NEXOS! Project #1 — Interacting with Embedded XINU Operating System

CSE321: Embedded and Realtime Operating Systems Fall 2013
Due date: 11/9/2013 (you need to demo it by then by attending recitations)

1. Objectives and overview of the project:

We have prepared a simple hardware system and embeded in it a minimal operating system. The minimal
operating system will be enhanced in this project by other features. We will use WRT54GL the wireless router
from Linksys [1] and Embedded XINU operating system [2] for this purpose. Students will

Study the architecture of WRT54GL wireless router.

Test the embedded operating system using simple C programs.

Modify the EXINU code to add new shell commands.

Study the software representing various components of the Embedded XINU operating system

Study the serial port features (UARTO and UART?1) offered by XINU/WRT54GL platform

Establish a communication channel between devices connected to these ports via a cyclic executive loop
and try out some priority inversion problem/solution.

7. Build a simple chat application with user login feature and realtime constraints.
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2. Project Environment

2.1 Operating system XINU

XINU ("Xinu Is Not Unix") is a small, academic operating system developed at Purdue University by Dr.
Douglas E. Comer in the early 1980s for the LSI-11 platform; it has now been ported to a variety of platforms.
Embedded XINU is an update of this project which attempts to modernize the code base (to ANSI-compliant C)
and port the system to a modern architecture (specifically the MIPS architecture).

2.2 Hardware WRT54GL

We will use wireless router WRT54GL as a host for the software we will develop for enhancing the features of an
embedded operating system. WRT54GL [8] has a very interesting history the details of which can be found at [3].
The WRT54G is notable for being the first consumer-level network device that had its firmware source code
released to satisfy the obligations of the GNU GPL. This allows programmers to modify the firmware to change
or add functionality to the device. WRT54GL features a Broadcom MIPS processor BCM5352 (200-250Mhz), a
four port Ethernet switch, 802.11b and 802.11g wireless LAN support, a Web interface for configuration of the
router, 16Mbytes of SDRAM and 4Mbytes of flash memory. Any modification to the router function itself has to
be done by updating the firmware on the flash memory. However we will load the embedded XINU image that
we create in the SDRAM. See [4] more details on the memory layout of the SDRAM.
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Figure 1 Basic NEXOS Network to Upload Embedded XINU to WRT54GL
2.3 Basic NEXOS Test Environment

The lab environment will be supported by other hardware and software components to provide cross-compiling
and networking support. In order to compile Embedded MIPS kernels on a workstation that is not itself a MIPS
processor, it is necessary to build and install an appropriate cross compiler. Any time you modify the embedded
XINU, the recompiled software will have to be reloaded into the WRT54GL system you are working on. A
simple and basic network configuration allocating IP address to the host with the cross-compiler, the wireless
router that will host the embedded XINU and a common router that forms the network are shown in Figure 1.

The Common Firmware Environment (CFE) [5] is the firmware developed by Broadcom for the BCM947xx SoC
platform (among others). It is the first code that runs when the router boots and performs functions:

Initializes the system

Sets up a basic environment in which code can run

Optionally provides a command line interface non-standard usage
Loads and executes a kernel image

So, in normal operation, a user will not see CFE working at all; it will load the LinkSys kernel and send it on its
merry way without hesitation. For us, however, CFE is crucial, because it provides us with the ability to load an
image over the network using TFTP [6].

2.4 Expanded NEXOS Test Environment

The WRT54G can be used alone at any workstation with a serial port and a network connection. This
configuration may be suitable for very small laboratory installations concerned only with hardware systems
assignments, but to take maximum advantage of the power of our platform it is far more useful to collect many
WRT54G's as a pool of backends doled out by a central server. Particularly in the context of more advanced
courses in networking, it is best that this pool of backends be managed on a private network, isolated from the
production network by a gateway.
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Figure 2 Expanded NEXOS environment with a central server

Figure 2 outlines the typical layout first used at Purdue and later nicknamed the warzone by the TinkerNet
Project. A cadre of dedicated target machines resides on the private network (warzone) where students may load
and run experimental kernels on demand. These dedicated, backend machines load a new O/S image from the
central server across the network each time they reboot, allowing students to refresh the image frequently as they
build their system.

3. What to do?

Section 3.1, 3.2, 3.3 describe stand-alone operations. While you can try this for your own interest
we have prepared the lab for you, by making the modifications given below. These are given for
completeness-sake.

3.1 Prepare Hardware

1. Study the various components of the environment discussed above.
2. Modify the Linksys WRT54GL hardware as follows: Obtain the parts as given in the list. Parts list:

Quantity Part Name Details Part / Model Number

1 LinkSys WRT54GL Router |802.11b/g wireless broadband router | Linksys WRT54GL

1 Ribbon cable 28 AWG, 10 conductor, 25' Jameco 643508CM

1 IDC socket connector 0.17, 10 conductor Jameco 32491CM

1 IDC shrouded header 0.1”, 10 conductor Jameco 67811CM

1 RS232 Transmitter/Receiver | IC 2DVR/2RCVR RS232 5V 20-DIP | DigiKey MAX233CPP-ND
1 DB9 Female 22AWG,SOLDER CUP Jameco 15771CM

1 DB9 Male 22AWG,SOLDER CUP Jameco 15747CM

Open the router.

