
Empowering Emotional Support Chatbots with Large
Language Models

by

Sunil Rufus Ramneedee Pushparaj

May 9th 2024

A dissertation submitted to the

Faculty of the Graduate School of

the University at Buffalo, The State University of New York

in partial fulfilment of the requirements for the

degree of

Computer Science and Engineering Master of Science in Computer Science and Engineering

Department of Computer Science and Engineering



Copyright by

Sunil Rufus Ramneedee Pushparaj

2024

ii



To my family and friends

iii



Acknowledgments

I want to express my sincere appreciation to all those who have supported and guided me

during the course of this research project.

Firstly, I am incredibly thankful to my advisor, Dr. Nalini Ratha, whose invaluable

guidance, consistent support, and constructive feedback have been instrumental in shaping

and completing this research thesis.

I am also deeply grateful to Dr. Rohini Srihari, a member of my thesis committee, for

her insightful suggestions on advancing this research further.

I would like to acknowledge my colleagues in the laboratory for their ongoing assistance

and support whenever I needed it.

A heartfelt thank you goes to the Department of Computer Science and Engineering at

the University at Buffalo for providing outstanding facilities and resources, which greatly

facilitated my research efforts.

Lastly, I wish to convey my heartfelt gratitude to my family and friends for their steadfast

support and understanding throughout my academic journey. Their unwavering patience and

encouragement have served as my most powerful driving force.

iv



Table of Contents

Table of Contents v

List of Tables viii

List of Figures ix

Abstract xii

Chapter 1:

Introduction 1

1.1 The Impact of Large Language Models . . . . . . . . . . . . . . . . . . . . . 1

1.2 Emotional Assistance: A new Frontier for LLMs . . . . . . . . . . . . . . . . 2

1.3 Leveraging Smaller LLMs for Efficient Inference . . . . . . . . . . . . . . . . 3

1.4 Enhancing Emotional Support with a Humanoid robot . . . . . . . . . . . . 4

Chapter 2:

Related Work 5

Chapter 3:

Datasets 8

3.1 Emotional Support Conversation Dataset (ESConv) . . . . . . . . . . . . . . 8

3.1.1 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1.2 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1.3 Data Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

v



TABLE OF CONTENTS vi

3.2 Extensible Emotional Support Dialogue Dataset (ExTES) . . . . . . . . . . 12

3.2.1 Dataset Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.2 Dialogue Quality Evaluation . . . . . . . . . . . . . . . . . . . . . . . 14

Chapter 4:

Methodologies 17

4.1 Training Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Language Models for Experimentation . . . . . . . . . . . . . . . . . . . . . 18

4.2.1 Mistral 7B Instruct v0.2 . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2.2 LLama2 7B Chat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2.3 Phi-3-Mini-4k-Instruct . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3 Low Ranked Adaptation (LORA) . . . . . . . . . . . . . . . . . . . . . . . . 23

4.4 Context Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Chapter 5:

Design and Development 28

5.1 Fine Tuning Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Chapter 6:

Results 33

6.1 Performance on ExTES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.1.1 Mistral 7B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.1.2 Llama 7B Chat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.1.3 Phi 3 mini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.2 Performance on ESConv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.2.1 Mistral 7B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.2.2 Llama 7B Chat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.2.3 Phi 3 mini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



TABLE OF CONTENTS vii

6.3 GPT for evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.4 Inference times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Chapter 7:

Conclusion and Future work 44

Bibliography 46



List of Tables

4.1 Mistral model architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.1 Training parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.1 Generation parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.2 Mistral on ExTES dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.3 Llama on ExTES dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.4 Phi3 on ExTES dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.5 Mistral on ESConv dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.6 Llama on ESConv dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.7 Phi3 on ESConv dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.8 GPT4 for evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.9 Inference times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

viii



List of Figures

1.1 Regular chatbot vs Emotional Support Chatbot . . . . . . . . . . . . . . . . 3

3.1 An Overview of ESC Framework . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Data example from ESConv . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Statistics of ESConv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.4 Statistics of all the annotations, including the help-seekers’ problems, emo-

tions, feedback, and the support strategies . . . . . . . . . . . . . . . . . . . 12

3.5 Statistics of all 36 emotional support scenarios covered in ExTES dataset . . 13

3.6 Statistics of response strategies used in ExTES . . . . . . . . . . . . . . . . . 14

3.7 The pipeline for collecting the ExTES conversation dataset via our proposed

extendable looping scheme. Based on the dataset, we benchmark and analyze

the effect of fine-tuning the chat model with various techniques. . . . . . . . 15

3.8 Human evaluation of ExTES quality. The scores (from 0 to 3) are averaged

over all the samples rated by three annotators. κ denotes Fleiss’ Kappa,

indicating fair to moderate inter-annotator agreement (0.2 < κ < 0.6) . . . . 15

3.9 An example of ExTES data . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1 The statistics of ExTES vs ESConv . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Overall safety measures.Left: Llama 2-Chat has a low violation percentage

overall across model sizes. Right: Llama 2-Chat has a high safety and help-

fulness mean rating overall across model sizes . . . . . . . . . . . . . . . . . 20

ix



LIST OF FIGURES x

4.3 Comparison of harmful response percentages by Microsoft AI Red Team be-

tween phi-3-mini before and after the safety alignment. . . . . . . . . . . . . 21

4.4 LoRA training loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.5 The schematic overview of recursive summarization . . . . . . . . . . . . . . 25

4.6 Illustration of SPC shows the compressed conversational answer expect with

question. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.7 Representations of personal knowledge using Bag of Head nouns (BOH), Un-

processed text (RAW), and Personal Space Graph (PSG). . . . . . . . . . . 27

5.1 Finetuning design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.3 Mistral Training and Evaluation loss . . . . . . . . . . . . . . . . . . . . . . 31

5.4 Llama Training and Evaluation loss . . . . . . . . . . . . . . . . . . . . . . . 31

5.5 Phi3 Training and Evaluation loss . . . . . . . . . . . . . . . . . . . . . . . . 32

6.1 PPL range with number of utterances . . . . . . . . . . . . . . . . . . . . . . 34

6.2 Content length with increase in utterances . . . . . . . . . . . . . . . . . . . 34

6.3 Stopwords impact on no of utterances . . . . . . . . . . . . . . . . . . . . . . 34

6.4 PPL range with number of utterances . . . . . . . . . . . . . . . . . . . . . . 36

6.5 Content length with increase in utterances . . . . . . . . . . . . . . . . . . . 36

6.6 Stopwords impact on no of utterances . . . . . . . . . . . . . . . . . . . . . . 36

6.7 PPL range with number of utterances . . . . . . . . . . . . . . . . . . . . . . 38

6.8 Content length with increase in utterances . . . . . . . . . . . . . . . . . . . 38

6.9 Stopwords impact on no of utterances . . . . . . . . . . . . . . . . . . . . . . 38

6.10 PPL range with number of utterances . . . . . . . . . . . . . . . . . . . . . . 39

6.11 Content length with increase in utterances . . . . . . . . . . . . . . . . . . . 39

6.12 Stopwords impact on no of utterances . . . . . . . . . . . . . . . . . . . . . . 39

6.13 Prompt for evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40



LIST OF FIGURES xi

6.14 COnversation with Finetuned model . . . . . . . . . . . . . . . . . . . . . . 43

6.15 Conversation with base model . . . . . . . . . . . . . . . . . . . . . . . . . . 43



Abstract

The emergence of AI-driven chatbots presents a promising avenue for extending empathy

and support to individuals navigating emotional distress. This study proposes the utiliza-

tion of deep learning and natural language processing (NLP) methodologies to develop an

AI-driven emotional support chatbot. Specifically tailored to cultivate a supportive environ-

ment for users encountering challenging emotional experiences, this chatbot aims to leverage

