Background

Stochastic Gradient MCMC

Results

Learning Weight Uncertainty with Stochastic Gradient MCMC for Shape Classification

Presenter: Chunyuan Li

Chunyuan Li, Andrew Stevens, Changyou Chen, Yunchen Pu, Zhe Gan, Lawrence Carin

Duke University

June 30, 2016
Deep Neural Nets for Shape Representations

- Shapes in the real-world manifest rich variability.

- Learning deep representations of shapes with DNNs.

- While SGD with Backpropagation is popular, issues exist:
 - Overfitting: Make overly confident decisions on prediction.
Weight Uncertainty of DNNs

Posterior inference of weight distributions

Bring MCMC back to CV community to tackle “big data"
 - Traditional MCMC: was popular in CV a decade ago
 - including Gibbs sampling, HMC, MH, etc; NOT scalable
 - Propose to use scalable MCMC to fill the gap
Stochastic Gradient MCMC: Algorithm

- Implementation
 1. Training: Adding noise to parameter update
 2. Testing: Model averaging

- SG-MCMC algorithms and their optimization counterparts

<table>
<thead>
<tr>
<th>Algorithms</th>
<th>SG-MCMC</th>
<th>Optimization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic</td>
<td>SGLD</td>
<td>SGD</td>
</tr>
<tr>
<td>Preconditioning</td>
<td>pSGLD*</td>
<td>RMSprop/Adagrad</td>
</tr>
<tr>
<td>Momentum</td>
<td>SGHMC</td>
<td>momentum SGD</td>
</tr>
<tr>
<td>Thermostat</td>
<td>SGNHT</td>
<td>Santa(^\circ)</td>
</tr>
</tbody>
</table>

[*] *Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural Networks*
Li et al, AAAI 2016

[\(\diamond\)] *Bridging the Gap between Stochastic Gradient MCMC and Stochastic Optimization*
Chen et al, AISTATS 2016
Interpretation of Dropout and Batch Normalization

- Dropout/DropConnect and SGLD share the same form of update rule, with the only difference being that the level of injected noise is different.

- The integration of binary Dropout with SG-MCMC can be viewed as learning weight uncertainty of mixtures of neural networks.

- Batch-Normalization can accelerate SG-MCMC training. It helps prevent the sampler from getting stuck in the saturated regimes of nonlinearities.
Results: Applications to Shape Classification

- A variety of 2D and 3D datasets
 - including SHREC and ShapeNet etc

Empirical observations
- The use of Bayesian learning (SG-MCMC or Dropout) slows down training initially. This is likely due to the higher uncertainty imposed during learning, resulting in more exploration of parameter space.
- Increased uncertainty, however, prevents overfitting and eventually results in improved performance.