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Plan of the course

1 Preference relations

2 Preference queries

3 Preference management

4 Advanced topics
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Part I

Preference relations
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Outline of Part I

1 Preference relations
Preference
Equivalence
Preference specification
Combining preferences
Skylines
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Preference relations

Universe of objects

constants: uninterpreted, numbers,...

individuals (entities)

tuples

sets

Preference relation �
binary relation between objects

x � y ≡ x is better than y ≡ x dominates y

an abstract, uniform way of talking about desirability, worth, cost,
timeliness,..., and their combinations

preference relations used in queries
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Buying a car

Salesman: What kind of car do you prefer?
Customer: The newer the better, if it is the same make. And cheap, too.
Salesman: Which is more important for you: the age or the price?
Customer: The age, definitely.
Salesman: Those are the best cars, according to your preferences, that we
have in stock.
Customer: Wait...it better be a BMW.
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Properties of preference relations

Properties of �
irreflexivity: ∀x . x 6� x

asymmetry: ∀x , y . x � y ⇒ y 6� x

transitivity: ∀x , y , z . (x � y ∧ y � z)⇒ x � z

negative transitivity: ∀x , y , z . (x 6� y ∧ y 6� z)⇒ x 6� z

connectivity: ∀x , y . x � y ∨ y � x ∨ x = y

Orders

strict partial order (SPO): irreflexive and transitive

weak order (WO): negatively transitive SPO

total order: connected SPO

Jan Chomicki () Preference Queries 7 / 65



Properties of preference relations

Properties of �
irreflexivity: ∀x . x 6� x

asymmetry: ∀x , y . x � y ⇒ y 6� x

transitivity: ∀x , y , z . (x � y ∧ y � z)⇒ x � z

negative transitivity: ∀x , y , z . (x 6� y ∧ y 6� z)⇒ x 6� z

connectivity: ∀x , y . x � y ∨ y � x ∨ x = y

Orders

strict partial order (SPO): irreflexive and transitive

weak order (WO): negatively transitive SPO

total order: connected SPO

Jan Chomicki () Preference Queries 7 / 65



Properties of preference relations

Properties of �
irreflexivity: ∀x . x 6� x

asymmetry: ∀x , y . x � y ⇒ y 6� x

transitivity: ∀x , y , z . (x � y ∧ y � z)⇒ x � z

negative transitivity: ∀x , y , z . (x 6� y ∧ y 6� z)⇒ x 6� z

connectivity: ∀x , y . x � y ∨ y � x ∨ x = y

Orders

strict partial order (SPO): irreflexive and transitive

weak order (WO): negatively transitive SPO

total order: connected SPO

Jan Chomicki () Preference Queries 7 / 65



Weak and total orders

Weak order

a b

c d e

f

Total order

a

d

f
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Order properties of preference relations

Irreflexivity, asymmetry: uncontroversial.

Transitivity:

captures rationality of preference

not always guaranteed: voting paradoxes

helps with preference querying

Negative transitivity:

scoring functions represent weak orders

We assume that preference relations are SPOs.
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When are two objects equivalent?

Relation ∼
binary relation between objects

x ∼ y ≡ x ′′is equivalent to ′′ y

Several notions of equivalence

equality: x ∼eq y ≡ x = y

indifference: x ∼i y ≡ x � y ∧ y � x

restricted indifference:
x ∼r y ≡ ∀z . (x ≺ z ⇔ y ≺ z) ∧ (z ≺ y ⇔ z ≺ x)

Properties of equivalence

equivalence relation: reflexive, symmetric, transitive

equality and restricted indifference (if � is an SPO) are equivalence
relations

indifference is reflexive and symmetric; transitive for WO
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Example

bmw

ford vw mazda

kia

This is a strict partial
order which is not a
weak order.