Large Language Models with significantly fewer parameters than contemporary state-of-the-

art models, such as ChatGPT. Through the application of fine-tuning techniques on newer

datasets, this research endeavors to explore the inherent capabilities of language models in

delivering nuanced emotional support across diverse scenarios. Central to its objectives is the

refinement of emotional support chatbots by means of fine-tuning existing language models

on datasets curated for emotional comprehension. Furthermore, this study undertakes an

investigation into knowledge pruning techniques, with the goal of reducing the size and com-

plexity of trainable parameters within these models while ensuring the preservation of their

performance metrics. To ascertain the efficacy and reliability of the proposed methodolo-

gies, evaluation procedures are conducted on standard datasets. By systematically testing

the efficiency of these enhanced emotional support chatbots, this research contributes to the

advancement of AI-driven solutions in the realm of mental health support services, position-

ing them as integral components within the evolving landscape of digital care provision.

xii



Chapter 1

Introduction

1.1 The Impact of Large Language Models

In recent years, Large Language Models (LLMs) have spearheaded a paradigm shift in Nat-

ural Language Processing (NLP) and artificial intelligence, fundamentally transforming our

capacity to comprehend and generate text that mirrors human language. These models have

showcased extraordinary capabilities across a spectrum of NLP tasks, including but not lim-

ited to language translation, text generation, sentiment analysis, and question answering. In

certain instances, they have achieved performance levels on par with or surpassing human

abilities.

One of the key driving forces behind this revolution is the extensive availability of pre-

trained LLMs, coupled with accessible APIs (Application Programming Interfaces) and li-

braries. These resources have effectively democratized access to cutting-edge NLP technol-

ogy, empowering developers from diverse backgrounds to leverage state-of-the-art capabilities

with minimal effort.

Furthermore, the advent of pretrained LLMs has significantly reduced the barrier to en-

try for NLP research and application development. By providing a foundation of linguistic

knowledge and understanding, these models allow developers to focus more on fine-tuning

and customizing for specific tasks rather than starting from scratch. This streamlined ap-

1



INTRODUCTION 2

proach has accelerated the pace of innovation in the field and fostered the creation of a myriad

of applications across industries, ranging from virtual assistants to content generation tools

and beyond.

1.2 Emotional Assistance: A new Frontier for LLMs

As LLMs have predominantly been utilized for tasks like language translation and infor-

mation retrieval, there’s a burgeoning interest in harnessing their capabilities for emotional

assistance and support. Emotions are pivotal in human communication and interaction,

shaping our cognition, actions, and overall welfare. Hence, there’s considerable potential for

LLMs to furnish emotional aid and guidance to individuals.

The integration of emotional support conversational assistance functionalities into LLM-

based chatbots heralds a new era of scalable, accessible, and stigma-free mental health

support. This innovative approach holds promise in addressing the escalating demand for

emotional well-being services. By leveraging LLMs, chatbots can engage users in empathetic

and understanding conversations, providing comfort, advice, and coping strategies tailored

to individual needs.

Moreover, LLM-powered emotional assistance tools can operate around the clock, offering

continuous support to users regardless of time or location. This 24/7 availability enhances

accessibility and ensures that individuals receive assistance when they need it most. Ad-

ditionally, the anonymity provided by chatbots encourages users to express their emotions

openly and seek help without fear of judgment or stigma.

Moreover, the flexibility of LLMs empowers chatbots to adjust their replies depending

on context, the user’s past interactions, and changing emotional states. Through continued

engagement, these systems can cultivate a better grasp of users’ feelings and inclinations, ul-

timately providing increasingly personalized and impactful assistance as time progresses. In

contrast to conventional chatbots designed for task-based or open domain chit chat conversa-
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Figure 1.1: Regular chatbot vs Emotional Support Chatbot

tions and have limited personalization and emotion support capabilities, whereas, emotional

support chatbots aim to stimulate interaction by prompting users with questions, encour-

aging them to share their experiences, and offering empathetic advice and support. An

example of the difference between both has been shown in figure 1.1.

1.3 Leveraging Smaller LLMs for Efficient Inference

In the realm of NLP and AI, Large Language Models (LLMs) such as GPT have garnered

significant attention for their impressive capabilities. However, deploying these models for

real-time inference poses challenges due to their computational demands, latency concerns,

and associated costs.

To address these challenges, there’s a growing interest in leveraging smaller LLMs and

fine-tuning them effectively to achieve efficient inference. This involves a careful balance

between performance and resource constraints. By employing advanced techniques in model

architecture design, data preprocessing, and optimization strategies, we can harness the

power of these models to provide inferences that are both effective and resource-efficient.

One key aspect of this approach is the careful selection and adaptation of model archi-
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tectures. Smaller LLMs, while lacking the vast parameter space of their larger counterparts,

can still be fine-tuned to excel in specific tasks. By carefully curating and preprocessing the

training data, we can ensure that the model learns efficiently from the available information,

leading to faster convergence and improved performance.

Furthermore, optimization strategies such as quantization, pruning, and efficient hard-

ware utilization play a crucial role in enhancing inference efficiency. By quantizing model

parameters to lower precision, pruning unnecessary connections, and leveraging specialized

hardware accelerators, we can significantly reduce inference time and computational require-

ments while maintaining acceptable levels of accuracy.

1.4 Enhancing Emotional Support with a Humanoid

robot

We have deployed this application through two distinct channels: a web-based chat interface

and integration with a humanoid robot. The web-based chat interface offers accessibility and

convenience, allowing users to engage with the emotional support bot from any device with

internet access. Through this platform, individuals can seek support, share their feelings, and

receive empathetic responses in real-time, fostering a sense of connection and reassurance.

Simultaneously, by integrating the emotional support bot with a humanoid robot, we aim

to enhance the user experience through physical presence and interaction. This approach

adds a layer of embodiment to the support provided, enabling the robot to engage with users

in a more immersive and impactful manner. Whether in healthcare settings, educational en-

vironments, or personal spaces, the humanoid robot serves as a tangible companion, offering

comfort, encouragement, and companionship to those in need. By deploying the application

across these two channels, we strive to maximize accessibility and effectiveness, ensuring that

individuals can receive the support they need, wherever they are, and however they choose

to engage with the technology.



Chapter 2

Related Work

In recent years, the advancement of dialogue system research has been significantly bol-

stered by the development and utilization of various datasets. Li et al. [1] introduce the

DailyDialog dataset, a high-quality multi-turn dialogue corpus labeled with communication

intention and emotion information, aiming to reflect natural human communication in daily

life. Rashkin et al. [2] propose EMPATHETICDIALOGUES, a benchmark dataset com-

prising 25k conversations grounded in emotional situations, fostering research in empathetic

dialogue generation. Their experiments demonstrate that dialogue models trained on EM-

PATHETICDIALOGUES are perceived as more empathetic by human evaluators compared

to models trained on generic Internet conversation data. Liu et al. [3] and Zheng et al. [4]

address the scarcity of well-designed tasks and corpora for emotional support conversations.

They propose structured approaches based on the Helping Skills Theory, culminating in the

construction of ESConv and ExTES datasets. These datasets facilitate research on emo-

tional support dialogue systems by providing high-quality conversations and enabling the

evaluation of dialogue model performance in providing emotional support.

Several studies have made notable strides in enhancing the functionality of NLP applica-

tions, particularly within the realm of dialogue systems and text generation. Among these

advancements, a significant focus has been placed on context management within LLMs.

