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Abstract

Artificial intelligence (AI) systems have permeated everyday life and business landscapes,

serving as vital aids in human decision-making processes. Their evolution has led to height-

ened complexity and efficacy, with applicability across diverse domains. However, widespread

acceptance and utilization of AI hinge on the establishment of trust in their outcomes—a

concept encapsulated by the term “Trustworthy AI”. In this research, we explore the privacy

and security facets of Trustworthy AI. We propose novel frameworks mitigating privacy and

security risks in face recognition systems and Unmanned Aerial Vehicles (UAVs) using Fully

Homomorphic Encryption (FHE).

Modern face recognition systems utilize deep neural networks to extract salient features

from a face. These features denote embeddings in latent space and are often susceptible to

data leakage and, in some cases, can even be used to reconstruct the original face image.

To prevent compromising identities, template protection schemes are commonly employed.

However, these schemes may still not prevent the leakage of soft biometric information such

as age, gender and race. To alleviate this issue, we propose a novel technique that combines

FHE with an existing template protection scheme known as PolyProtect. Our proposed

approach ensures irreversibility and unlinkability, effectively preventing the leakage of soft

biometric attributes from face embeddings without compromising recognition accuracy.

Autonomous Unmanned Aerial Vehicles (UAVs) have become essential tools in defense,

law enforcement, disaster response, and product delivery. These autonomous navigation

systems require a wireless communication network, and of late are deep learning based. In

critical scenarios such as border protection or disaster response, ensuring the secure navi-

gation of autonomous UAVs is paramount. But, these autonomous UAVs are susceptible

to adversarial attacks through the communication network or the deep learning models -

eavesdropping / man-in-the-middle / membership inference / reconstruction. Time is of

xii
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essence in such critical situations, hence, we propose an FHE-optimized model using Knowl-

edge Distillation for compression. Our compressed model showcases an 18x improvement in

time for secure autonomous UAV navigation. Additionally, we demonstrate the efficacy of

our proposed approach through extensive experimentation. Our proposed approach ensures

feasible, secure and private autonomous UAV navigation with negligible loss in performance.

Collectively, these contributions underscore the advancement of Trustworthy AI, address-

ing critical challenges in privacy and security, thereby paving the way for the deployment of

AI technologies in sensitive domains with enhanced reliability and resilience.



Chapter1

Introduction

Machine Learning (ML) can be broadly defined as empowering machines with large datasets

to analyze and make informed decisions. As ML is integrated into real-world products

and services, it encounters significant challenges. Models may struggle to adapt to slight

variations in data distribution, inadvertently incorporate sensitive features leading to unfair

treatment of certain demographic groups, and lack transparency in explaining decisions to

end-users, such as medical professionals. These issues collectively contribute to a lack of trust

in current ML technologies. A considerable portion of current ML research is dedicated

to advancing Trustworthy ML. This report delves into the privacy and security facets of

Trustworthy ML.

With machines consuming such vast data, privacy and security of users is a necessity.

Privacy and Security in ML can achieved through numerous techniques - Differential Pri-

vacy, Secure Multiparty Computation, Data Anonymization, Federated Learning and Ho-

momorphic Encryption. We focus on a type of Homomorphic Encryption, namely, Fully

Homomorphic Encryption (FHE). We elicit on the efficacy of FHE in bolstering privacy and

security through two applications in the real world as shown in Fig. 1.2 - i) Face analytics

: Protecting soft-biometric attributes from face embeddings while preserving identification

accuracy; ii) Autonomous UAVs : Private and secure navigation in autonomous UAVs.

Face Analytics. Face recognition entails the extraction of features from face images and

comparing them to either validate a claimed identity (“verification”) or determine an identity

1



INTRODUCTION 2

Figure 1.1: This report focuses on furthering Trustworthy Machine Learning research by
leveraging Fully Homomorphic Encryption (FHE) to bolster privacy and security. It show-
cases FHE’s efficacy through real-life applications in face analytics and autonomous UAVs.

(“identification”) [1]. Recent advancements in deep neural networks and AI have resulted in

the development of powerful face recognition systems [2, 3, 4] that can be deployed in a wide

range of applications such as personalized services, law enforcement, border security, and

smartphone access [5]. However, this development has also raised questions about privacy

accorded to subjects and the security of the templates (such as embeddings) stored in a face

recognition application [6]. Even as ethical concerns attendant to the technology are being

rightfully discussed in public forums, it is necessary for the technology itself, on the one

hand, and its users, on the other hand, to embrace measures that can enhance privacy and

security while mitigating potential biases [7]. Otherwise, the technology runs the risk of being

overwhelmed by restrictive legislation [8, 9] that can stifle the benefits of this technology in

solving egregious crimes [10].

To address some of the privacy challenges associated with face embeddings stored as tem-

plates, we propose an approach in this paper that employs a polynomial transformation on

homomorphically encrypted face embeddings. Using Fully Homomorphic Encryption (FHE)

in our proposed method ensures that the face recognition result is only disclosed to au-

thorized parties with the secret key for homomorphic encryption, and the face embeddings

themselves are secured through encryption during the recognition process. We show through
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Figure 1.2: Taxonomy of attacks against face embeddings. We assume the adversary has
access to the face embeddings (x*) that will be used for facial analysis tasks, and explore
different protection techniques against these attacks.

our experiments that using FHE also prevents leakage of soft biometrics (e.g., age, gender/-

sex, race/ethnicity) from face embeddings. (It is necessary to point out that there is a

difference between race and ethnicity, as well as sex and gender. In this report, however, we

use these terms interchangeably).

Autonomous UAVs. Unmanned Aerial Vehicles (UAVs), commonly referred to as

drones, are defined as aircrafts that operate without any human onboard. UAVs have brought

about transformative changes across various industries, providing unmatched capabilities in

surveillance, reconnaissance, disaster response, and product delivery [11]. As the demand for

more complex tasks performed by UAVs grows, so do the challenges in their development,

particularly in striving for fully autonomous operation with minimal human intervention.

Effective deployment of autonomous UAVs requires intricate path planning, obstacle detec-

tion, intelligent maneuverability and a wireless communication network. Research efforts on

autonomous navigation in UAVs for visual mapping, obstacle detection, and path planning

have gravitated towards deep neural networks [12, 13, 14, 15]. In critical scenarios such as
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surveillance and disaster response, a secure wireless communication network to ensure secure

navigation is imperative. In addition to susceptible wireless networks, deep neural networks

in drones are also vulnerable to adversarial attacks [16, 17].

Previous works have explored computer vision-based autonomous UAV systems [12],

whereas, recent efforts take a Reinforcement Learning (RL) approach [13, 14, 15]. In our

work, we adopt the Actor-Critic model with Proximal Policy Optimization (PPO) as the

policy gradient algorithm to demonstrate a solution addressing the privacy and security

challenges in autonomous UAVs. While proposing an end-to-end framework merging RL and

FHE for secure inferencing on encrypted inputs, [18] overlook addressing the high latency

issue in their model. In our work, we enhance the inference speed by 18x of the model

proposed in [18]. We achieve this through model compression using Knowledge Distillation

in 2 steps. We show through our experiments that, with FHE, the navigation results are

unaffected on the compressed model while guaranteeing utmost security and low latency.