Preference:

bmw � ford, bmw � vw
bmw � mazda, bmw � kia
mazda � kia

Indifference:

ford ∼i vw, vw ∼i ford,
ford ∼i mazda, mazda ∼i

ford,
vw ∼i mazda, mazda ∼i

vw,
ford ∼i kia, kia ∼i ford,
vw ∼i kia, kia ∼i vw

Restricted indifference:

ford ∼r vw, vw ∼r ford
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Not every SPO is a WO

Canonical example

mazda � kia, mazda ∼i vw, kia ∼i vw

Violation of negative transitivity

mazda � vw, vw � kia, mazda � kia
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Preference specification

Explicit preference relations

Finite sets of pairs: bmw � mazda, mazda � kia,...

Implicit preference relations

can be infinite but finitely representable

defined using logic formulas in some constraint theory:

(m1, y1, p1) �1 (m2, y2, p2) ≡ y1 > y2 ∨ (y1 = y2 ∧ p1 < p2)

for relation Car(Make,Year ,Price).

defined using preference constructors (Preference SQL)

defined using real-valued scoring functions: [F (m, y , p) = α · y + β · p
(m1, y1, p1) �2 (m2, y2, p2) ≡ F (m1, y1, p1) > F (m2, y2, p2)
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Logic formulas

The language of logic formulas
constants

object (tuple) attributes

comparison operators: =, 6=, <,>, . . .
arithmetic operators: +, ·, . . .
Boolean connectives: ¬,∧,∨
quantifiers:

∀,∃
usually can be eliminated (quantifier elimination)
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Representability

Definition

A scoring function f represents a preference relation � if for all x , y

x � y ≡ f (x) > f (y).

Necessary condition for representability

The preference relation � is a weak order.

Sufficient condition for representability

� is a weak order

the domain is countable or some continuity conditions are satisfied
(studied in decision theory)
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Not every WO can be represented using a scoring function

Lexicographic order in R × R

(x1, y1) �lo (x2, y2) ≡ x1 > x2 ∨ (x1 = x2 ∧ y1 > y2)

Proof
1 Assume there is a real-valued function f such that

x �lo y ≡ f (x) > f (y).

2 For every x0, (x0, 1) �lo (x0, 0).

3 Thus f (x0, 1) > f (x0, 0).

4 Consider now x1 > x0.

5 Clearly f (x1, 1) > f (x1, 0) > f (x0, 1) > f (x0, 0).

6 So there are uncountably many nonempty disjoint intervals in R.

7 Each such interval contains a rational number: contradiction with the
countability of the set of rational numbers.
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Preference constructors [Kie02, KK02]

Good values

Prefer v ∈ S1 over v 6∈ S1.
POS(Make,{mazda,vw})

Bad values

Prefer v 6∈ S1 over v ∈ S1.
NEG(Make,{yugo})

Explicit preference

Preference encoded by a finite
directed graph.

EXP(Make,{(bmw,ford),...,
(mazda,kia)})

Value comparison

Prefer larger/smaller values.
HIGHEST(Year)
LOWEST(Price)

Distance

Prefer values closer to v0.

AROUND(Price,12K)
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Combining preferences

Preference composition

combining preferences about objects of the same kind

dimensionality is not increased

representing preference aggregation, revision, ...

Preference accumulation

defining preferences over objects in terms of preferences over simpler
objects

dimensionality is increased (preferences over Cartesian product).
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Combining preferences: composition

Boolean composition

x �∪ y ≡ x �1 y ∨ x �2 y

and similarly for ∩.

Prioritized composition

x �lex y ≡ x �1 y ∨ (y �1 x ∧ x �2 y).

Pareto composition

x �Par y ≡ (x �1 y ∧ y �2 x) ∨ (x �2 y ∧ y �1 x).
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Preference composition

Preference relation �1

bmw

ford mazda

kia

Preference relation �2

bmw

ford

mazda

kia

Prioritized composition

bmw

ford

mazda

kia

Pareto composition

bmwford

mazdakia
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Combining preferences: accumulation [Kie02]

Prioritized accumulation: �pr= (�1 & �2)

(x1, x2) �pr (y1, y2) ≡ x1 �1 y1 ∨ (x1 = y1 ∧ x2 �2 y2).