Recursive summarization, as proposed by Wang et al. [5], involves iteratively condensing a

piece of text to distill its main ideas, aiding LLMs in managing complex input and generating

5
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concise and relevant responses. Another context management technique, soft prompt com-

pression [6], compresses input prompts or contexts to focus on salient aspects, aligning model

responses with user intent. Additionally, Mousavi et al. [7] explore the integration of user-

specific knowledge into LLMs for generating personalized responses in longitudinal dialogues

(LDs), showing promising results with syntactic or graph-based representations. Pawar et

al. [8] provide a comprehensive survey of strategies for extending context length in NLP ap-

plications, categorizing techniques into extrapolation and interpolation. These approaches,

encompassing zero-shot methods, attention mechanisms, and fine-tuning strategies, address

challenges associated with handling sequences beyond the model’s initial training context.

Collectively, these works offer insights into enhancing dialogue generation, managing con-

text, and incorporating user-specific knowledge, contributing to the broader landscape of

NLP research and applications.

Recent research has focused on developing robust evaluation frameworks for assessing

the quality of text generated by natural language generation (NLG) systems. Traditional

reference-based metrics like BLEU and ROUGE have shown limited correlation with hu-

man judgments, especially for tasks requiring creativity and diversity. To address this,

studies have explored the use of LLMs as reference-free evaluators, offering applicability to

tasks lacking human references. Liu et al. [9] propose G-Eval, a framework utilizing LLMs

with chain-of-thoughts (CoT) and a form-filling paradigm to assess NLG outputs, achiev-

ing high correlation with human judgments in text summarization and dialogue generation

tasks. Similarly, Zheng et al. [10] investigate the usage of strong LLMs as judges to eval-

uate LLM-based chat assistants, demonstrating high agreement with human preferences on

multi-turn questions and crowdsourced conversations. However, Chen et al. [11] highlight

potential biases introduced by human and LLM judges, emphasizing the need for robust

evaluation systems. Additionally, Lin et al. [12] propose LLM-EVAL, a single prompt-based

evaluation method, and Fu et al. [13] introduce GPTScore, leveraging GPT-3 models for

multi-dimensional assessment of open-domain conversation systems. These studies collec-
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tively contribute to advancing NLG evaluation methodologies, addressing the limitations of

traditional metrics, and proposing novel frameworks for assessing text quality efficiently and

reliably.

Recent works have made significant contributions to addressing the challenges of fine-

tuning LLMs for specific downstream tasks, particularly in resource-constrained environ-

ments. Parameter Efficient Fine-Tuning (PEFT) methods, such as those proposed by Ding

et al. [14], Lin et al. [15], and Fu et al. [16], offer promising solutions by reducing the number

of fine-tuning parameters and memory usage while maintaining comparable performance to

full fine-tuning. Xu et al. [17] provides a comprehensive review of PEFT methods for pre-

trained language models (PLMs), shedding light on their applications and future directions.

Additionally, Hu et al. [18] introduce Low-Rank Adaptation (LoRA), which significantly

reduces the number of trainable parameters for downstream tasks by freezing pretrained

model weights and introducing trainable rank decomposition matrices. Dettmers et al. [19]

present QLoRA, an efficient fine-tuning approach that reduces memory usage while preserv-

ing task performance, achieving state-of-the-art results on various benchmarks with reduced

computational requirements. Wang et al. [20] propose AdaMix, a general PEFT method

that leverages a mixture of adaptation modules to improve downstream task performance

while matching the computational cost of the underlying PEFT method. Furthermore, Liu

et al. [21] introduce MOELoRA, a parameter-efficient fine-tuning framework tailored for

multi-task medical applications, aiming to capitalize on the benefits of both Mixture of

Experts (MOE) and LoRA. Huang et al. [22] investigate LoRA composability for cross-

task generalization and introduce LoraHub, a framework for assembling LoRA modules to

achieve adaptable performance on unseen tasks. Zhang et al. [23] propose LoRA-FA, a

memory-efficient fine-tuning method that reduces activation memory usage without perfor-

mance degradation, demonstrating close fine-tuning accuracy across different tasks compared

to full parameter fine-tuning and LoRA. These works collectively contribute to advancing the

field of fine-tuning LLMs, offering insights and practical solutions for efficient adaptation.



Chapter 3

Datasets

3.1 Emotional Support Conversation Dataset (ESConv)

3.1.1 Framework

The authors define the task of Emotional Support Conversation (ESC) , with the goal of

reducing users’ emotional distress and helping them navigate challenges through empathetic

interactions. They propose an ESC Framework 3.1, grounded in the Helping Skills The-

ory[24], tailored for dialog systems. The framework consists of three stages (Exploration,

Comforting, and Action) with various support strategies. To facilitate research in an emo-

tional support conversation, they construct the ESConv dataset, ensuring rich annotation

and quality examples through crowdworker interactions. Training tutorials based on the ESC

framework are provided to supporters, and multiple mechanisms are employed to ensure the

effectiveness of emotional support. Evaluation of state-of-the-art models reveals significant

improvement in emotional support when utilizing various strategies, with the Joint model

mimicking human supporter behaviors effectively. This work aims to advance data-driven

approaches in building dialog systems capable of providing effective emotional support.

3.1.2 Data Collection

The data collection process for the ESConv dataset involved meticulous planning and imple-

mentation to ensure the acquisition of high-quality conversation examples. At the outset, a

comprehensive tutorial based on the ESC Framework was developed to train crowdworkers

8
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Figure 3.1: An Overview of ESC Framework

in providing effective emotional support. This framework served as a guiding principle for

supporters, outlining various strategies and stages of emotional support.

Only crowdworkers who successfully passed an examination based on the tutorial were

admitted to the task, ensuring that supporters were adequately trained and equipped with

the necessary skills. These trained supporters then engaged in conversations with help-

seekers, adhering to the ESC Framework. Throughout these interactions, support strategies

were annotated to structure the resulting dataset effectively, providing valuable insights into

the dynamics of emotional support conversations.

After each conversation, supporters rated the level of detail provided by the seeker about

their problems, contributing to rich annotations and enhancing the dataset’s quality. Mean-

while, help-seekers completed pre-chat surveys, offering valuable information on their prob-

lems, emotions, and the origin of their situation.

Feedback from help-seekers was collected during conversations, enabling the assessment

of the helpfulness of supporter messages on a 5-star scale. Additionally, post-chat surveys

were conducted to evaluate the help-seeker’s emotion intensity after the conversation and the

performance of the supporter, providing further insights into the effectiveness of the support

provided.

To maintain data quality, preliminary filtering mechanisms were employed to remove in-
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Figure 3.2: Data example from ESConv

complete or short conversations. An auto-approval program was also meticulously designed,

utilizing criteria based on post-chat survey responses and utterance length to ensure only

high-quality conversations were included in the dataset. An example of the dataset can be

found in figure 3.2.

Furthermore, annotation correction processes were implemented to review and revise

incorrect annotations of support strategy and seeker’s emotion intensity, further enhancing

data accuracy and reliability. Overall, the data collection process for the ESConv dataset

was a comprehensive and rigorous undertaking aimed at providing researchers with valuable

insights into emotional support skills in dialog systems.
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Figure 3.3: Statistics of ESConv

3.1.3 Data Statistics

The statistics for the 1,053 ESConv examples 3.3 reveal the substantial engagement required

in effective emotional support conversations, with an average of 29.8 utterances per interac-

tion, surpassing previous datasets’ typical lengths. Analysis of figure 3.4 further highlights

prevalent societal challenges, with ongoing depression and job crises being the most com-

mon problems expressed by help-seekers, accompanied by emotions such as depression and

anxiety, likely exacerbated by factors like the COVID-19 outbreak. The positive feedback

received from help-seekers underscores the efficacy of the ESC Framework-based training,

indicating supporters’ success in providing satisfactory emotional support.