Chapter2

Fully Homomorphic Encryption

2.1 Homomorphic Encryption

Encryption is the process where plain-text data is encrypted into ciphertext using a secret

key and a cryptographic algorithm. Only authorized entities with a private key can decrypt

the ciphertext back to the plaintext. Encryption is essential for protecting sensitive data

from unauthorized access or modification. Homomorphic Encryption (HE) is a cryptographic

Figure 2.1: An overview of the workings of a homomorphic system.

system that permits certain computations to be performed on encrypted data without re-

5



FULLY HOMOMORPHIC ENCRYPTION 6

quiring decryption [19] as shown in Fig. 2.1. In this system, we have public (pk) and secret

(sk) keys, encryption (E) and decryption (D) mechanisms, and plaintext values x and y.

When x and y are encrypted as x′ = E(x, pk) and y′ = E(y, pk), respectively, a cryptosystem

is considered homomorphic with respect to a chosen operator (e.g., addition or multiplica-

tion), denoted as ◦, if we can find another operator • such that x ◦ y = D(x′ • y′, sk). This

means that we can conduct operations on encrypted data and obtain the same result when

decrypting using the private secret key.

Specifically, given ci = E(xi, pk), i = 1, 2, · · · , K, an FHE scheme allows the computation

of c = g(c1, c2, · · · , cK) such that D(c, sk) = f(x1, x2, · · · , xK) for any arbitrary function f .

Figure 2.2: Types of Homomorphic Encryption (HE) and their characteristics.

It is essential to note that there are three types of homomorphic encryption schemes [20]

as shown in Fig. 2.2:

• Partial Homomorphic Encryption (PHE) permits addition or multiplication op-

erations.
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• Somewhat Homomorphic Encryption (SHE) allows limited computations on ci-

phertexts.

• Fully Homomorphic Encryption (FHE) enables computations on ciphertexts of

any depth and complexity.

2.2 Fully Homomorphic Encryption

Fully Homomorphic Encryption (FHE) allows computations of unlimited depth and is quan-

tum safe. Data remains secure and private in untrusted environments, like public clouds or

external parties. The data stays encrypted at all times, which minimizes the likelihood that

sensitive information ever gets compromised. On the other hand, FHE remains commercially

infeasible for computationally-heavy applications, as of today.

Numerous FHE systems have been introduced, including the Brakerski/Fan-Vercauteren

(BFV), Brakerski-Gentry-Vaikuntanathan (BGV), and Cheon-Kim-Kim-Song (CKKS) schemes

[21]. The BFV and BGV schemes enable vector operations involving integers, while the

CKKS scheme facilitates floating-point operations. These schemes achieve Single Instruc-

tion Multiple Data (SIMD) operations by bundling plaintext values into an array and then

encrypting them to get ciphertext.

2.3 FHE Libraries

There are several popular open-source FHE libraries available, each with its own strengths

and trade-offs. Here are some of the notable ones and how they compare:

2.3.1 HElib

HElib [22] is one of the earliest and most widely used FHE libraries, developed by researchers

at IBM. It implements the Brakerski-Gentry-Vaikuntanathan (BGV) scheme and supports
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efficient SIMD operations. Key features:

• Supports arbitrary depth computations on encrypted data.

• Efficient for SIMD operations and data-parallel applications.

• Actively maintained and well-documented Written in C++.

2.3.2 SEAL

SEAL (Simple Encrypted Arithmetic Library) [23] is a Microsoft-developed library that

implements the Brakerski/Fan-Vercauteren (BFV) scheme. Its key highlights are:

• Supports computations up to a specific depth.

• Optimized for large-scale computations.

• Easy to use API.

• Written in C++.

2.3.3 PALISADE

PALISADE (previously called OpenFHE) [24] is a modular library that incorporates several

FHE schemes like BGV, BFV, and CKKS. It is designed to be extensible and support

different use cases. Features:

• Supports multiple FHE schemes and SIMD/packed operations.

• Modular design for easy integration of new schemes.

• Active development and community engagement.

• Written in C++.
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2.3.4 TFHE

TFHE (Fast Fully Homomorphic Encryption over the Torus) [25] is known for its speed in

certain operations like bootstrapping. It is based on the Tiny Galois Switching Window

(TGSW) [26, 27] scheme. Key points:

• Efficient for bootstrapping and some specific computations.

• Supports arbitrary computations on encrypted data.

• Active research library.

• Written in C++.

2.3.5 HEAAN

HEAAN (Homomorphic Encryption for Arithmetic of Approximate Numbers) [28] by the

Cryptography Lab at Seoul National University. It implements an approximate homomor-

phic encryption scheme proposed by Cheon, Kim, Kim, and Song (CKKS) that supports

arithmetic operations on encrypted real or complex numbers. HEAAN is written in C++

and necessitates a Linux OS. It has been used in our research and has the following key

features:

• Approximate Arithmetic Operations: It enables approximate arithmetic oper-

ations like addition and multiplication on encrypted data without decryption, with

controllable precision.

• Complex/Real Number Plaintext Space: Unlike other HE schemes that operate

on integers or bits, HEAAN’s plaintext space is the set of complex or real number

vectors.

• Encoding/Decoding Methods: HEAAN employs efficient encoding and decoding
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methods that exploit a ring isomorphism to represent complex/real vectors as polyno-

mials.

• Bootstrapping: Later versions of HEAAN introduced a bootstrapping algorithm to

enable arbitrary computation depths.

2.4 HEAAN functions

The HEAAN library works with three user-defined values - n, logp, logq. n determines the

length of input data, when represented as an array. logp and logq correspond to precision

bits and computational depth, respectively.

2.4.1 Encryption

Input data can be encrypted in two ways -

• void encrypt(Ciphertext& cipher, std::complex<double>* vals, long n,

long logp, long logq)

• void encrypt(Ciphertext& cipher, double* vals, long n, long logp,

long logq)

2.4.2 Decryption

to access results of computation, we can decrypt ciphertexts using -

std::complex<double>* decrypt(SecretKey& secretKey, Ciphertext& cipher)

2.4.3 Addition

The addition operation can be performed between two ciphertexts or a ciphertext and con-

stant -
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1. void add(Ciphertext& res, Ciphertext& cipher1, Ciphertext& cipher2)

2. void addConst(Ciphertext& res, Ciphertext& cipher, double cnst,

long logp)

3. void addConst(Ciphertext& res, Ciphertext& cipher,

std::complex<double> cnst, long logp)

2.4.4 Multiplication

Multiplication shares similarities with addition in its operational characteristics.