Pareto accumulation: �pa= (�1 ⊗ �2)

(x1, x2) �pa (y1, y2) ≡ (x1 �1 y1 ∧ x2 �2 y2) ∨ (x1 �1 y1 ∧ x2 �2 y2).

Properties

closure

associativity

commutativity of Pareto accumulation
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Skylines

Skyline

Given single-attribute total preference relations �A1 , . . . ,�An for a
relational schema R(A1, . . . ,An), the skyline preference relation �sky is
defined as

�sky =�A1 ⊗ �A2 ⊗ · · ·⊗ �An .

Unfolding the definition

(x1, . . . , xn) �sky (y1, . . . , yn) ≡
∧
i

xi �Ai
yi ∧

∨
i

xi �Ai
yi .

Two-dimensional Euclidean space

(x1, x2) �sky (y1, y2) ≡ x1 ≥ y1 ∧ x2 > y2 ∨ x1 > y1 ∧ x2 ≥ y2
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Skyline in Euclidean space

Maximal skyline vectors

Maxima

A skyline consists of all maxima of monotonic scoring functions.

Skyline is not a WO

(2, 0) �sky (0, 2), (0, 2) �sky (1, 0), (2, 0) �sky (1, 0)
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Skyline variants

Groupwise skyline

compare only tuples in the same group

Order properties

Attribute orders are general SPOs.

Non-Euclidean spaces

Metric spaces:

distance vectors in road networks

Dynamic attributes

Attribute values can change dynamically:

distance from query point in road networks
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Combining scoring functions

Scoring functions can be combined using numerical operators.

Common scenario

scoring functions f1, . . . , fn

aggregate scoring function: F (t) = E (f1(t), . . . , fn(t))

linear scoring function: Σn
i=1αi fi

Numerical vs. logical combination

logical combination cannot be defined numerically

numerical combination cannot be defined logically (unless arithmetic
operators are available)

Jan Chomicki () Preference Queries 25 / 65



Combining scoring functions

Scoring functions can be combined using numerical operators.

Common scenario

scoring functions f1, . . . , fn

aggregate scoring function: F (t) = E (f1(t), . . . , fn(t))

linear scoring function: Σn
i=1αi fi

Numerical vs. logical combination

logical combination cannot be defined numerically

numerical combination cannot be defined logically (unless arithmetic
operators are available)

Jan Chomicki () Preference Queries 25 / 65



Combining scoring functions

Scoring functions can be combined using numerical operators.

Common scenario

scoring functions f1, . . . , fn

aggregate scoring function: F (t) = E (f1(t), . . . , fn(t))

linear scoring function: Σn
i=1αi fi

Numerical vs. logical combination

logical combination cannot be defined numerically

numerical combination cannot be defined logically (unless arithmetic
operators are available)

Jan Chomicki () Preference Queries 25 / 65



Combining scoring functions

Scoring functions can be combined using numerical operators.

Common scenario

scoring functions f1, . . . , fn

aggregate scoring function: F (t) = E (f1(t), . . . , fn(t))

linear scoring function: Σn
i=1αi fi

Numerical vs. logical combination

logical combination cannot be defined numerically

numerical combination cannot be defined logically (unless arithmetic
operators are available)

Jan Chomicki () Preference Queries 25 / 65



Part II

Preference Queries
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Outline of Part II

2 Preference queries
Retrieving non-dominated elements
Rewriting queries with winnow
Retrieving Top-K elements
Optimizing Top-K queries
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Winnow[Cho03]

Winnow

new relational algebra operator ω (other names: Best, BMO [Kie02])

retrieves the non-dominated (best) elements in a database relation

can be expressed in terms of other operators

Definition

Given a preference relation � and a database relation r :

ω�(r) = {t ∈ r | ¬∃t ′ ∈ r . t ′ � t}.