These insights offer researchers valuable groundwork for understanding the dynamics

of emotional support conversations within the ESConv dataset. The prevalence of specific

problems and emotions sheds light on the societal context influencing help-seekers, while the

positive feedback validates the effectiveness of the ESC Framework in guiding supportive in-

teractions. Overall, these statistics provide a foundation for further exploration and research

in the domain of emotional support in dialog systems.
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Figure 3.4: Statistics of all the annotations, including the help-seekers’ problems, emotions,
feedback, and the support strategies

3.2 Extensible Emotional Support Dialogue Dataset

(ExTES)

3.2.1 Dataset Collection

The dataset collection process heavily relied on constructing a sophisticated multi-turn emo-

tional support chat corpus utilizing ChatGPT (gpt-3.5-turbo)3.7. Initially, comprehensive
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Figure 3.5: Statistics of all 36 emotional support scenarios covered in ExTES dataset

emotional support scenarios and response strategies were defined, drawing from literature

on psychological counseling and previous emotional support research. Exemplar dialogues

were then meticulously curated from existing datasets and online platforms. Subsequently,

ChatGPT was employed to generate additional dialogues based on these seed exemplars,

with manual correction applied wherever necessary to refine the generated dialogues. The

resulting dataset encompassed a diverse set of emotionally varied scenarios and response

strategies, as depicted in figures 3.5 and 3.6. This approach ensured the dataset’s richness

and relevance, facilitating the development of effective models for emotional support chat.

The data collection process commenced with the manual construction of 87 seed dia-

logues, each meticulously crafted to reflect authentic emotional support interactions. These

seed dialogues were sourced from established emotion support datasets such as ESConv,

ETMHS, and Reddit, providing a foundation of real-world scenarios. To ensure comprehen-

sive coverage, web crawling techniques were employed to supplement the collection process,

capturing additional dialogues that might not have been present in existing datasets. By

combining dialogues from real emotion support datasets with those obtained through web

crawling, the dataset achieved a balanced representation of authentic scenarios, ensuring di-
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Figure 3.6: Statistics of response strategies used in ExTES

versity and richness. Each of the 36 identified emotional support scenarios was represented

by at least two seed dialogues, guaranteeing a wide spectrum of emotional situations and

response strategies. Finally, to uphold the quality and relevance of the dataset, collected

dialogues underwent rigorous manual correction and labeling of response strategies, ensuring

accuracy and coherence for model training and analysis. An example of the data has been

shown in figure 3.9.

3.2.2 Dialogue Quality Evaluation

The evaluation of dialogue quality in the ExTES dataset involved comprehensive human as-

sessment, comparing the augmented dialogues with seed dialogues through crowd-sourcing.

Following established metrics from previous studies, including informativeness, understand-

ing, helpfulness, consistency, and coherence, each dialogue was rated on a four-level Likert

scale by recruited college students. The results, as presented in figure 3.8, indicates that the

method employed to generate dialogues, leveraging ChatGPT, yielded high-quality emotional
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Figure 3.7: The pipeline for collecting the ExTES conversation dataset via our proposed
extendable looping scheme. Based on the dataset, we benchmark and analyze the effect of
fine-tuning the chat model with various techniques.

Figure 3.8: Human evaluation of ExTES quality. The scores (from 0 to 3) are averaged
over all the samples rated by three annotators. κ denotes Fleiss’ Kappa, indicating fair to
moderate inter-annotator agreement (0.2 < κ < 0.6)

support interactions akin to those obtained through crowd-sourcing. Notably, the dialogues

generated by ChatGPT exhibited comparable or even superior scores in informativeness and

helpfulness when contrasted with the crowd-sourced seed dialogues. This suggests that Chat-

GPT’s responses tended to offer more substantial and comprehensive content, contributing

to the overall quality of the generated dialogues. These findings underscore the effectiveness

of utilizing advanced language models like ChatGPT in constructing emotionally supportive

conversational datasets. The comparison between ESConv data has been shown in figure 4.1
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Figure 3.9: An example of ExTES data



Chapter 4

Methodologies

4.1 Training Dataset

Figure 4.1: The statistics of ExTES vs ESConv

ExTES was chosen over ESConv for training due to its larger volume of dialogues and

higher data quality, coupled with a broader range of categories and strategies. Being a

more recent dataset, ExTES offers updated and potentially more relevant content for train-

ing purposes. The statistics comparing ExTES and ESConv, as illustrated in Figure 4.1,

demonstrate the differences in dataset characteristics, highlighting ExTES’s advantages in

terms of quantity and possibly diversity.

However, for testing purposes, the fine-tuned models were evaluated on both ExTES and

ESConv datasets, with ESConv serving as a cross-dataset testing ground. This approach

ensures the robustness and generalizability of the trained models across different datasets,

allowing for comprehensive evaluation of their performance in real-world scenarios. By test-

ing on both datasets, researchers can assess how well the models generalize to unseen data

and whether they can effectively adapt to varying conversation contexts and characteristics.

17
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4.2 Language Models for Experimentation

In the process of fine-tuning models for the task at hand, recent models with significantly

fewer parameters and lower inference time were prioritized. The decision to opt for such

models was driven by the need for efficiency without compromising performance. These

models offer the advantage of faster inference times, making them more practical for real-

world applications where speed is crucial[25].

The specific models chosen for fine-tuning were selected based on several factors. Firstly,

their architecture and design were deemed suitable for the task of emotional support con-

versation, ensuring that they could effectively capture the nuances of dialogue interactions.

Additionally, these models demonstrated promising results in previous studies or bench-

marks, indicating their potential for success in the target task. Furthermore, their reduced

parameter count made them more feasible for fine-tuning with limited computational re-

sources while still achieving competitive performance.

By selecting models with lower parameter counts and faster inference times, we aimed

to strike a balance between computational efficiency and model effectiveness. This approach

allows for efficient training and deployment of models for emotional support conversation

tasks, ultimately enhancing the scalability and accessibility of such systems.

4.2.1 Mistral 7B Instruct v0.2

Mistral 7B [26] represents a notable advancement in the realm of language models, showcas-

ing how a meticulously designed model can achieve impressive performance while maintaining

efficient inference. Key to Mistral 7B’s success is its innovative attention mechanisms, par-

ticularly grouped-query attention (GQA) [27] and sliding window attention (SWA) [28], and

[29]. GQA plays a pivotal role in accelerating inference speed and reducing memory require-

ments during decoding, allowing for higher batch sizes and thus higher throughput, crucial

for real-time applications, particularly in the case of emotion support chatbots where users
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Parameter Value
dim 4096

n layers 32
head dim 128
hidden dim 14336
n heads 32

n kv heads 8
window size 4096
context len 8192
vocab size 32000

Table 4.1: Mistral model architecture

might prefer faster responses, additionally, Mistral has a context length of 8k tokens which

might help retain more past interactions. SWA, on the other hand, addresses the challenge

of handling longer sequences more effectively at a reduced computational cost, overcoming

a common limitation in LLMs.

SWA operates by leveraging the stacked layers of a transformer to attend to information

beyond a specified window size, effectively extending the model’s attention span. By recur-

sively accessing tokens from the input layer within a certain range, SWA enables Mistral

7B to maintain a theoretical attention span of approximately 131K tokens, significantly en-

hancing its ability to process longer sequences. Additionally, the implementation of a rolling

buffer cache further optimizes memory usage by limiting the cache size based on the win-

dow size, resulting in an 8x reduction in cache memory usage without compromising model

quality.

Moreover, Mistral 7B employs strategies such as pre-fill and chunking to enhance sequence

generation efficiency. By pre-filling the cache with the known prompt or breaking down large

prompts into smaller chunks, Mistral 7B streamlines the token prediction process, enabling

smoother generation of sequences. This combination of innovative attention mechanisms,

efficient memory management, and sequence generation strategies collectively contributes to

the enhanced performance and efficiency of Mistral 7B, making it a significant milestone in

the development of language models.
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4.2.2 LLama2 7B Chat

Figure 4.2: Overall safety measures.Left: Llama 2-Chat has a low violation percentage
overall across model sizes. Right: Llama 2-Chat has a high safety and helpfulness mean
rating overall across model sizes

Llama 2-Chat was chosen as the base model for fine-tuning into an emotional support

chatbot due to its specialized optimization for dialogue use cases. This version of Llama 2

has undergone extensive research and iterative application of alignment techniques, including

instruction tuning and reward modeling through reinforcement learning from human feedback

(RLHF). Its optimization for dialogue scenarios aligns well with the requirements of an

emotional support chatbot, which demands nuanced understanding and the generation of

empathetic responses to effectively support users.