• void mult(Ciphertext& res, Ciphertext& cipher1, Ciphertext& cipher2)

• void multByConst(Ciphertext& res, Ciphertext& cipher, double cnst,

long logp)

• void multByConst(Ciphertext& res, Ciphertext& cipher,

std::complex<double> cnst, long logp)

• void multByConstVec(Ciphertext& res, Ciphertext& cipher,

std::complex<double>* cnstVec, long logp)

2.4.5 Power of x

HEAAN uses Taylor series expansion to compute xn, where n is represented by degree

parameter.

void power(Ciphertext& res, Ciphertext& cipher, long logp, long degree)
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2.4.6 Exponent

ex is approximated using its Taylor series representation in HEAAN. The degree parameter

corresponds to the the number of Taylor coefficients to be considered for the approximation,

degree = 10 is recommended.

void function(Ciphertext& res, Ciphertext& cipher, "EXPONENT", long logp,

long degree)



Chapter3

Face Analytics

3.1 Prelude

PolyProtect [29], a template protection scheme, transforms face embeddings into more se-

cure templates using multivariate polynomials with user-specific parameters. Our research

demonstrates a symbiotic relationship between FHE and PolyProtect in ensuring optimal se-

curity measures. The synergy between these two techniques is essential, as each contributes

unique strengths that, when combined, establish a robust security framework. According

to the inversion attack analysis conducted by PolyProtect [29], the risk of reversibility is

notably high (30 - 99%) when an attacker possesses multiple (more than 4) templates of

the same face. Even with the compromise of a single template, there is a 95% likelihood of

reversibility when an overlap of 4 or greater is employed. However, PolyProtect introduces a

tradeoff between accuracy and security, wherein increasing the overlap parameter enhances

accuracy in face recognition and analysis tasks but concurrently diminishes template secu-

rity. To address this challenge, we implement a strategy of encrypting the face embeddings

using FHE and then applying the PolyProtect template with high overlap. This proactive

step ensures that even under the full disclosure threat model, irreversibility, unlinkability

and prevention of soft biometrics leakage are ensured without compromising identification

performance.

Conversely, the integration of PolyProtect into our approach serves as a countermeasure

against threats targeting compromised FHE systems, such as secret key leaks and passive

13
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Figure 3.1: An overview of the implementation of the state-of-the-art method - Template
Protection. Template Protection protects against embedding inversion attacks (identity) but
soft-biometric features are exposed (K - Known; UK - Unknown).

Figure 3.2: An overview of the implementation of our solution - temFHlatE. TemFHlatE
protects against both embedding inversion attacks (identity) and leakage of soft-biometric
features (UK - Unknown).
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attacks outlined in [30]. The identified risks pertain to FHE systems engaged in machine

learning computations, such as mean and variance calculations. By combining both FHE and

PolyProtect techniques (Fig. 3.2), our approach offers a more comprehensive and resilient

privacy solution compared to relying on either method in isolation.

3.2 Threat Model

We use the term facial analytics to refer to the process of deducing semantic information

from a face image. This could include sensitive information such as age, gender, ethnicity,

and health [31] – sometimes known as soft biometrics. The possibility of deducing soft

biometric cues from face images or their embeddings using automated techniques is a source

of concern. These automated techniques can be machine learning models such as SVMs or

deep neural networks (DNNs). For example, a face image or its embedding can be “stolen”

by hackers and various soft biometrics can be derived from them thereby revealing sensitive

information.

In our work, we presume that the face embedding is provided in an encrypted form. Our

goal is to ensure that the encrypted embedding does not reveal any soft biometric information

to unauthorized users. Note that the threat remains unchanged even if the parameters of the

models used for extracting soft biometric information (e.g., weights of a DNN) are encrypted.

We consider the most challenging threat model, as in Fig. 3.3, according to ISO/IEC

30316, which is the full disclosure model. The attacker possesses complete knowledge of

the PolyProtect method [29], including its algorithm, number of embedding elements (m),

user-specific parameters (e.g., C, overlap, and E), and one or more PolyProtected templates

corresponding to a face embedding. In addition, we assume that the public key used in FHE

is available but not the private key. If the embeddings are not encrypted, the hacker can

infer soft biometric information from the PolyProtect template as we show in Table 3.3.
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Figure 3.3: An overview of the threat model being considered in our research.

3.3 Related Work

A notable body of literature explores privacy enhancements to soft biometrics at both the im-

age and embedding (template) levels in face recognition. PFRNet [32] uses an Autoencoder

framework to disentangle identity from attribute information to suppress gender information

in face embeddings. Similarly, SensitiveNets [33] uses a privacy-preserving neural network

that suppresses soft biometrics attributes. The approach adopts an adversarial regularizer,

which incorporates a sensitive information removal function into the learning objective. The

Multi Incremental Variable Elimination (Multi-IVE) method [34] works by eliminating those

feature variables in embeddings that predict soft biometric attributes. Increasing the number

of eliminations was shown to decrease the soft biometrics leakage but significantly affected

the identification performance. In [35], the authors introduce an adversarial attack approach
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designed to protect gender information in facial images. The method involves perturbing

the image to minimize the estimated mutual information between the feature distribution

acquired from a face recognition network and the gender variable. This method reduces

gender leakage (prediction accuracy) by an average of 91% to 80% across three datasets.

Reversible Attribute Privacy Preservation (RAPP) [36] uses a stream cipher to determine

the sensitive attributes that have to be concealed with a user-defined password; it supports

recovering the original attributes. It also uses an attribute adversarial network to generate

perturbed images that conceal various attributes while retaining the utility of face verifi-

cation. However, the identification performance is negatively impacted. The authors work

around this challenge by reducing the number of features being concealed and the intensity

of concealment. PrivacyNet [37] is another technique to impart soft biometric privacy to face

images while preserving recognition capabilities via image perturbation using a GAN-based

Semi-Adversarial Network (SAN). PrivacyNet also allows a person to choose the specific

facial attributes to be obfuscated while allowing the other attributes to be extracted. One of

the drawbacks of this image perturbation technique is that it sometimes does not generate

realistic images and cannot conceal soft biometric features from a human observer.

Although current approaches mitigate the leakage of soft biometric attributes, they do

not suppress it to the level of a “random guess”. In our work, we show that through the

use of FHE, we can restrict this leakage in face embeddings to a level that is equal to or

lower than that of a random guess. In [30], the authors show the susceptibility of privacy

enhancement techniques such as homomorphic encryption. We address this susceptibility by

employing a template protection scheme in addition to homomorphic encryption. Further,

FHE encryption offers a stricter theoretical guarantee than existing methods for the security

of soft biometrics.

FHE has been used in prior work for securing face recognition. Boddeti [38] proposed

encrypting the face embeddings and performing face matching in the FHE domain. Batching

and dimensionality reduction techniques are also explored to balance face-matching accu-
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racy and computational complexity. In [39], the authors introduce an efficient approach for

searching encrypted probe images against a large gallery, using fixed-length representations.