Notation: If a preference relation �C is defined using a formula C , then
we write ωC (r), instead of ω�C

(r).

Skyline query

ω�sky (r) computes the set of maximal vectors in r (the skyline set).
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Example of winnow

Relation Car(Make,Year ,Price)

Preference relation:

(m, y , p) �1 (m′, y ′, p′) ≡ y > y ′ ∨ (y = y ′ ∧ p < p′).

Make Year Price

mazda 2009 20K

ford 2009 15K

ford 2007 12K
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Computing winnow using BNL [BKS01]

Require: SPO �, database relation r

1: initialize window W and temporary file F to empty
2: repeat
3: for every tuple t in the input do
4: if t is dominated by a tuple in W then
5: ignore t
6: else if t dominates some tuples in W then
7: eliminate them and insert t into W
8: else if there is room in W then
9: insert t into W

10: else
11: add t to F
12: end if
13: end for
14: output tuples from W that were added when F was empty
15: make F the input, clear F
16: until empty input
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BNL in action

Preference relation: a � c, a � d, b � e.

Window

Temporary file

Input
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Computing winnow with presorting

SFS: adding presorting step to BNL [CGGL03]

topologically sort the input:

if x dominates y , then x precedes y in the sorted input
window contains only winnow points and can be output after every pass

for skylines: sort the input using a monotonic scoring function, for
example

∏k
i=1 xi .

LESS: integrating different techniques [GSG07]

adding an elimination filter to the first external sort pass

combining the last external sort pass with the first SFS pass

average running time: O(kn)
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SFS in action

Preference relation: a � c, a � d, b � e.

Window

Temporary file

Input
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Generalizations of winnow

Iterating winnow

ω0
�(r) = ω�(r)

ωn+1
� (r) = ω�(r −

⋃
1≤i≤n ω

i
�(r))

Ranking

Rank tuples by their minimum distance from a winnow tuple:

η�(r) = {(t, i) | t ∈ ωi
C (r)}.

k-band

Return the tuples dominated by at most k tuples:

ω�(r) = {t ∈ r | #{t ′ ∈ r | t ′ � t} ≤ k}.
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Preference SQL

The language

basic preference constructors

Pareto/prioritized accumulation

new SQL clause PREFERRING

groupwise preferences

implementation: translation to SQL

Winnow in Preference SQL
SELECT * FROM Car
PREFERRING HIGHEST(Year)

CASCADE LOWEST(Price)
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Algebraic laws [Cho03]

Commutativity of winnow with selection

If the formula

∀t1, t2.[α(t2) ∧ γ(t1, t2)]⇒ α(t1)

is valid, then for every r

σα(ωγ(r)) = ωγ(σα(r)).

Under the preference relation

(m, y , p) �C1 (m′, y ′, p′) ≡ y > y ′ ∧ p ≤ p′ ∨ y ≥ y ′ ∧ p < p′

the selection σPrice<20K commutes with ωC1 but σPrice>20K does not.
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Other algebraic laws

Distributivity of winnow over Cartesian product

For every r1 and r2

ωC (r1 × r2) = ωC (r1)× r2

if C refers only to the attributes of r1.

Commutativity of winnow

If ∀t1, t2.[C1(t1, t2)⇒ C2(t1, t2)] is valid and �C1 and �C2 are SPOs, then
for all finite instances r :

ωC1(ωC2(r)) = ωC2(ωC1(r)) = ωC2(r).
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Semantic query optimization [Cho07b]

Using information about integrity constraints to:

eliminate redundant occurrences of winnow.

make more efficient computation of winnow possible.

Eliminating redundancy

Given a set of integrity constraints F , ωC is redundant w.r.t. F iff F
implies the formula

∀t1, t2. R(t1) ∧ R(t2)⇒ t1 ∼C t2.
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Integrity constraints

Constraint-generating dependencies (CGD) [BCW99, ZO97]

∀t1. . . .∀tn. [R(t1) ∧ · · · ∧ R(tn) ∧ γ(t1, . . . tn)]⇒ γ′(t1, . . . tn).