The decision to select Llama 2-Chat for fine-tuning was also influenced by its robust train-

ing methodology [25], which includes supervised fine-tuning and RLHF. The incorporation

of human preference data for reward modeling ensures that the model is trained to generate

responses that are not only helpful but also safe. Given the sensitive nature of emotional

support conversations, prioritizing safety alongside helpfulness is paramount, making Llama

2-Chat an ideal candidate for adaptation into an emotional support chatbot. The iterative

nature of collecting preference data allows for continuous improvement of the reward model,

ensuring that the fine-tuned emotional support chatbot maintains an accurate understanding

of user preferences and safety considerations over time.

Llama 2-Chat’s safety evaluation is particularly crucial for its adaptation into an emo-
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tional support chatbot. The safety assessment involves collecting adversarial prompts and

evaluating model responses for safety violations shown in 4.2. By ensuring that responses do

not contain safety issues, such as providing harmful instructions or engaging in inappropriate

behavior, Llama 2-Chat can be fine-tuned to prioritize user well-being and prevent potential

harm during emotional support interactions. This emphasis on safety aligns with the ethical

considerations inherent in providing emotional support and underscores the importance of

selecting a model that not only generates helpful responses but also upholds user safety and

well-being as paramount concerns. Therefore, the comprehensive safety evaluation process of

Llama 2-Chat makes it a suitable candidate for the development of an emotionally supportive

chatbot that prioritizes both effectiveness and user safety.

4.2.3 Phi-3-Mini-4k-Instruct

Figure 4.3: Comparison of harmful response percentages by Microsoft AI Red Team between
phi-3-mini before and after the safety alignment.

Phi-3-mini [30] emerges as a compelling choice for fine-tuning an emotional support chat-

bot due to several key factors, particularly its compact size and mobile-friendly deployment

capabilities. With a transformer decoder architecture and a default context length of 4K,
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phi-3-mini offers a suitable framework for generating responses in dialogue settings. More-

over, the introduction of a long context version via LongRope extends the context length

to 128K, enhancing its capacity to handle longer conversational contexts, a critical aspect

in emotional support interactions where the conversation may delve into deeper and more

complex topics.

What makes phi-3-mini particularly appealing is its optimization for deployment on mo-

bile devices. With a size that allows for quantization to 4-bits, phi-3-mini occupies only

approximately 1.8GB of memory, making it highly suitable for running on smartphones.

This capability enables users to access emotional support resources conveniently and effi-

ciently, directly from their mobile devices, without the need for extensive computational

resources or constant internet connectivity.

Furthermore, phi-3-mini’s training methodology underscores its suitability for emotional

support applications. By leveraging high-quality training data and focusing on data opti-

mization for small-scale models, phi-3-mini achieves a level of performance comparable to

larger models like GPT-3.5 or Mistral, despite its significantly reduced parameter count. The

emphasis on supervised fine-tuning and direct preference optimization during post-training

ensures that the model’s responses are not only accurate but also safe and helpful, aligning

with the ethical considerations inherent in providing emotional support.

Phi-3-mini, chosen for fine-tuning an emotional support chatbot, prioritizes safety through

rigorous post-training alignment, red-teaming exercises, and evaluations across responsible

AI harm categories, adhering to Microsoft’s principles. Leveraging preference datasets fo-

cused on helpfulness and harmlessness, along with in-house generated datasets, the model

filters potentially harmful responses 4.3, ensuring positive interactions. Ongoing optimiza-

tion efforts aim to maintain safety and reliability, making phi-3-mini well-suited for sensitive

domains like emotional support, where user well-being is paramount. Additionally, its smaller

size and deployability on mobile devices make it accessible even with limited computational

resources.
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4.3 Low Ranked Adaptation (LORA)

Figure 4.4: LoRA training loop

The Low-Rank Adaptation (LoRA) [18] technique offers a promising approach for fine-

tuning language models in the domain of emotional support while addressing key challenges

associated with traditional fine-tuning methods. By freezing the pretrained model weights

and introducing trainable rank decomposition matrices into each layer of the Transformer

architecture, LoRA significantly reduces the number of trainable parameters for downstream

tasks. For instance, compared to fine-tuning GPT-3 175B with Adam, LoRA can reduce the

number of trainable parameters by 10,000 times and the GPU memory requirement by 3

times, making it more efficient for deployment in resource-constrained environments.

In the context of emotional support, LoRA enables the adaptation of large-scale pre-

trained language models to effectively address users’ emotional needs while minimizing com-

putational resources and maintaining model quality. The figure 4.4 shows LoRA training

loop in which instead of gradients being applied directly to the hidden weight matrix, they
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are applied to lower rank matrices A and B. Once A and B matrices are trained, the change

matrix constructed from A and B is simply added to the weight matrix at end of training

and this process saves billions of matrix multiplication operations for LLM. By constraining

the updates to the weights with low-rank decompositions, LoRA facilitates efficient training

and lowers the hardware barrier to entry, making it accessible for deployment on a vari-

ety of platforms, including mobile devices. Furthermore, the linear design of LoRA allows

for seamless integration with existing methods, such as prefix-tuning, without introducing

additional inference latency.

Moreover, LoRA facilitates efficient task switching during deployment by allowing only

the swapping of LoRA weights rather than all parameters. This capability enables the

creation of customized models tailored to specific tasks, which can be dynamically swapped

in and out as needed, even on devices with limited VRAM. Additionally, LoRA offers a

speedup during training, with observed improvements of up to 25% compared to full fine-

tuning on models like GPT-3 175B, as it eliminates the need to calculate gradients for the

majority of parameters.

Applying LoRA to Mistral, Llama, and Phi models offers significant benefits for emo-

tional support chatbot fine-tuning. LoRA reduces the number of trainable parameters while

maintaining or improving model quality, enhancing efficiency and resource utilization. Mis-

tral, prioritizing efficiency and speed, could leverage LoRA to further optimize its inference

speed and memory requirements, enhancing its suitability for real-time emotional support

interactions. Similarly, Llama’s focus on dialogue applications could benefit from LoRA

by streamlining adaptation processes and enabling the model to handle a wider range of

emotional support scenarios. For Phi models, designed for deployment on mobile devices,

integrating LoRA could optimize efficiency and resource usage, making emotional support

chatbots more accessible on mobile platforms while maintaining high performance. Over-

all, LoRA enhances the efficiency and effectiveness of these models for emotional support

chatbot applications, improving accessibility and usability for users seeking assistance.
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4.4 Context Management

Context management techniques in LLMs play a crucial role in enhancing their performance

and generating more coherent responses. Two notable techniques are recursive summariza-

tion and soft prompt compression.

Figure 4.5: The schematic overview of recursive summarization

Recursive summarization [5] involves iteratively summarizing a piece of text to distill its

main ideas into a concise form, enabling the model to focus on relevant information while

disregarding redundant or less important details 4.5. This technique helps LLMs manage

complex input and generate more concise and relevant responses.

Soft prompt compression [6] is another context management technique that involves

compressing the input prompt or context into a more condensed form, allowing the model to

focus on the most salient aspects of the input. By compressing the prompt, the model can

better understand the context and generate responses that are more aligned with the user’s

intent 4.6.