In [40], the authors proposed a time-efficient and space-efficient face matching in the FHE

domain for securing face templates. Our approach stands out from previous work by inte-

grating a template protection scheme, a compression technique, and FHE to enhance the

security of face templates. Moreover, we conducted thorough experiments to assess their

efficacy in mitigating the leakage of soft biometrics.

3.4 Ablation Study

3.4.1 Variation of user-defined parameters (C, m, overlap)

We conducted experiments with various user parameters in PolyProtect to investigate their

impact on the leakage of soft biometrics. As overlap increased from 0 to 3, there was a

notable increase in age leakage, particularly for values overlap > 0. However, gender and

ethnicity showed consistent levels of leakage across different values of overlap (Fig. 3.4(a)).

As the overlap increases, the amount of embedding information retained after the PolyProtect

transformation also increases, potentially resulting in a higher risk of soft biometric leakage.

In PolyProtect, the parameter m dictates the number of terms in the polynomial. At m = 6,

we observed maximum leakage for age, whereas for gender and ethnicity, maximum leakage

occurred at m = 7. Conversely, selecting m = 5 minimized leakage across all three soft

biometric attributes (Fig. 3.4(b)). Additionally, the parameter C, which defines the range

of values for the polynomial coefficients [-C, C], was varied from 10 to 60 in our study.

The leakage of ethnicity remained relatively stable across all tested values of C, while age

exhibited an increase from C = 10 to 20, and gender showed a slight decrease from C = 45

to 60 (Fig. 3.4(c)).



FACE ANALYTICS 19

0 1 2 3

75

80

85

90

Overlap

A
cc

u
ra

cy

4 5 6 7 8

70

75

80

85

90

m

A
cc

u
ra

cy

(a) (b)

20 40 60

75

80

85

90

C

A
cc

u
ra

cy

(c)

Figure 3.4: Ablation Study with the PolyProtect parameters shows soft biometrics leakage
in different settings. (a) Overlap (b) m - Length of Polynomial Coefficients/Exponents (c)
[-C,C] - Range of polynomial coefficients.

3.4.2 Summation of Ciphertext elements

Implementing PolyProtect, cosine similarity, and fully connected layers in FHE requires

summing up the elements within a ciphertext. This is not straightforward as we cannot

access individual elements of a ciphertext. We have performed a comparison between the

three approaches based on the time taken with different input sizes as shown in Fig. 3.5.

The three approaches to efficiently achieve the summation are described below:



FACE ANALYTICS 20

3.4.2.1 Naive Rotation

This is a brute-force method for summation within a ciphertext where expensive ciphertext

rotations are performed N −1 times and the running sum is computed until all the elements

are covered (Algorithm 1).

3.4.2.2 Discrete Fourier Transform

When the Discrete Fourier Transform (DFT) of a signal is computed, the first value of DFT

or the DC component will give the sum of the input signal values. We use this property to

calculate the DFT of the ciphertext and get the sum of its values.

3.4.2.3 Fold and Add

This is a more efficient version of the naive rotation method described earlier, which can be

visualized as iteratively folding the array into half and adding the corresponding folded parts

log2N − 1 times as described in algorithm 2 [41]. Fig. 3.5 shows that the Fold and Add

method was the fastest among the three with a significant speedup than the naive rotation

method, especially for large ciphertext sizes.

Algorithm 1 Add Ciphertext Elements Through Left Rotation n− 1 times

0: function NAIVE ADD(Ciphertext c, long N)
0: Ciphertext c1← c
0: while N > 0 do
0: LeftRot(c1, 1) {Left Rotates Ciphertext by 1}
0: c← Add(c, c1) {Adds two Ciphertexts}
0: N ← N − 1
0: end while
0: return c
0: end function=0



FACE ANALYTICS 21

Algorithm 2 Add Ciphertext Elements Through Left Rotation log2N times

0: function FOLD ADD(Ciphertext c, long N)
0: k ← ⌈log2N⌉
0: i← k − 1
0: while i > 0 do
0: Ciphertext c1← LeftRot(c, 2i)
0: c← Add(c, c1)
0: i← i− 1
0: end while
0: return c
0: end function=0

1 2 3 4 5 6 7 8 9 10 11

0

2,000

4,000

6,000

8,000

Ciphertext Size (2x)

T
im

e
T
a
k
e
n

(m
s)

Naive Rotation
DFT

Fold and Add

Figure 3.5: Execution time to compute summation of elements within a ciphertext.
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3.5 Datasets

We have performed our experiments on CelebSet [42] and Balanced Faces in the Wild (BFW)

[43]. The statistics of these datasets have been detailed in Tables 3.1, 3.2. As the BFW

dataset lacks age annotations for its face images, we utilized a pre-trained model trained on

the CelebSet dataset to predict the ages of the BFW images. These predicted ages were

then employed in our experiments.

Table 3.1: Statistics of the CelebSet Dataset (80 Identities).

Gender Age Ethnicity
Males Females 0-22 23-40 41-59 60+ Hispanic White Black Asian
38,080 34,409 5,279 43,357 22,781 1,072 738 57,873 13,414 464
52.50% 47.50% 7.28% 59.82% 31.43% 1.47% 1.01% 79.85% 18.50% 0.64%

3.6 Protection Techniques

Our primary objective is to elevate the privacy and security standards of face embeddings

utilized in facial analytics, aiming to foster greater acceptance and trust within society. In

our experimental setup, we assess the extent of soft-biometric information leakage within a

face embedding across different scenarios. We perform our experiments on two face image

datasets: (i) CelebSet [42], (ii) BFW [43], and use FaceNet [44] and AdaFace [45] to extract

face embeddings. The datasets have been chosen such that they provide the ground truth for

Table 3.2: Statistics of the BFW Dataset (100 Identities; M - Males; F - Females; I - Indian;
W - White; B - Black; A - Asian).

Gender Predicted Age Ethnicity
M F 0-4 5-12 13-19 20-39 40-59 60+ I W B A

10,000 10,000 0 50 16,326 3,612 12 0 5,000 5,000 5,000 5,000
50% 50% 0% 0.25% 81.63% 18.06% 0.06% 0% 25% 25% 25% 25%
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identity, and soft-biometric attributes (age, gender, and ethnicity). Soft-boimetric leakage is

measured across three Template Protection techniques, namely, (i) PolyProtect; (ii) Negative

Face Recognition; and (iii) Minimum Information Units.

3.6.1 Template Protection

Amongst the many existing protection templates, we have adopted PolyProtect [29] to

showcase the benefits of our work. Let V = [v1, v2, ..., vn] denote an n-dimensional real-

number face embedding. PolyProtect maps V to another real-numer feature vector, P =

[p1, p2, ..., pk] (where k < n) as shown in Fig. 3.6. P is the PolyProtected template of V .

m (where m << n) consecutive elements from V are mapped to single elements in P via a

polynomial equation of coefficients, C = [c1, c2, ..., cm] and exponents, E = [e1, e2, ..., em]. C

and E are user-defined, non-zero, and distinct for each user of the face recognition system.

