiments

Experiment Runtime (DD:HH:MM:SS)

Experiment 1 00:07:44:41
Experiment 2 01:20:49:55
Experiment 3 00:04:04:38
Experiment 4 01:11:55:28

OK-VQA Benchmarking

OK-VQA is a new dataset for visual question answering that requires methods which can

draw upon outside knowledge to answer questions. The dataset comprises 14,055 open-ended

questions, each accompanied by 5 ground truth answers. The questions are manually filtered

to ensure they require outside knowledge (e.g., from Wikipedia), and the dataset is designed

to reduce bias by minimizing questions with the most common answers.[52]

The OK-VQA benchmarking results for our experiments are summarized in Table 6.8.

These results highlight the model’s ability to leverage external knowledge in answering

visual questions. The performance variations across different experiments underscore the

impact of dataset size and federated learning approaches on the model’s accuracy.
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Figure 6.10: Training loss during Federated Fine-Tuning on Non-IID LlaVA-Instruct-150K
Dataset

HallusionBench Benchmarking

HallusionBench is a comprehensive benchmark designed for the evaluation of image-context

reasoning. It consists of 455 visual-question control pairs, including 346 different figures and

a total of 1129 questions on diverse topics such as food, math, geometry, statistics, geography,

sports, cartoons, famous illusions, movies, memes, and more. The formats of these visual

data include logos, posters, figures, charts, tables, maps, and consecutive images, among

others.[53]

To further evaluate the model’s performance, we used the HallusionBench benchmarking

dataset. This dataset assesses the model’s ability to handle hallucination in visual question

answering, a critical aspect for assistive technologies where accurate interpretation of visual

inputs is paramount.

The benchmarking results on HallusionBench, presented in Table 6, highlight the effec-

tiveness of our model compared to other state-of-the-art models. Our model demonstrates

competitive performance in question pair accuracy (qAcc), figure accuracy (fAcc), and over-

all accuracy (aAcc), underscoring its potential in real-world assistive technology applications

for visually impaired users.
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Figure 6.11: Learning rate adjustments during Federated Fine-Tuning on Non-IID LlaVA-
Instruct-150K Dataset

Figure 6.12: Epoch progression during Federated Fine-Tuning on Non-IID LlaVA-Instruct-
150K Dataset
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Table 6.6: Comparative Multimodal Evaluation (MME) scores across different experiments

Task Experiment 1 Experiment 2 Experiment 3 Experiment 4

Code Reasoning 52.50 67.50 70.00 45.00
Numerical Calculation 50.00 70.00 50.00 52.50
Text Translation 72.50 107.50 50.00 52.50
Commonsense Reasoning 86.43 110.71 80.71 105.71
Artwork 78.50 118.75 92.25 114.75
Celebrity 59.71 138.24 52.65 88.53
Count 50.00 160.00 50.00 115.00
Color 50.00 170.00 50.00 163.33
Position 48.33 128.33 50.00 125.00
OCR 87.50 135.00 72.50 100.00
Landmark 134.00 164.75 123.25 129.25
Scene 149.50 158.00 124.00 151.00
Existence 110.00 190.00 110.00 185.00
Posters 96.60 147.62 97.62 99.32

MME Cognition Score 261.4286 355.7143 250.7143 255.7143
MME Perception Score 864.1379 1510.6877 822.2661 1271.1825

Method LLM MME OK-VQA

BLIP-2 Vicuna-13B 1293.8 42.5
InstructBLIP Vicuna-7B 1212.8 50.1
IDEFICS-9B LLaMA-7B – 25.9
Qwen-VL Qwen-7B – 63.8

LLava-1.5 Vicuna-7B 1510.7 58.2
Experiment 1 Vicuna-7B 864.14 22.53
Experiment 2 Vicuna-7B 1510.69 48.78
Experiment 3 Vicuna-7B 822.27 9.15
Experiment 4 Vicuna-7B 1271.18 47.82

Table 6.7: Comparison of Methods on MMEBench (Perception Score) and OK-VQA

Model
# of

params
Question Pair
Acc (qAcc)

Figure Acc (fAcc) All Accuracy (aAcc)

