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Integrity constraints (dependencies)

Database instance D:

a finite first-order structure

the information about the world

Integrity constraints Σ:

first-order logic formulas

the properties of the world

Satisfaction of constraints: D |= Σ

Formula satisfaction in a first-order structure.

Consistent database: D |= Σ

Name City Salary

Gates Redmond 30M

Jobs Cupertino 10M

Name → City Salary

Inconsistent database: D 6|= Σ

Name City Salary

Gates Redmond 20M

Gates Redmond 30M

Jobs Cupertino 10M

Name → City Salary

Jan Chomicki () CQA October 1, 2008 3 / 37



Integrity constraints (dependencies)

Database instance D:

a finite first-order structure

the information about the world

Integrity constraints Σ:

first-order logic formulas

the properties of the world

Satisfaction of constraints: D |= Σ

Formula satisfaction in a first-order structure.

Consistent database: D |= Σ

Name City Salary

Gates Redmond 30M

Jobs Cupertino 10M

Name → City Salary

Inconsistent database: D 6|= Σ

Name City Salary

Gates Redmond 20M

Gates Redmond 30M

Jobs Cupertino 10M

Name → City Salary

Jan Chomicki () CQA October 1, 2008 3 / 37



Integrity constraints (dependencies)

Database instance D:

a finite first-order structure

the information about the world

Integrity constraints Σ:

first-order logic formulas

the properties of the world

Satisfaction of constraints: D |= Σ

Formula satisfaction in a first-order structure.

Consistent database: D |= Σ

Name City Salary

Gates Redmond 30M

Jobs Cupertino 10M

Name → City Salary

Inconsistent database: D 6|= Σ

Name City Salary

Gates Redmond 20M

Gates Redmond 30M

Jobs Cupertino 10M

Name → City Salary

Jan Chomicki () CQA October 1, 2008 3 / 37



Integrity constraints (dependencies)

Database instance D:

a finite first-order structure

the information about the world

Integrity constraints Σ:

first-order logic formulas

the properties of the world

Satisfaction of constraints: D |= Σ

Formula satisfaction in a first-order structure.

Consistent database: D |= Σ

Name City Salary

Gates Redmond 30M

Jobs Cupertino 10M

Name → City Salary

Inconsistent database: D 6|= Σ

Name City Salary

Gates Redmond 20M

Gates Redmond 30M

Jobs Cupertino 10M

Name → City Salary

Jan Chomicki () CQA October 1, 2008 3 / 37



Integrity constraints (dependencies)

Database instance D:

a finite first-order structure

the information about the world

Integrity constraints Σ:

first-order logic formulas

the properties of the world

Satisfaction of constraints: D |= Σ

Formula satisfaction in a first-order structure.

Consistent database: D |= Σ

Name City Salary

Gates Redmond 30M

Jobs Cupertino 10M

Name → City Salary

Inconsistent database: D 6|= Σ

Name City Salary

Gates Redmond 20M

Gates Redmond 30M

Jobs Cupertino 10M

Name → City Salary

Jan Chomicki () CQA October 1, 2008 3 / 37



Whence Inconsistency?

Sources of inconsistency:

integration of independent data sources with overlapping data

time lag of updates (eventual consistency)

unenforced integrity constraints

Eliminating inconsistency?

not enough information, time, or money

difficult, impossible or undesirable

unnecessary: queries may be insensitive to inconsistency

Living with inconsistency?

ignoring inconsistency

modifying the schema

exceptions to constraints.

CQA
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Ignoring Inconsistency

Name City Salary

Gates Redmond 20M

Gates Redmond 30M

Jobs Cupertino 10M

Name → City Salary

Name

Gates

Jobs

SELECT Name
FROM Employee
WHERE Salary ≤ 25M

Query results not reliable.
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Horizontal Decomposition

Decomposition into two relations:

violators

the rest

(De Bra, Paredaens [DBP83])
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Exceptions to Constraints

Weakening the contraints:

functional dependencies ; denial constraints

(Borgida [Bor85])

Name City Salary

Gates Redmond 20M

Gates Redmond 30M

Jobs Cupertino 10M

Name → City Salary

Name City Salary

Gates Redmond 20M

Gates Redmond 30M

Jobs Cupertino 10M

Name → City Salary

except Name=’Gates’
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The Impact of Inconsistency on Queries

Traditional view

query results defined irrespective of integrity constraints

query evaluation may be optimized in the presence of integrity constraints (semantic
query optimization)

Our view

inconsistency leads to uncertainty

query results may depend on integrity constraint satisfaction

inconsistency may be eliminated (repairing) or tolerated (consistent query answering)
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Database Repairs

Restoring consistency:

insertion, deletion

minimal change
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Consistent Query Answering

Consistent query answer:

Query answer obtained in every
repair.

(Arenas, Bertossi, Ch. [ABC99])

Name City Salary

Gates Redmond 20M

Gates Redmond 30M

Jobs Cupertino 10M

Name → City Salary

Name

Jobs

SELECT Name
FROM Employee
WHERE Salary ≤ 25M

Name

Gates

Jobs

SELECT Name
FROM Employee
WHERE Salary ≥ 10M
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Research Goals

Formal definition

What constitutes reliable (consistent) information in an inconsistent database.

Algorithms

How to compute consistent information.

Computational complexity analysis

tractable vs. intractable classes of queries and integrity constraints

tradeoffs: complexity vs. expressiveness.

Implementation

preferably using DBMS technology.

Applications

???
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Basic Notions

Repair D ′ of a database D w.r.t. the integrity constraints IC :

D ′: over the same schema as D

D ′ |= IC

symmetric difference between D and D ′ is minimal.

Consistent query answer to a query Q in D w.r.t. IC :

an element of the result of Q in every repair of D w.r.t. IC .