The first m elements of V are mapped to p1 as :

p1 = c1v
e1
1 + c2v

e2
2 + ...+ cmv

em
m (3.1)

Another important user-defined parameter is overlap, which defines the number of com-

mon elements from V used in successive values in P . When overlap = 0, the elements of V

in each set are unique. The minimum and maximum values for overlap are 0 and m − 1,

respectively. The mapping for p2 for overlaps 0 and m− 1, respectively, are as follows:

p2 = c1v
e1
m+1 + c2v

e2
m+2 + ...+ cmv

em
m+m (3.2)

p2 = c1v
e1
2 + c2v

e2
3 + ...+ cmv

em
m+1 (3.3)

The authors of PolyProtect [29] have also performed an extensive survey on a number of

existing Biometric Template Protection (BTP) methodologies and evaluated them based on

recognition accuracy, irreversibility, and unlinkability [46]. According to the survey, none of
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Figure 3.6: An overview of the working of the PolyProtect algorithm. For demonstration
purposes, we have considered m = 4 and overlap = 3 in the figure.

the existing BTP methodologies before PolyProtect [29] satisfy all three criteria - recognition

accuracy, irreversibility, and unlinkability.

3.6.2 Embedding Compression

It is commonly believed that compressing embeddings can improve privacy leakage. We ex-

plore embedding compression through Matryoshka Representation Learning (MRL)

[47] as a technique to improve privacy, in addition to template protection and encryption.

MRL is an innovative approach that enhances representation learning by encoding informa-

tion at various granularities within a single embedding. We have used MRL in our work to

compress face embeddings, extracted through FaceNet/AdaFace, from 512-dimension space

to 64-dimension space. Fig. 3.7 shows that embeddings retain significant information until

they are compressed to 64-dimension using MRL.
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Figure 3.7: Performance of Matryoksha Representation Learning(MRL) in extracting fea-
tures - Identity, Age, Gender, Ethnicity - from different compression dimensions. The graph
is based on an experiment performed using AdaFace with CelebSet dataset.

3.6.3 TemFHlatE

Amongst the many existing protection templates, we have adopted PolyProtect [29] to

showcase the benefits of our work. Let V = [v1, v2, ..., vn] denote an n-dimensional real-

number face embedding. PolyProtect maps V to another real-numer feature vector, P =

[p1, p2, ..., pk] (where k < n). P is the PolyProtected template of V . m (where m << n)

consecutive elements from V are mapped to single elements in P via a polynomial equation of

coefficients, C = [c1, c2, ..., cm] and exponents, E = [e1, e2, ..., em]. C and E are user-defined,

non-zero, and distinct for each user of the face recognition system. The first m elements of

V are mapped to p1 as :

p1 = c1v
e1
1 + c2v

e2
2 + ...+ cmv

em
m (3.4)

Another important user-defined parameter is overlap, which defines the number of com-

mon elements from V used in successive values in P . When overlap = 0, the elements of V
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in each set are unique. The minimum and maximum values for overlap are 0 and m − 1,

respectively. The mapping for p2 for overlaps 0 and m− 1, respectively, are as follows:

p2 = c1v
e1
m+1 + c2v

e2
m+2 + ...+ cmv

em
m+m (3.5)

p2 = c1v
e1
2 + c2v

e2
3 + ...+ cmv

em
m+1 (3.6)

The authors of PolyProtect [29] have also performed an extensive survey on a number of

existing Biometric Template Protection (BTP) methodologies and evaluated them based on

recognition accuracy, irreversibility, and unlinkability [46]. According to the survey, none of

the existing BTP methodologies before PolyProtect [29] satisfy all three criteria - recognition

accuracy, irreversibility, and unlinkability.

We propose a combination of FHE and PolyProtect, called temFHlatE, to achieve soft-

biometric privacy and preserve identification performance. The face embeddings are first

encrypted as a single ciphertext. Parts of the ciphertext (specifically m elements) undergo a

multivariate polynomial transformations to form a single element of the protected embedding.

Performing non-linear operations in the encrypted domain is not as straightforward as

in the plaintext domain. Numerous adaptations are necessary in the encrypted domain

as shown in Fig. 3.9. Additionally, FHE ciphertexts do not allow single element access.

Detailed overview of the state-of-the-art pipeline in comparison to our pipeline is shown in

Fig. 3.1 and Fig. 3.2 respectively.

3.7 Experiments

In the plaintext domain, we take a supervised learning approach to learn face features from

face embeddings and classify them according to the provided labels. We use a simple neural

network with 4 different classification heads for identity, age, gender and ethnicity as shown

in Fig. 3.8.

On the other hand, as of today, FHE ciphertexts cannot be trained using neural networks.
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Figure 3.8: Face identification and soft-biometric prediction in the plaintext domain using 4
separate classification heads.

FHE allows us to perform face analytics using the ciphertexts in the encrypted domain, but,

significant adaptations are necessary to implement non-linear functions.

3.7.1 Face identification

As in Fig. 3.9, to perform face identification, we conduct a 1:N search in the database of

temFHlatE protected embeddings using cosine distance between the embeddings as a metric.

Cosine distance between two embeddings can be defined as -

Cosine Distance(embedding1, embedding2) =
embedding1.embedding2
|embedding1| |embedding2|

(3.7)

Absolute value of an embedding, |embedding| is necessary to compute cosine distance.

The division operator and square-root function is not permissible in the encrypted domain.

To circumvent this, we generate a polynomial approximation of the inverse square-root func-

tion using Polynomial Regression in the unencrypted domain. We restrict the input to the
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Figure 3.9: An overview of the necessary adaptations in the encrypted domain to perform
face analytics.

range (0, 1] to achieve a closer approximation. The performance of this approximation is

measured through the relative error of 2000 random points in the range (0, 1]. We con-

sider both 6-degree and 8-degree polynomials as a tradeoff between computational depth

and accuracy, as in Fig. 3.10.

3.7.2 Soft-biometric prediction

On the other hand, for soft-biometric prediction, we extract the ASCII dump of the cipher-

texts and use polySVMs to predict their labels.

3.8 Results

To evaluate our solution against the existing solutions, we use two metrics that measure the

gain in privacy, where Ro and Rp represent the recognition performances on the original data
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Figure 3.10: (a) 6-degree polynomial (b) 8-degree polynomial approximation of inverse square
root and its relative error over 2000 random points in the range (0,1].
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and the privacy-enhanced data, respectively.

Privacy Gain (PG) = (1−Rp)− (1−Ro) (3.8)

Suppression Rate (SR) =
Ro −Rp

Ro

(3.9)

A positive value of Privacy Gain signifies enhanced data protection. Whereas, in case of

Suppression Rate, a higher value indicates higher privacy.