GPT-4V (Oct 2023) – 28.79 39.88 65.28
LLaVA 1.5 13B 10.55 24.86 46.94

Our Model 7B 8.3516 15.6069 43.2177
BLIP2 8.2B 5.05 12.43 40.48
InstructBLIP 8.2B 9.45 10.11 45.26
Qwen-VL 9.6B 5.93 6.65 39.15
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Visual input example, Extreme Ironing

User What is unusual about this image?
Our Model The unusual aspect of this image is that a man is hang-

ing clothes on a clothesline while sitting in the back of a
vehicle, specifically a taxi. This is not a typical scene, as
people usually hang clothes on clotheslines at home or
in designated outdoor spaces, such as laundromats. The
man’s action of hanging clothes in the back of a taxi is
unconventional and unexpected.

User What is unusual about this image?
GPT-4 The unusual thing about this image is that a man is

ironing clothes on an ironing board attached to the roof
of a moving taxi.

User What is unusual about this image?
BLIP-2 a man is sitting on the back of a yellow cab

User What is unusual about this image?
OpenFlamingo The man is drying his clothes on the hood of his car.

Table 6.8: Example prompt from GPT-4 paper to compare with our models visual reasoning
and chat capabilities
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Discussion

This chapter discusses the implications of the findings presented in Chapter 5, focusing on

the performance of instruction tuned model across different experiments and benchmarks.

The results from the Multimodal Evaluation (MME) on both the LLaVA-Instruct-80K and

150K datasets demonstrate the model’s strong capability in handling complex cognitive and

perceptual tasks. Notably, the model exhibited solid performance in tasks requiring high

levels of visual interpretation and commonsense reasoning, which are crucial for applications

in assistive technologies for the visually impaired.

Enhanced Model Performance

The fine-tuning process on the LLaVA-Instruct-80K and 150K datasets resulted in signifi-

cant improvements in tasks such as Scene recognition, Landmark identification, and Object

Recognition (OCR), as shown in Table 6.6. These tasks are particularly important for en-

hancing the spatial awareness and navigational capabilities of visually impaired users. The

high scores in these areas suggest that these instruction tuned model can effectively interpret

complex visual scenes and provide accurate descriptive feedback to assist users in real-world

environments.

Federated Learning Enhancements

Experiments 3 and 4 implemented federated learning into the training process, aiming to

enhance privacy while striving to maintain model performance. The results highlight that
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federated learning generally sustains the model’s effectiveness, demonstrating the feasibility

of using this approach for handling sensitive data, such as personal information from visually

impaired users, without exposing it to potential security risks.

Comparisons with Non-Federated Models

The comparison between federated and non-federated training setups offers valuable insights

into the trade-offs and benefits of each approach. While federated learning models generally

maintained robust performance in visually intensive tasks, some discrepancies were observed

in tasks such as Numerical Calculation and Text Translation. This suggests that while

federated learning can uphold a high level of performance, further optimizations might be

necessary to achieve parity with non-federated models in all aspects.

Practical Implications for Assistive Technologies

The strong performance of the instruction tuned model in both federated and non-federated

settings underscores its potential for real-world applications in assistive technologies. The

ability to process and interpret complex visual data in real-time can significantly enhance

the quality of life for visually impaired individuals, allowing for more independent and safe

navigation in various environments.

Future Research Directions

Future studies could explore the scalability of federated learning across larger networks of

devices and different demographic groups to further validate the robustness and generaliz-

ability of the findings. Additionally, research could focus on optimizing federated learning

algorithms to minimize any performance discrepancies between federated and centralized

models, ensuring that privacy enhancements do not compromise functionality.
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Summary of Key Findings

� Fine-Tuning Performance: The model demonstrated substantial improvements in

both cognitive and perceptual tasks when fine-tuned on the LLaVA-Instruct-80K and

LLaVA-Instruct-150K datasets. The additional data and extended training epochs

significantly enhanced the model’s capability to handle complex instructional scenarios,

essential for developing effective assistive technologies.