CGD entailment

Decidable by reduction to the validity of ∀-formulas in the constraint
theory (assuming the theory is decidable).
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Top-K queries

Scoring functions

each tuple t in a relation has numeric scores f1(t), . . . , fm(t) assigned
by numeric component scoring functions f1, . . . , fm

the aggregate score of t is F (t) = E (f1(t), . . . , fm(t)) where E is a
numeric-valued expression

F is monotone if E (x1, . . . , xm) ≤ E (y1, . . . , ym) whenever xi ≤ yi for
all i

Top-K queries

return K elements having top F -values in a database relation R

query expressed in an extension of SQL:

SELECT *
FROM R
ORDER BY F DESC
LIMIT K
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Top-K sets

Definition

Given a scoring function F and a database relation r , s is a Top-K set if:

s ⊆ r

|s| = min(K , |r |)
∀t ∈ s. ∀t ′ ∈ r − s. F (t) ≥ F (t ′)

There may be more than one Top-K set: one is selected
non-deterministically.
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Example of Top-2

Relation Car(Make,Year ,Price)

component scoring functions:

f1(m, y , p) = (y − 2005)

f2(m, y , p) = (20000− p)

aggregate scoring function:
F (m, y , p) = 1000 · f1(m, y , p) + f2(m, y , p)

Make Year Price Aggregate score

mazda 2009 20000 4000

ford 2009 15000 9000

ford 2007 12000 10000
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Computing Top-K

Naive approaches

sort, output the first K -tuples

scan the input maintaining a priority queue of size K

...

Better approaches

the entire input does not need to be scanned...

... provided additional data structures are available

variants of the threshold algorithm
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Threshold algorithm (TA)[FLN03]

Inputs

a monotone scoring function F (t) = E (f1(t), . . . , fm(t))

lists Si , i = 1, . . . ,m, each sorted on fi (descending) and representing a
different ranking of the same set of objects

1 For each list Si in parallel retrieve the current object w in sorted order:

(random access) for every j 6= i , retrieve vj = fj(w) from the list Sj

if d = E (v1, . . . , vm) is among the highest K scores seen so far,
remember t and d (ties broken arbitrarily)

2 Thresholding:

for each i : wi the last object seen under sorted access in Si

if there are already K top-K objects with score at least equal to the
threshold T = E (f1(w1), . . . , fm(wm)), return collected objects sorted
by F and terminate
otherwise, go to step 1.
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TA in action

Aggregate score

F (t) = P1(t) + P2(t)

Priority queue

OID P1

5 50

1 35

3 30

2 20

4 10

OID P2

3 50

2 40

1 30

4 20

5 10
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TA in databases

objects: tuples of a single relation r

single-attribute component scoring functions

sorted list access implemented through indexes

random access to all lists implemented by primary index access to r
that retrieves entire tuples
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Optimizing Top-K queries [LCIS05]

Goals

integrating Top-K with relational query evaluation and optimization

replacing blocking by pipelining

Example

SELECT *
FROM Hotel h, Restaurant r, Museum m
WHERE c1 AND c2 AND c3

ORDER BY f1 + f2 + f3
LIMIT K

Is there a better evaluation plan than materialize-then-sort?
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Partial ranking of tuples

Model

set of component scoring functions P = {f1, . . . , fm} such that
fi (t) ≤ 1 for all t

aggregate scoring function F (t) = E (f1(t), . . . , fm(t))

how to rank intermediate tuples?