As evident from Tables 3.3, 3.4, 3.5 our proposed approach prevents the leakage of soft

biometrics from face embeddings with minimal loss in identification accuracy (<2.5%), high

Privacy Gain and high Suppression Rate. We can observe that our approach reduced the

classification accuracies of soft biometric attributes to the level of random chance across the

two datasets. We could also achieve an almost ideal Privacy Gain and Suppression Rate

in certain scenarios, but we believe this could be because of the imbalanced nature of our

datasets. Our experiments showcase that a combination of MRL, FHE, and PolyProtect

in this order yields maximum protection against soft biometric leakage (Fig. 3.11 and Fig.

3.12).

The consistent efficacy of our method across two different embeddings (FaceNet and

AdaFace) and datasets (CelebSet and BFW) shows the ability of our method to generalize

in different conditions. We also prove the ability of FHE to work seamlessly with template

protection schemes and embedding compression techniques for preserving the privacy of face

templates.

Additionally, we find that utilizing a soft biometrics classifier network trained on plain-

text data allows for seamless inference within the FHE domain, yielding the same predictive

performance as that in the unencrypted domain (as depicted in Table 3.3 in ”None”). This

underscores the feasibility of conducting not only identification but also soft biometric anal-

ysis in the secure FHE domain.
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Table 3.3: Face identification and soft biometric classification accuracy (MRL - Matryoksha
Representation Learning; FHE - Fully Homomorphic Encryption). Note that the proposed
approach retains identification accuracy while successfully reducing soft biometric classifica-
tion accuracy.
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Table 3.4: Privacy Gain across different soft biometric attributes.
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Table 3.5: Suppression Rate across different soft biometric attributes.
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Figure 3.11: Privacy Gain of our proposed approach compared to baseline (PP) across differ-
ent attributes - (a) Gender, (b) Age and (c) Ethnicity - using Adaface (MRL - Matryoksha
Representation Learning; FHE - Fully Homomorphic Encryption; PP - PolyProtect).
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Figure 3.12: Privacy Gain of our proposed approach compared to baseline (PP) across differ-
ent attributes - (a) Gender, (b) Age and (c) Ethnicity - using FaceNet (MRL - Matryoksha
Representation Learning; FHE - Fully Homomorphic Encryption; PP - PolyProtect).



Chapter4

Autonomous UAVs

4.1 Prelude

Autonomous drones are exposed to various adversarial threats, such as - eavesdropping, traf-

fic analysis, man-in-the-middle, and backdoor access [48]. From a deep learning perspective,

attacks can be broadly classified into our types: membership inference, reconstruction, prop-

erty inference, and model extraction [49]. In our research, we specifically address the scenario

where an attacker can intercept communication between the drone and its navigation server,

posing a potential risk to the UAV’s secure operation. Our primary focus is on establishing

secure and private communication channels for autonomous drone navigation.

Figure 4.1: Overview: In an ordinary scenario the UAV is vulnerable to snooping attacks,
as the attacker can directly steal the information. Or, query the model to infer target
information, launching a model inversion attack. In our approach, the input is encrypted
and the inference happens in the encrypted domain. Hence, the attacker is unable to exploit
any meaningful information from the system. The figure has been adopted from [18].

When implemented properly, FHE helps achieve a high level of security. However, its

implementation of mathematical operations is limited. To this end, in this work, we adapt an

36
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RL model to the encrypted domain to facilitate the processing of encrypted real-time images

captured by UAV cameras (Fig. 4.1). The RL model is adapted from [50] and utilizes the

Actor-Critic policy within the Proximal Policy Optimization (PPO) algorithm. Key aspects

of our approach include model compression using Knowledge Distillation, transforming con-

volutional layers into spectral domain operations, utilizing generalized matrix multiplication

in fully connected layers, and customizing activation functions as polynomial approxima-

tions/comparators. Since the RL framework utilizes OpenAI Gym Library to derive the

navigational steps from the extracted image features, we adapt the Library to the encrypted

domain as well. A simple multi-layer perceptron is trained to replicate the OpenAI Gym

library and its weights are used during inferencing in the encrypted domain. Remarkably,

our end-to-end secure framework shows a negligible loss in performance.

Figure 4.2: Architecture of the original model (Teacher Network).

Figure 4.3: An overview of the need for an FHE optimized model.
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4.2 Threat Model

Unmanned Aerial Vehicles (UAVs) deployed in critical scenarios are exposed to various ad-

versarial threats, including (i) Data Poisoning, (ii) Model Inversion, and (iii) White-box

attacks. In our research, we specifically address the scenario where an attacker can intercept

communication between the drone and its navigation server, posing a potential risk to the

UAV’s secure operation. Our primary focus is on establishing secure communication chan-

nels between the drone and its navigation server, thereby safeguarding it against Targeted

Attacks.

Our solution not only mitigates the risk of Targeted Attacks but also protects against

Model Inversion attacks. This is achieved by the intelligent adaptation of different compo-

nents of the model architecture to the encrypted domain. The server can be assumed to hold

the weights of the model as matrices, and activation functions as polynomial approximations,

instead of the true model architecture in sequence. Consequently, even with full knowledge

of such weights, an attacker would be unable to configure the architecture, enhancing the se-

curity posture of the UAV system. Moreover, the overall execution of the algorithm happens

on encrypted data. Thus one with access to the secret key can only consume the results.

However, adversarial image attacks are not protected by this approach.

4.3 Related Work

Numerous surveys have delved into the privacy and security challenges specific to UAVs.

Works such as [51] and [52] highlight the vulnerability landscape in UAV communication

networks, emphasizing the delicate trade-off between robust security and the imperative for

lightweight, efficient operations. These discussions underscore the crucial role of encryption

in fortifying UAV systems against multifaceted threats, as presented by the authors in [53].

Our research aims to build upon these foundational insights, contributing to the ongoing
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discourse on UAV security.

Homomorphic encryption has been employed in prior work to secure computations in

the context of UAV navigation. For instance, in [54], the authors propose an extra key

generation encryption technique using the Paillier Cryptosystem to prevent cipher data from

being compromised. Further, Cheon et al. [55] explores the development of secure UAVs

using a homomorphic public-key encryption method, enabling both secret communication

and confidential computation. Another approach focuses on providing a secure and efficient

method for third-party UAV controllers to collect and process client data, as demonstrated

in [56]. The authors propose a Secure Homomorphic Encryption(SHE) framework, which

transfers the FHE encryption to UAVs through an encryption protocol.

Despite notable progress in advancing autonomous systems and encryption methodologies

for various applications [57, 58, 18], achieving a comprehensive and practical solution for

secure drone systems has proven elusive. While previous works, such as [58], offer feasible

frameworks for drone controllers, they do not address security at the drone level, leaving

them vulnerable to attacks. Similarly, [18] presents a secure Reinforcement Learning-based

framework for drone navigation, yet its practical implementation remains unfeasible. In

contrast to the innovative approach of AutoFHE [59] for accelerating inference in encrypted

domain of large CNN models (with a focus on ReLU amongst other activations), our work

uses a small model with minimal activation functions.