Additionally, recent research has explored the integration of user-specific knowledge into

LLMs for generating responses in longitudinal dialogues (LDs) [7]. By grounding LLMs with
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Figure 4.6: Illustration of SPC shows the compressed conversational answer expect with
question.

user-specific knowledge 4.7, such as personal experiences and preferences, these models can

generate more coherent and personalized responses. Figure 4.7 includes techniques such as

representing user knowledge through syntactic or graph-based representations have shown

promising results in improving the quality of generated responses in LDs.

Influencing from previous approaches, we have also explored techniques such as removing

stopwords to increase the context length effectively. By removing stopwords, which are

common words that carry little semantic meaning, the model can focus on more informative

content, thereby potentially improving its understanding of the context and generating more

relevant responses.

In the context of emotional support conversations, where real-time interaction and re-

sponsiveness are crucial, the computational demands of recursive summarization and soft

prompt compression could hinder the efficiency of LLMs. Processing and summarizing large

amounts of text recursively or compressing prompts into concise forms may introduce latency,

which is undesirable in scenarios where prompt responses are needed to provide emotional

support effectively.



HEADING ON CHAPTER PAGES 27

Figure 4.7: Representations of personal knowledge using Bag of Head nouns (BOH), Unpro-
cessed text (RAW), and Personal Space Graph (PSG).

Alternatively, user-specific knowledge and strategies like removing stopwords can offer

more computationally efficient approaches to managing context in emotional support con-

versations. LDs, which encompass multi-session interactions with users, provide a natural

context that can be leveraged by LLMs without the need for extensive preprocessing or

summarization. By maintaining context across multiple interactions, LLMs can better un-

derstand users’ emotions and tailor responses accordingly.

Similarly, techniques like removing stopwords from user input can help increase the effec-

tive context length without significantly increasing computational complexity. By focusing

on the most informative words and phrases while discarding redundant or less meaningful

ones, LLMs can efficiently utilize available context to generate empathetic and supportive

responses in emotional support conversations.



Chapter 5

Design and Development

5.1 Fine Tuning Architecture

Figure 5.1: Finetuning design

The architecture depicted in Figure 5.1 illustrates the systematic approach to fine-tune a

pretrained language model using the Low-Rank adaptation Technique for emotional support

conversations. Initially, the pretrained language model and its tokenizer are loaded, typically

at half precision except for Llama2 due to compatibility reasons. These components form

the core infrastructure for generating responses, with the tokenizer responsible for processing

input text into a format interpretable by the model. Ahead of loading, the ExTES dataset

undergoes preprocessing to adhere to the user-followed-by-assistant conversational structure,

28
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Figure 5.2: Inference

a prerequisite for chat model fine-tuning. Utilizing a specific chat template unique to each

model, this preprocessing involves embedding special tokens and formatting conventions to

demarcate conversational turns and session boundaries effectively.

Subsequently, the preprocessed ExTES dataset is partitioned into labeled training and

evaluation subsets. The former fuels the fine-tuning process, with a specialized trainer,

like the Supervised Fine-Tuning (SFT) trainer, orchestrating the adjustment of language

model parameters based on the annotated training data. This iterative process optimizes

the model’s performance for the nuances of emotional support conversations. Crucially, the

fine-tuning procedure incorporates the LoRA configuration, wherein only the LoRA weights

undergo updates, preserving the integrity of the pretrained model weights. LoRA introduces

trainable rank decomposition matrices to each layer, effectively reducing the number of

trainable parameters while retaining crucial information gleaned during pre-training. This

strategic weight update strategy streamlines the fine-tuning process, enhancing its efficiency

and resource utilization.

During the inference process (see Figure 5.2), the output generated by the model un-

dergoes preprocessing, notably involving the removal of stopwords. This step is crucial for

effectively managing the limited context memory available to the model during inference.

By eliminating stopwords—common words that carry minimal semantic meaning—the model

can focus on more informative content within the given context, thus enhancing the relevance
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Parameter Value
learning rate 2.0e-04
LoRA rank 16
LoRA alpha 32

LoRA dropout 0.1
bias None

task type CAUSAL LM
target modules q proj, k proj, v proj, o proj

Table 5.1: Training parameters

and coherence of the generated responses.

The user-specific knowledge method, which typically involves incorporating personalized

information into the model’s understanding, was not utilized in this particular scenario. De-

spite attempts to integrate this approach, challenges arose when certain utterances lacked

nouns or verbs necessary for constructing meaningful knowledge representations. Conse-

quently, the absence of such linguistic elements hindered the model’s ability to generate

coherent responses, prompting the decision to forego the user-specific knowledge method in

favor of other preprocessing techniques aimed at improving response quality.

5.2 Training

The model underwent an extensive training regimen spanning 50 epochs, during which the

LoRA parameters were meticulously selected based on the recommendations provided by the

original authors. These parameters shown in Table 5.1 were fine-tuned in alignment with

the model’s learning dynamics, ensuring optimal adaptation to the emotional support con-

versation task. Throughout the training process, the model iteratively adjusted its weights,

leveraging the LoRA technique to selectively update trainable rank decomposition matrices

while keeping the pretrained model weights frozen. This approach facilitated the reduction

of trainable parameters, thereby enhancing computational efficiency and memory utilization

without compromising the valuable information gleaned during pre-training. By adhering

to the prescribed LoRA configuration and adapting the model’s parameters accordingly,
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the training procedure aimed to strike a delicate balance between model complexity and

performance, ultimately striving to optimize the model’s ability to generate coherent and

contextually relevant responses in emotional support conversations.

Figure 5.3: Mistral Training and Evaluation loss

Figure 5.4: Llama Training and Evaluation loss

The training process for both the Mistral and Llama models exhibited a consistent de-

crease in both training and evaluation loss, with both models plateauing after 50 epochs. For

Mistral, the evaluation loss stabilized at 0.86, while for Llama, it stabilized at 0.95. These

stable loss values indicate that neither model showed any signs of overfitting, suggesting

that they were effectively learning from the training data without excessively memorizing it.

Conversely, the training curve for the Phi 3 model displayed some inconsistencies. However,

despite the fluctuations in the training loss, the evaluation loss exhibited a steady decrease

over time. Consequently, it was decided to proceed with running inference on the Phi 3
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Figure 5.5: Phi3 Training and Evaluation loss

model as well, based on the promising trend of decreasing evaluation loss.



Chapter 6

Results

During the inference phase, a standardized set of parameters shown in 6.1 was utilized for

text generation across all models to ensure consistency in the generation process and enable

fair comparisons between different models. This approach facilitated an unbiased evaluation

of the models’ performance. The inference was conducted on both the ExTES and ESConv

datasets, allowing for cross-dataset validation and assessment of the models’ generalization

ability across different conversation corpora. The evaluated responses are compared with

the base models and the finetuned ones.

Evaluation of the generated responses involved a combination of automatic metrics and

using an LLM as a judge which was demonstrated in [12], [10] and [11]. Given the constraints

and limitations associated with human evaluations, leveraging LLMs as judges has become

increasingly common in the research community. These models can provide valuable insights

into the quality of generated responses, complementing traditional evaluation methods. By

employing both automatic metrics and LLM-based evaluation, a comprehensive assessment

of the models’ performance was achieved, covering various aspects of response quality and

effectiveness.