Ranking principle

Given P0 ⊆ P,

F̄P0(t) = E (g1(t), . . . , gm(t))

where

gi (t) =

 fi (t) if fi ∈ P0

1 otherwise
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Relations with rank

Rank-relation RP0

relation R

monotone aggregate scoring function F (the same for all relations)

set of component scoring functions P0 ⊆ P

order:

t1 >RP0
t2 ≡ F̄P0(t1) > F̄P0(t2)
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Ranking intermediate results

Operators

rank operator µf : ranks tuples according to an additional component
scoring function f

standard relational algebra operators suitably extended to work on
rank-relations

Operator Order

µf (RP0) t1 >µf (RP0
) t2 ≡ F̄P0∪{f }(t1) > F̄P0∪{f }(t2)

RP1 ∩ SP2 t1 >RP1
∩SP2

t2 ≡ F̄P1∪P2(t1) > F̄P1∪P2(t2)
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Example

Query

SELECT *
FROM S
ORDER BY f1 + f2 + f3
LIMIT 1

Unranked relation S

A f1 f2 f3

1 0.7 0.8 0.9

2 0.9 0.85 0.8

3 0.5 0.45 0.75

Rank-relation S{f1}

A F̄{f1}

2 2.9

1 2.7

3 2.5
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Pipelined execution

A f1 f2 f3 F̄{f1}

2 0.9 0.85 0.8 2.9

1 0.7 0.8 0.9 2.7

3 0.5 0.45 0.75 2.5

IndexScanf1

A F̄{f1,f2}

2 2.75

1 2.5

3 1.95

µf2

A F̄{f1,f2,f3}

2 2.55

1 2.4

µf3
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Algebraic laws for rank-relation operators

Splitting for µ

R{f1,f2,...,fm} ≡ µf1(µf2(. . . (µfm (R)) . . .))

Commutativity of µ

µf1(µf2(RP0)) ≡ µf2(µf1(RP0))

Commutativity of µ with selection

σC (µf (RP0)) ≡ µf (σC (RP0))

Distributivity of µ over Cartesian product

µf (RP1 × SP2) ≡ µf (RP1)× SP2 if f refers only to the attributes of R.
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Part III

Preference management

Jan Chomicki () Preference Queries 54 / 65



Outline of Part III

3 Preference management
Preference modification
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Preference modification

Goal

Given a preference relation � and additional preference or indifference
information I , construct a new preference relation �′ whose contents
depend on � and I .

General postulates

fulfillment: the new information I should be completely incorporated
into �′

minimal change: � should be changed as little as possible

closure:

order-theoretic properties of � should be preserved in �′ (SPO, WO)
finiteness or finite representability of � should also be preserved in �′
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Preference revision [Cho07a]

Setting

new information: revising preference relation �0

composition operator θ: union, prioritized or Pareto composition

composition eliminates (some) preference conflicts

additional assumptions: interval orders

�′= TC (�0 θ �) to guarantee SPO

VW , 2009

VW , 2008

VW , 2007

Kia, 2009

Kia, 2008

Kia, 2007
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Preference contraction [MC08]

Setting

new information: contractor relation CON

�′: maximal subset of � disjoint with CON

VW , 2009

VW , 2008

VW , 2007

VW , 2006

VW , 2005
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Substitutability [BGS06]

Setting

new information: set of indifference pairs

additional preferences are added to convert indifference to restricted
indifference

achieving object substitutability

VW , 2009

VW , 2008

VW , 2007

Kia, 2009

Kia, 2008

Kia, 2007
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Part IV

Advanced topics
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Outline of Part IV
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Prospective research topics

Definability

Given a preference relation �C , how to construct a definition of a scoring
function F representing �C , if such a function exists?

Extrinsic preference relations

Preference relations that are not fully defined by tuple contents:

x � y ≡ BMW (x) ∧ Kia(y)

where BMW and Kia are database relations.

Incomplete preferences

tuple scores and probabilities [SIC08, ZC08]

uncertain tuple scores

disjunctive preferences: a � b ∨ a � c
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Preference modification

beyond revision and contraction: merging, arbitration,...

general parametric framework?

conflict resolution

Variations

preference and similarity: “find the objects similar to one of the best
objects”

Applications

preference queries as decision components: workflows, event systems

personalization of query results

preference negotiation: applying contraction
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