� Federated Learning Efficiency: The federated fine-tuning approach preserved user

privacy while maintaining robust performance improvements. The results from exper-

iments 3 and 4 indicated that federated learning could effectively leverage localized

data to enhance the global model without compromising user data security.

� Benchmarking with HallusionBench: The evaluation using the HallusionBench

dataset highlighted the model’s competitive performance in image-context reasoning

tasks. Our model’s ability to accurately interpret diverse visual inputs underscores its

potential for real-world assistive applications.

� OK-VQA Benchmarking: The model’s performance on the OK-VQA dataset demon-

strated its capacity to leverage external knowledge for visual question answering, fur-

ther validating its applicability in assistive technology contexts where accurate and

informative responses are crucial.

� Comparative Analysis: When compared to state-of-the-art models like GPT-4V,

BLIP2, InstructBLIP, and Qwen-VL, our model showed competitive or superior per-

formance in key evaluation metrics, particularly in the HallusionBench and OK-VQA

benchmarks.

Overall, the evaluation results indicate that our multimodal LLM, enhanced through

federated visual instruction tuning, holds significant promise for assisting visually impaired

users. The model’s ability to accurately interpret and respond to complex visual data can
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greatly enhance the navigational aids and interaction tools available to these users. Future

work will focus on further refining the model, extending training durations, and exploring

additional datasets to enhance its robustness and generalizability.
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Conclusion

This research has explored the integration of multimodal large language models (LLMs)

with federated learning to develop assistive technologies tailored for visually impaired users.

The primary objective was to enhance the capability of LLMs to process and synthesize

multimodal information (visual and textual) in a privacy-preserving, efficient manner using

federated learning techniques.

Summary of Findings

Our findings confirm that multimodal LLMs can significantly improve the interaction capa-

bilities between humans and machines. By leveraging advanced techniques such as federated

learning, the model was fine-tuned across distributed datasets, ensuring that personal data

remained on local devices, which addressed significant privacy concerns while still benefiting

from collective improvements.

The implementation of a federated learning framework demonstrated the feasibility of

training sophisticated AI models under non-IID conditions, which closely mimic real-world

scenarios. This approach not only maintained the privacy and security of the data but also

allowed for personalized adjustments to the model, enhancing its applicability across diverse

environments and user needs.
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Impact on Assistive Technologies

The integration of this technology into assistive systems for the visually impaired has shown

promising results. The system developed as part of this research was capable of providing

real-time, context-aware descriptions of visual scenes, thereby enhancing the spatial aware-

ness and daily navigation experiences of visually impaired users. User feedback highlighted

improvements in independent mobility and interaction with their surroundings, marking a

significant step forward in assistive technology.

Challenges and Limitations

Despite its successes, the project faced several challenges, particularly related to the compu-

tational demands of training multimodal LLMs and the complexities involved in managing

federated learning systems. Additionally, while the non-IID nature of the federated learning

setup introduced valuable robustness to the model, it also complicated the training process,

requiring sophisticated strategies to ensure model convergence and effectiveness.

Future Directions

Looking forward, there is substantial room for further research in this area. Future work

could explore more efficient model architectures and training algorithms to reduce computa-

tional overhead. There is also potential for expanding the types of data and sensory inputs

used, to include auditory and tactile data, which could provide more comprehensive support

for users with varying disabilities.

Additionally, enhancing the system’s multilingual capabilities is essential for broader

applicability. Expanding the model to interpret and generate feedback in multiple languages

would significantly increase its accessibility and utility across diverse linguistic backgrounds.

This could involve developing language-specific models or creating a single model capable
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of switching contexts based on user preference or geographic location, thereby making the

technology truly global.

These advancements would not only enhance the functionality and inclusivity of assistive

technologies but also ensure that they meet the needs of a wider array of users, further

bridging the gap between technology and practical usability in everyday life.

Conclusion

In conclusion, this thesis has demonstrated the potential of combining multimodal large

language models with federated learning to create innovative and effective assistive tech-

nologies. While challenges remain, the advancements made through this research contribute

significantly to the fields of artificial intelligence and assistive technology, paving the way for

more personalized, secure, and efficient solutions for the visually impaired.
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