Parameter Value
Temperature 0.7

Top p 0.95
Top k 50

Max new tokens 128

Table 6.1: Generation parameters

33
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Model PPL B-2 R-2 R-L Bert P Bert R Bert F1
Base 44.57 1.2 7.7 17 49.4 61.4 54.5

Base w/o sw 679.725 8.3 4.2 12.7 45.7 55.2 49.2
Finetuned 3.696 21.1 17.7 30.9 61.8 62.7 62.1

Finetuned w/o sw 41.99 19.02 14.2 25.6 60.6 57.7 58.9

Table 6.2: Mistral on ExTES dataset

6.1 Performance on ExTES

6.1.1 Mistral 7B

Figure 6.1: PPL range with
number of utterances

Figure 6.2: Content length
with increase in utterances

Figure 6.3: Stopwords im-
pact on no of utterances

In automatic evaluations (see Figure 6.2), Mistral demonstrates superior performance

compared to the other two models, exhibiting better perplexity, BLEU, ROUGE, and BERT

scores. The significant disparity in perplexity scores between the base and fine-tuned models

indicates that the fine-tuned model exhibits much higher confidence in predicting the next

token. However, there is a slight decrease in performance when compared to the model

trained with different context representations achieved by removing stopwords. The trend

of perplexity values over increasing utterances, as depicted in Figure 6.1, showcases a con-

sistent decrease across all model versions, as expected. The fine-tuned model exhibits the

best performance, followed by the base model without stopwords. Surprisingly, removing

stopwords leads to an increase in perplexity values for both models.
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Further analysis in Figure 6.2 illustrates the relationship between the length of context

and utterances. The base model comprises over 1000 tokens in just seven utterances, while

the fine-tuned model contains 600 tokens, and the fine-tuned version with stopwords removed

contains slightly above 200 tokens, representing almost a one-third decrease in context length.

Additionally, Figure 6.3 demonstrates the impact of this trend on the number of utterances

accommodated. Removing stopwords allows for the accommodation of almost 250 utterances,

whereas including stopwords limits the accommodation to less than 100 utterances. This

discrepancy highlights the trade-off between metric performance and the amount of context

accommodated, emphasizing the potential benefits of removing stopwords, particularly in

longitudinal dialogues.

6.1.2 Llama 7B Chat

In Llama models, a similar trend to Mistral was observed, although the base models exhibited

much lower perplexity scores comparatively. This difference may be attributed to the chat

version of the model, which has been trained on a substantial amount of conversational data,

unlike Mistral. The number of utterances for the Llama model was significantly lower than

Mistral (see Figure 6.6), primarily due to the shorter context length of 4k tokens compared to

Mistral’s 8k. Despite these differences, the overall trends remained consistent with Mistral.

Details and values are provided in Table 6.3 and Figures 6.5, 6.6, and 6.4.

In automatic evaluations, the scores for the Llama model are generally lower compared

to the Mistral model across almost all categories. This discrepancy suggests that the Mistral

model outperforms the Llama model in terms of various evaluation metrics such as perplexity,

BLEU, ROUGE, and BERT scores. The differences in performance may be attributed to

several factors, including the architecture design, training data, and fine-tuning process.

Despite these variations, both models demonstrate consistent trends in their performance

across different evaluation criteria.
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Model PPL B-2 R-2 R-L Bert P Bert R Bert F1
Base 20.13 13.4 9.3 18.6 49.9 63.2 55.5

Base w/o sw 232.90 6.2 6.9 16.4 48.2 60.4 53.4
Finetuned 6.47 19.4 9.6 21.6 55.1 55.2 54.7

Finetuned w/o sw 44.60 11.4 3.2 11.4 49.5 46.6 47.6

Table 6.3: Llama on ExTES dataset

Figure 6.4: PPL range with
number of utterances

Figure 6.5: Content length
with increase in utterances

Figure 6.6: Stopwords im-
pact on no of utterances

6.1.3 Phi 3 mini

The Phi3 model, despite its smaller size compared to Mistral and Llama, exhibited poor

performance in terms of automatic metrics 6.4. Although the perplexity values were lower,

indicating better prediction confidence, the other evaluation scores were significantly lower

compared to the other two models. Upon inspecting the model’s outputs, it was observed that

they did not correlate well with the fine-tuned datasets, suggesting a lack of coherence and

relevance in the generated responses. Moreover, the training curve exhibited erratic behavior,

oscillating between values, which further indicated instability in the training process. Due

to these unsatisfactory results from both automatic evaluations and qualitative assessments

Model PPL B-2 R-2 R-L Bert P Bert R Bert F1
Base 6.57 0.8 3.3 6.6 40.3 59.1 47.9

Base w/o sw 113.73 0.7 2.9 6.7 34.5 50.4 40.9
Finetuned 6.32 1.45 3.8 7.2 40.5 60.0 48.3

Finetuned w/o sw 108.04 0.86 3.5 7.5 34.7 49.3 40.7

Table 6.4: Phi3 on ExTES dataset
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Model PPL B-2 R-2 R-L Bert P Bert R Bert F1
Base 3045.5 1.1 1.0 7.5 35.8 46.0 40.0

Base w/o sw 4155.9 0.5 0.6 5.0 34.1 42.7 37.6
Finetuned 12.05 34.0 30.5 34.56 39.5 46.5 42.4

Finetuned w/o sw 64.96 32.77 20.33 29.45 39.4 39.7 39.1

Table 6.5: Mistral on ESConv dataset

of the model’s outputs, further experiments with the Phi3 model were not pursued.

6.2 Performance on ESConv

The evaluations were conducted on the ESConversation dataset to assess the models’ ability

to generalize to similar conversational data. This cross-dataset evaluation provided insights

into how well the models could adapt to different conversation corpora and handle diverse

conversational styles and topics. By evaluating the models on ESConversation, which shares

similarities with ExTES but contains distinct conversation dynamics and themes, we could

gain a better understanding of their generalization capabilities. This approach helped val-

idate the robustness and versatility of the models beyond the specific dataset they were

fine-tuned on, providing valuable insights into their real-world applicability for emotional

support conversations across various contexts.

6.2.1 Mistral 7B

On the ESConv dataset, Mistral exhibited similar trends to those observed on the ExTES

dataset, albeit with some variations in certain metrics. While the general trends remained

consistent, there were notable differences in specific evaluation scores. For instance, metrics

such as Rouge and Bleu scores showed considerable improvement, indicating Mistral’s good

generalizability across datasets (6.5). However, perplexity values were noticeably higher for

both the base and fine-tuned models on the ESConv dataset compared to ExTES (6.8).

This difference can be attributed to the structured nature of the ExTES data, where it was
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Figure 6.7: PPL range with
number of utterances

Figure 6.8: Content length
with increase in utterances

Figure 6.9: Stopwords im-
pact on no of utterances

Model PPL B-2 R-2 R-L Bert P Bert R Bert F1
Base 280.31 1.3 1.0 7.7 35.7 46.0 40.0

Base w/o sw 694.99 1.2 0.9 7.6 35.5 46.2 39.9
Finetuned 14.93 26.8 21.6 14.5 38.5 46.1 41.6

Finetuned w/o sw 55.56 18.6 9.4 7.4 35.1 37.3 35.9

Table 6.6: Llama on ESConv dataset

relatively easier to predict the next token, resulting in lower perplexity values. Despite these

variations, the overall trends observed on ESConv, including context length and utterance

accommodation, were consistent with those seen on ExTES (6.7, 6.9). This indicates Mis-

tral’s robust performance across different conversation datasets, reaffirming its potential for

diverse conversational contexts.

6.2.2 Llama 7B Chat

On the ESConv dataset, Llama exhibited a trend similar to that observed on ExTES, with

some notable differences in evaluation metrics. While the overall trend remained consistent,

Llama’s automatic evaluation metrics were notably lower compared to Mistral, indicating

comparatively lower performance (6.6). However, perplexity scores were considerably lower

for both the base and fine-tuned models on the ESConv dataset compared to ExTES (6.11).