Among various model compression techniques, including Pruning, Quantization, Decom-

position, and Knowledge Distillation [60], our research finds Knowledge Distillation to be

particularly effective for Fully Homomorphic Encryption (FHE). Pruning involves eliminat-

ing network components to create sparse models, which, although useful for acceleration

and compression, doesn’t significantly reduce computational time for CNNs in FHE. While

Quantization typically operates in the BGV scheme, our research focuses on the CKKS

scheme [21]. Although Decomposition shows promise, it doesn’t match the effectiveness of

reducing network depth through Knowledge Distillation.
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4.4 Proposed Methodology

We have adopted a Reinforcement Learning-based model from [50] to showcase the effective-

ness of FHE in providing private and secure autonomous navigation in UAVs. The model

utilizes the Actor-Critic policy within the Proximal Policy Optimization (PPO) algorithm,

capable of seamlessly operating on real-time video feeds captured by UAV cameras. In this

report, we adapt this RL framework to operate in the encrypted domain.

The drone is trained using the Actor-Critic Reinforcement Learning algorithm [50] [61].

During training, both the Actor and Critic networks are utilized, whereas, during inferencing,

only the Actor network is leveraged. The network architecture can be divided into two

segments - Feature Extractor and Fully Connected Network as shown in Figure 4.1. The

Feature extractor consists of three convolution blocks and one linear block as shown in Figure

4.2. Each convolution block consists of a Convolution layer, Batch Normalization layer, and

ReLU activation layer. The linear block consists of a Dense Layer, Batch Normalization

layer, and ReLU activation layer. The Fully Connected Network segment consists of two

shared linear blocks (shared between Actor and Critic) and an output linear block as in

Figure 4.2. The shared linear blocks are made up of a dense layer and utilize the TanH

activation function.

Computation within the Fully Homomorphic Encryption (FHE) domain introduces sev-

eral significant limitations as in Fig. 4.3, including the absence of individual element access

in encrypted arrays, restricted computation depth, heightened time complexity, and the ab-

sence of inherent support for non-linear functions. Consequently, we choose to train the

Actor-Critic model in the unencrypted domain with data generated in a simulated environ-

ment, employing Microsoft’s AirSim library and Unreal Engine. Subsequently, leverage the

model weights for inference within the encrypted domain. To achieve this, we carefully adapt

each component of the Actor-Critic network to seamlessly operate within the FHE domain,

addressing specific challenges presented by FHE. In addition to computational constraints,
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currently, operations in the FHE domain consume significant time. We must have an effi-

cient model with low inference times and high accuracy. We achieve this with the help of

Knowledge Distillation as in Fig. 4.4.

In this section, we provide an in-depth exploration of these adaptations to allow seamless

operation in the FHE domain:

1. Input adaptation

2. Model Compression via Knowledge Distillation

3. 2-D strided Convolution

4. ReLU activation function

5. Dense Layer

6. TanH activation function

7. OpenAI Gym Library

4.4.1 Input adaptation

The drone’s input comprises of three consecutive images, each captured from the AirSim

simulator, with dimensions 50x50. These images are concatenated to form a single input

image with dimensions 50x150. In HEAAN, we adopt a strategy where each row of the

image is encrypted as a single ciphertext. This approach enables the utilization of SIMD

operations, enhancing computational efficiency [62].

Given that HEAAN exclusively supports the encryption of data with sizes as powers of

2, we address this constraint by padding each row of the image with zeros, extending the

width to 256 [18]. Consequently, the padded input image, now of size 50x256, is encrypted,

resulting in a vector of ciphertexts. To facilitate efficient computation, the plaintext weights

or filters undergo similar zero-padding, aligning with the dimensions of the padded input
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image. Importantly, the increase in input size from 50x150 to 50x256 does not impose a

significant computational overhead, thanks to the SIMD nature of operations inherent in

HEAAN.

4.4.2 Knowledge Distillation

Figure 4.4: We propose a smaller model through Knowledge Distillation to suit FHE needs
while maintaining privacy, security and accuracy.

Knowledge distillation, a representative type of model compression and acceleration,

effectively learns a small student model from a large teacher model [63]. In our work,

we employ a feature-based knowledge distillation to compress our original model (Teacher
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network) to a smaller and FHE-friendly model (Student2 network). We achieve this in 2 steps

as shown in Fig 4.4, achieving Student1 network first and then using Student1 to further

compress the model to Student2. It is important to note that, we perform distillation only on

the feature extractor network of the Teacher while training Student1. As shown in Figure 4.4,

we train the student networks on the Cosine Similarity Loss between the extracted features.

This significantly reduces the inference time, thereby making the FHE implementation more

feasible. Ablation study as in Fig. 4.6 indicates the effect of compressing the feature extractor

to a 1-layer CNN with different filter counts on the entire RL model.

Figure 4.5: Architecture of the final compressed model (Student2 Network) to comply with
FHE’s time constraints.

4.4.3 Convolutional Layer

Performing regular convolution in the encrypted domain is computationally inefficient. In

our research, we take a frequency-domain approach for convolution leveraging the Discrete

Fourier transform (DFT) as done in [18]. The DFT of encrypted data is performed using

Homomorphic Fourier transform (HFT) - inspired by Cooley-Tukey matrix factorization [64].

The following steps are performed to achieve 2D convolution efficiently:

1. HFT on each ciphertext (representative of each row in the image) as in [65]
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Figure 4.6: (a) Mean Absolute Error (MAE) for various filter counts in the feature-extractor
of the Student network (b) R-squared score for various filter counts in the feature-extractor
of the Student network (c) Inference time in seconds for various filter counts in the feature-
extractor of the Student network.

2. Transpose the result based on the method in [66]

3. Perform HFT again on the transposed ciphertexts

4. Transpose the ciphertexts again

5. Compute the convolution output y[n] using element-wise multiplication in the fre-

quency domain and Inverse DFT (Inverse HFT in the encrypted domain), as expressed
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in Equation 4.1.

G−1 denotes the Inverse 2D DFT, and H[u, v] and F [u, v] are the 2D DFT of the ciphertext

and filter, respectively.

y[m,n] = G−1 {H[u, v] · F [u, v]} (4.1)

H[u, v] =
M−1∑
m=0

N−1∑
n=0

h[m,n] · e−j 2π
M

um · e−j 2π
N

vn (4.2)

To achieve convolution with stride, a rotational manipulation is applied to the resulting

ciphertext after regular convolution. We apply left rotation on the resulting ciphertext by

(N − (2 ∗ padding))%N and down rotation by 2 ∗ padding, where N represents the size of

the ciphertext and padding represents the padded value used to extract DFT convolution

output. Then, this result is multiplied by an array containing 1s and 0s to obtain appropriate

convolution based on the stride value, as illustrated in Fig. 4.7.