Attach the serial header.

Wire serial header to MAX233A RS232 receiver/transmitter.
Wire the DB9 connectors to MAX233A.
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http://xinu.mscs.mu.edu/WRT54GL
http://www.linksys.com/servlet/Satellite?c=L_Product_C2&childpagename=US%2FLayout&cid=1133202177241&pagename=Linksys%2FCommon%2FVisitorWrapper

Make sure you solder the socket before mounting the chip itself.
3.2 Prepare software

Download and cross-compile the embedded XINU code.

Download TFTP for loading compiled XINU into the router via CFE.

Study the XINU code in the subdirectories.

Connect the serial port UARTO to the host (laptop/computer) with embedded XINU code and load it.
Configure the serial communication software.

Power-up the router.

Access the CFE and upload the embedded XINU.
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3.3 Test the setup

Build and deploy XINU and examine the commands available. Write a simple test program “Hello World” and
test the setup.

3.4 Study Embedded XINU files

Download the Embedded XINU bundle (tarball) from http://xinu.mscs.mu.edu and untar it. Examine the directory
structure and understand the purpose of various directories. Specifically, study these files in the directories:

e include (header files): shell.h, device.h, gpio.h, interrupt.h, shell.h, tty.h, uart.h

o shell (shell command files): shell.c, xsh_led.c, xsh_help.c

e system (system operations): devtable.c, getc.c, putc.c, read.c, write.c, initialize.c, kprintf.c, open.c,
close.c, startup.S

o all the files in tty and uart directories.

3.5 Write simple shell commands (15 points)

The XINU shell is a subsystem designed as an interface for interacting with the operating system. The shell relies
on the TTY driver to receive user input and provide output to the user. When XINU starts, a shell process is
spawned for each serial port (or TTY). TTY operates on the UART driver. Study the steps given in
http://xinu.mscs.mu.edu/Shell to understand how to create a shell command. Add this shell command:

reverse string that reverse the string input and prints it out.

reverse unix
Xinu
reverse emit
time
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3.6 Study and understand some more commands:
e system (system operations): initialize.c, main.c
The following code from initialize.c will create the main process and shell 0 (TTYO0/Console):

open(CONSOLE, SERIALO);
ready(create((void *)main, INITSTK, INITPRIO, "MAIN", 2, 0, NULL), RESCHED_NO);

The following code in main (main.c) initializes the Shell 1 to be TTY1/SERIAL1:
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process main(int argc, char **argv)

{

/* Associate TTY1 with second serial port. */
open(TTY1, SERIALL);
enable();

/* Launch one shell process for each TTY device. */
ready(create((void *)shell, INITSTK, INITPRIO, "SHELLO", 1, CONSOLE),RESCHED_NO);
ready(create((void *)shell, INITSTK, INITPRIO, "SHELL1", 1, TTY1), RESCHED_NO);

Thus there is a root process and main process and shell0 and shell1 (corresponding to uartO and uartl of the
UART).

e Shell directory: Shell.c file
Read the data structure associated with a shell process and how a line buffer is handled, tokenized etc.
process shell(ushort descrp)

{
char buf[SHELL_BUFLEN], /* line input buffer */

ushort buflen; /* length of line input  */

Do you understand how to create a new process now by looking at the above process definitions and process
creations?

o all the files in tty and uart directories.
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Fig 3: Network to enable serial network with Embedded XINU /WRT54GL platform



3.7 Periodic real-time Tasks Scheduling (30 points)

In this component of the project you will use Xinu threads to implement n periodic tasks.
For the task set given below design a cyclic schedule: (i) determine the hyper-period (ii) determine
frame size, (iii) provide a timing chart and (iv) a cyclic (executive) schedule. ti is the task#, ri is the
arrival time, ei is the execution time, pi is the period and Di is the relative deadline.

ti [ri|ei|pi |Di
t1/0]2 |8 |6
21112 |6 |6
t3/0]4 (12|10

Based on the schedule write a Xinu program with (i) built-in schedule and (ii) built-in schedule to carry our these
periodic tasks. Each task will be represented by a xinu process (thread). We discussed this in class and a
solution is available in your text and in the demoes directory. You have to port it to XINU environment.

3.8 Write a chat program (30 points)

a. Add a chat program with login feature that will prefix messages with the originator’s name and print it on the
device (lap top).

b. Extend the chat program to allow multiple user (more than 2) and allow chatters to join and leave. In this case
there is a super user admin who can kick out chatters with problems. Assume that each chatter (person) is
inherently a “problem chatter” with certain probability!
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