This difference could be attributed to the chat data on which the initial base model was

trained, which may have provided a more conversational context conducive to lower per-
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Figure 6.10: PPL range
with number of utterances

Figure 6.11: Content length
with increase in utterances

Figure 6.12: Stopwords im-
pact on no of utterances

Model PPL B-2 R-2 R-L Bert P Bert R Bert F1
Base 9.66 0.71 0.3 0.6 36.0 39.1 38.4

Base w/o sw 119.79 0.81 0.6 4.3 31.2 47.4 42.3
Finetuned 14.975 0.1 0.84 0.7 31.5 46.0 37.3

Finetuned w/o sw 176.79 0.16 0.4 0.6 25.7 37.9 30.4

Table 6.7: Phi3 on ESConv dataset

plexity scores. Despite these variations, the general trends observed on ESConv, including

context length and utterance accommodation, were consistent with those seen on ExTES

(6.10, 6.12). Overall, Llama exhibited a similar trend across different conversation datasets,

indicating its potential for various conversational contexts despite the differences in auto-

matic evaluation metrics.

6.2.3 Phi 3 mini

On the ESConv dataset, Phi3 demonstrated poor performance across various automatic eval-

uation metrics, mirroring the trends observed on the ExTES dataset although the perplexity

values were notably lower compared to the other models(6.7). However, other evaluation

metrics such as BLEU, ROUGE, and BERT scores were considerably lower, suggesting sub-

par performance with respect to reference sentences. Due to these unfavorable results, further

experiments were not conducted with Phi3 on the ESConv dataset. The specific values for

each metric can be referred to in the corresponding table (6.7).
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6.3 GPT for evaluations

GPT-4 has exhibited promising capabilities in understanding and effectively serving as a

judge for various conversational tasks, as highlighted by previous research studies. Leverag-

ing its advanced language understanding capabilities and extensive pre-training, GPT-4 has

demonstrated the ability to comprehend nuanced conversational contexts, discern user in-

tents, and provide relevant and coherent responses. This proficiency makes GPT-4 a valuable

tool for evaluating the performance of language models in tasks such as emotional support

conversation, where context comprehension and response quality are paramount. By employ-

ing GPT-4 as a judge in evaluation processes, researchers can leverage its robust capabilities

to assess the effectiveness and appropriateness of language model responses, contributing to

the refinement and optimization of conversational AI systems. The prompt for evaluation is

shown in 6.13 which has been curated based on the prompts used in [12].

Figure 6.13: Prompt for evaluation

The evaluations of the language models 6.8 reveal that the llama2 chat fine-tuned model

performs the best overall, followed by the fine-tuned model without stopwords, which con-

trasts with the results obtained from automatic evaluations. Specifically, the base model

llama2 demonstrates excellence in engagement, fluency, and suggestion categories, likely at-
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Model Engagement Fluency Comforting Appropriateness Suggestion
Mistral
(base)

7 8.5 7 8.5 8

Mistral
(finetuned)

9.25 9 9.5 10 9

Mistral
(finetuned
w/o sw)

9 7 8.5 8.5 8

Llama2 chat
(base)

9 10 7.45 8.15 8.75

Llama2 chat
(finetuned)

9.5 10 9.5 10 9.5

Llama2 chat
(finetuned
w/o sw)

9.5 9 9 10 9

Table 6.8: GPT4 for evaluations

tributed to its extensive training on chat data. Mistral, while not far behind, achieves the

highest scores in the comforting category, which is particularly crucial in emotional support

conversations. It’s noteworthy that the evaluation was conducted solely on ExTES data,

focusing on limited dialogues due to cost constraints. Despite these limitations, the findings

underscore the nuanced performance of different models across various evaluation metrics

and shed light on their respective strengths and weaknesses in supporting emotional support

conversations. The best scores are highlighted in bold and the second best are underlined.



HEADING ON CHAPTER PAGES 42

Model ExTES ESConv
Mistral Base 9.2 7.8
Mistral Base
w/o sw

9.7 8.2

Mistral Fine-
tuned

3.4 3.0

Mistral Fine-
tuned w/o sw

3.7 3.2

Llama2 Base 15.5 11.3
Llama2 Base
w/o sw

16.2 12.1

Llama2 Fine-
tuned

7.4 6.80

Llama2 Fine-
tuned w/o sw

7.9 7.1

Phi3 Base 5.6 7.2
Phi3 Base
w/o sw

5.5 7.4

Phi3 Fine-
tuned

4.3 6.91

Phi3 Fine-
tuned w/o sw

4.6 7.1

Table 6.9: Inference times

6.4 Inference times

From Table 6.9, it’s evident that the Mistral fine-tuned model exhibited the shortest inference

time, clocking in at just 3.4 seconds. This impressive speed was nearly 300% faster than

the base model, which took 9.2 seconds. The notable reduction in inference time can be

attributed to the substantially lower perplexity values observed during inference from both

datasets. Fine-tuning, coupled with nucleus sampling, likely contributed to the decreased

number of tokens sampled during inference, thus leading to quicker processing times. The

reduced time in mistral models can be attributed to the sliding window attention discussed in

Chapter 4. This trend of fine-tuned models boasting shorter inference times was consistently

observed across all models, further highlighting the efficiency gains achieved through fine-

tuning.
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6.5 Examples

Figure 6.14: COnversation with Fine-
tuned model

Figure 6.15: Conversation with base
model

Figure 6.15 depicts an interaction with the base model, while Figure 6.14 illustrates the

interaction with the fine-tuned model aimed at providing emotional support. In the base

model interaction, the responses primarily consist of suggestions and advice, with minimal

engagement or attempt to initiate conversation with the user. Conversely, in the interaction

with the fine-tuned model, the responses are characterized by shorter, more coherent mes-

sages. The bot actively engages with the user by asking questions about their situation and

offering support through phrases like ”I am here for you.” Overall, the fine-tuned model

demonstrates a more engaging and supportive interaction compared to the base model.



Chapter 7

Conclusion and Future work

In conclusion, the evaluation results shed light on the strengths and performance of the Mis-

tral and Llama models in the context of emotional support conversations. Mistral demon-

strated superior performance in automatic evaluations, boasting commendable scores across

various metrics. On the other hand, Llama garnered positive feedback in GPT-4 evaluations,

particularly excelling in engagement, fluency, and suggestion aspects. Moreover, Mistral’s re-

duced inference time positions it as a promising candidate for real-time deployment, offering

timely responses in emotionally sensitive interactions. This comparative analysis under-

scores the importance of considering multiple evaluation criteria to comprehensively assess

the capabilities of language models in different contexts, thereby guiding informed decisions

regarding model selection and deployment strategies.

Furthermore, the inference time analysis highlighted the consistent superiority of fine-

tuned models over their base counterparts, showcasing substantially reduced processing

times. This efficiency gain, coupled with the enhanced performance metrics, underscores

the efficacy of fine-tuning and LoRA in optimizing language models for emotional support

conversations. Additionally, the choice of sampling methods, particularly nucleus sampling,

played a pivotal role in further improving inference efficiency by ensuring the selection of rel-

evant tokens, contributing to the overall model effectiveness and responsiveness in real-time

interactions.

In the realm of future research, one avenue of exploration involves the pruning of language

44
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models [31], [32], and [33] to alleviate their size and memory footprint, all while mitigating

potential performance losses. This approach holds promise for enhancing the scalability and

deployability of language models, particularly in resource-constrained environments such as

mobile devices or edge computing platforms. Additionally, there’s a burgeoning interest in

integrating multimodal capabilities, encompassing speech, and vision, into emotion support

chatbots. By harnessing the complementary strengths of different modalities, such as text,

speech, and visual cues, these advanced chatbots could offer more nuanced and empathetic

interactions, thereby fostering deeper connections with users and enhancing the overall qual-

ity of emotional support provided.

In summary, the findings of this study underscore the potential of fine-tuning and context

management techniques in enhancing the effectiveness and efficiency of language models for

emotional support tasks. Continued research and experimentation in this direction hold

promise for further advancements in natural language processing and conversational AI,

ultimately benefiting individuals seeking emotional support through AI-driven interactions.
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