4.4.4 Activation functions

Activation functions play a crucial role in neural networks, but their implementation in the

context of FHE presents unique challenges [67]. FHE libraries lack native support for com-

parison operations, necessitating the use of approximations like CompG for the sign function

[68]. Normalization is essential to align input values within the required range, achieved by

scaling the outputs of convolutional layers based on the maximum observed absolute values

during training. This scaling factor is determined by the maximum of the absolute values of

the inputs’ observed range. Following the application of the approximations, positive input

values are rescaled to their original range using the inverse of the scaling factor.

In our research, we adopt a composite approximation technique for comparison in ReLU

implementation from [69]. This method evaluates the input value a against zero, encoding

the output as 1 for a > 0, 0 for a < 0, and 0.5 for a = 0, and subsequently calculates the
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Figure 4.7: 2D Convolution in FHE Domain. Input ciphertext and weights are multiplied
in the frequency domain to obtain full convolution. Final convolution output is obtained
by rotating the full convolution as shown above. Different stride-based convolutions can be
extracted by multiplying appropriate vectors.
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Figure 4.8: (a) Polynomial approximation of Tanh(x) vs Exact Tanh(x) (b) Relative error
|f(x)−tanh(x)|

|tanh(x)| of the polynomial approximation f(x) over the interval [-2, 2].

final ReLU output by multiplying this result by the input value a. Additionally, we address

the challenges of implementing exponential functions in FHE by employing an 8-degree
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polynomial approximation of TanH restricted to the range [-2, 2]. This approach allows

for a closer approximation while mitigating the limitations of FHE in handling exponential

functions. The performance of our approximation is evaluated through the relative error of

2000 points within the specified range, providing insights into its effectiveness and accuracy

as shown in Fig 4.8.

4.4.5 Flattening layer

The flattening operation is usually performed on the convolution outputs. Flattening op-

eration is not possible in FHE without decrypting and re-encrypting the ciphertexts, as it

involves changing the length of ciphertexts. To circumvent this issue, we perform element-

wise multiplication of the weights and convolution output. Element-wise multiplication is an

extremely time-consuming operation as it involves multiplication, addition, and left rotation.

We multiply each ciphertext with its corresponding weight vector and add it to a temporary

ciphertext initialized to zeros. Then, we perform a summation of the ciphertext elements

through repetitive left rotation and addition N-1 times.

4.4.6 Fully-Connected Layer

A Fully Connected Layer is adapted to FHE as the matrix multiplication of ciphertext inputs

and plaintext weight matrices. Each row of weight matrix is multiplied with the ciphertext

and the elements of the ciphertext are summed through left rotation.

4.4.7 OpenAI Gym Library

We have adapted the OpenAI Gym Library to FHE through a 3-layer neural network as in

Figure 4.2 and Figure 4.5. This is due to the limitations of FHE in modeling probability

distributions. The neural network learns the probability distribution and maps the final

64-dimension latent vector to the action output. The model is trained in the unencrypted
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domain and its weights are used for inferencing in FHE.

4.5 Results

Experiments were performed in the encrypted domain on a subset of randomly selected

samples from the testing set of the unencrypted domain. We evaluated our results from

the FHE-adapted Reinforcement Learning framework against the expected results from the

Reinforcement Learning framework in the unencrypted domain. Table 4.1 depicts the mean

absolute error (MAE) across each block in the Teacher and Student networks within the

encrypted domain. Crucially, the regression-based prediction output remained consistent

between the FHE version and the plaintext counterpart for the tested samples, indicating

coherence in predictive outcomes. We have also achieved anR-squared score of 0.9631 for

the Teacher network and 0.9499 for the Student2 network with the end-to-end FHE-

based Reinforcement Learning framework, in comparison with results in the unencrypted

domain. Additionally, Table 4.2 presents the average processing time across each block in

the Teacher and Student networks. We achieve an 18x improvement in inference speed

with Knowledge Distillation. These findings substantiate the efficacy of our FHE-adapted

network, showcasing the viability of FHE in preserving model accuracy while ensuring data

confidentiality.

Table 4.1: Layerwise average Mean Absolute Error (MAE) between plain-text and FHE
model intermediate outputs in Teacher and Student networks.

Layer
Avergae MAE

Teacher Student1 Student2

Convolution 0.0779 0.0860 0.0873

Linear 0.0129 0.0185 0.0203

OpenAI Gym Library Blackbox 0.0210 0.0206 0.0201
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(a) (b)

Figure 4.9: Relative percentage errors of actions on adaption of OpenAI Gym Library to
FHE.

Table 4.2: Time taken by the Teacher and Student networks.

Layer
Inference Time (seconds)

Teacher Student1 Student2

Convolution 1,006,337.18 9,508.44 9,510.22

Linear 13,662.48 43,670.76 41,989.52

OpenAI Gym Library Blackbox 4,574.82 4,725.92 4,668.19

Total 1,024,754.48 57,905.12 56,167.93
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Conclusion

Through two real-world applications in face analytics and autonomous UAVs, we underscore

the usefulness of FHE in providing strict privacy and security without losing performance.

Through our experiments in both cases, we have shown that FHE is the way forward in

fostering the privacy and security aspects of Trustworthy AI.

Face Analytics. In this report, we propose to use FHE in combination with template

protection and compression to secure the face template and prevent soft biometric leakage.

We show that soft biometric attributes from face embeddings can be strictly protected while

preserving identification accuracy. In our approach, we compress the face embeddings using

MRL (Matryoksha Representation Learning), encrypt them, and then apply PolyProtect as

the template protection scheme. The identification performance of the encrypted template

compared with the unencrypted version is unchanged. Since FHE guarantees are based on

strong theoretical principles, privacy and security are ensured, and only authorized individ-

uals with the secret key will be able to access the results from the FHE computation.

Autonomous UAVs. We adopt a groundbreaking end-to-end homomorphically en-

crypted Unmanned Aerial Vehicle (UAV) navigation system, that uses a fusion of reinforce-

ment learning and Fully Homomorphic Encryption (FHE) from [aggarwal2024enhancing].

Given the model’s high latency, we propose a model compression technique to significant

speedup (18x) inference time. We achieve this Knowledge Distillation in 2 steps, using the

cosine distance metric to train the student models. First, we compress the 3 layer CNN to a

50
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1 layer CNN, achieving Student1. Then, we compress the MLP layer using cosine loss from

both Student1 and Teacher, to achieve our compressed model in Student2. In addition, we

provide detailed steps to implement the entire model architecture in FHE. In our evaluation

of inference, our proposed FHE-based compressed architecture demonstrates lower latency

with minimal error across each block in the network, showcasing no discernible accuracy loss

when compared to its plaintext counterpart.
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Relevant Publications

1. Enhancing Privacy in Face Analytics Using Fully Homomorphic Encryption (IEEE

International Conference on Automatic Face and Gesture Recognition 2024 )

2. Enhancing Privacy and Security of Autonomous UAV Navigation (IEEE Conference
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