Another incarnation of the idea of sure query answers
[Lipski: TODS’79].
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A Logical Aside

Belief revision

semantically: repairing ≡ revising the database with integrity constraints

consistent query answers ≡ counterfactual inference.

Logical inconsistency

inconsistent database: database facts together with integrity constraints form an
inconsistent set of formulas

trivialization of reasoning does not occur because constraints are not used in
relational query evaluation.
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Exponentially many repairs

Example relation R(A, B)

violates the dependency A→ B

has 2n repairs.

A B

a1 b1

a1 c1

a2 b2

a2 c2

· · ·

an bn

an cn

A→ B

It is impractical to apply the definition of CQA directly.
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Computing Consistent Query Answers

Query Rewriting

Given a query Q and a set of integrity constraints IC , build a query Q IC such that for
every database instance D

the set of answers to Q IC in D = the set of consistent answers to Q in D w.r.t.
IC .

Representing all repairs

Given IC and D:

1 build a space-efficient representation of all repairs of D w.r.t. IC

2 use this representation to answer (many) queries.

Logic programs

Given IC , D and Q:

1 build a logic program PIC ,D whose models are the repairs of D w.r.t. IC

2 build a logic program PQ expressing Q

3 use a logic programming system that computes the query atoms present in all
models of PIC ,D ∪ PQ .
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Constraint classes

Universal constraints

∀. ¬A1 ∨ · · · ∨ ¬An ∨ B1 ∨ · · · ∨ Bm

Example

∀. ¬Par(x) ∨Ma(x) ∨ Fa(x)

Denial constraints

∀. ¬A1 ∨ · · · ∨ ¬An

Example

∀. ¬M(n, s,m)∨¬M(m, t,w)∨s ≤ t

Functional dependencies

X → Y :

a key dependency in F if
Y = U

a primary-key dependency: only
one key exists

Example primary-key dependency

Name → Address Salary

Inclusion dependencies

R[X ] ⊆ S [Y ]:

a foreign key constraint if Y is
a key of S

Example foreign key constraint

M[Manager ] ⊆ M[Name]
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Query Rewriting

Building queries that compute CQAs

relational calculus (algebra) ; relational calculus (algebra)

SQL ; SQL

leads to PTIME data complexity

Rewritten query

Emp(x , y , z) ∧ ∀ y ′, z ′. ¬Emp(x , y ′, z ′) ∨ z = z ′
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The Scope of Query Rewriting

(Arenas, Bertossi, Ch. [ABC99])

Integrity constraints: binary universal

Queries: conjunctions of literals (relational algebra: σ,×,−)

(Fuxman, Miller [FM07])

Integrity constraints: primary key functional dependencies

Queries: Cforest

a class of conjunctive queries (π, σ,×)
no cycles
no non-key or non-full joins
no repeated relation symbols
no built-ins

Generalization: conjunctive queries expressed as rooted rules (Wijsen [Wij07])
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SQL Rewriting

SQL query

SELECT Name FROM Emp

WHERE Salary ≥ 10K

SQL rewritten query

SELECT e1.Name FROM Emp e1

WHERE e1.Salary ≥ 10K AND NOT EXISTS

(SELECT * FROM EMPLOYEE e2

WHERE e2.Name = e1.Name AND e2.Salary < 10K)

(Fuxman, Fazli, Miller [FM05])

ConQuer: a system for computing CQAs

conjunctive (Cforest) and aggregation SQL queries

databases can be annotated with consistency indicators

tested on TPC-H queries and medium-size databases
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Conflict Hypergraph

Vertices

Tuples in the
database.

Edges

Minimal sets of tuples
violating a constraint.

Repairs

Maximal independent
sets in the conflict
graph.

(Gates, Redmond, 20M)

(Gates, Redmond, 30M)

(Grove, Santa Clara, 10M)
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Computing CQAs Using Conflict Hypergraphs

Algorithm HProver

INPUT: query Φ a disjunction of ground literals, conflict hypergraph G
OUTPUT: is Φ false in some repair of D w.r.t. IC?
ALGORITHM:

1 ¬Φ = P1(t1) ∧ · · · ∧ Pm(tm) ∧ ¬Pm+1(tm+1) ∧ · · · ∧ ¬Pn(tn)
2 find a consistent set of facts S such that

S ⊇ {P1(t1), . . . ,Pm(tm)}
for every fact A ∈ {Pm+1(tm+1), . . . ,Pn(tn)}: A 6∈ D or there is an edge
E = {A,B1, . . . ,Bm} in G and S ⊇ {B1, . . . ,Bm}.

(Ch., Marcinkowski, Staworko [CMS04])

Hippo: a system for computing CQAs in PTIME

quantifier-free queries and denial constraints

only edges of the conflict hypergraph are kept in main memory

optimization can eliminate many (sometimes all) database accesses in HProver

tested for medium-size synthetic databases
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Logic programs

Specifying repairs as answer sets of logic programs

(Arenas, Bertossi, Ch. [ABC03])

(Greco, Greco, Zumpano [GGZ03])

(Cal̀ı, Lembo, Rosati [CLR03b])

Example

emp(x , y , z)← empD(x , y , z), not dubious emp(x , y , z).
dubious emp(x , y , z)← empD(x , y , z), emp(x , y ′, z ′), y 6= y ′.
dubious emp(x , y , z)← empD(x , y , z), emp(x , y ′, z ′), z 6= z ′.

Answer sets

{emp(Gates,Redmond , 20M), emp(Grove, SantaClara, 10M), . . .}
{emp(Gates,Redmond , 30M), emp(Grove, SantaClara, 10M), . . .}
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Logic Programs for computing CQAs

Logic Programs

disjunction and classical negation

checking whether an atom is in all answer sets is Πp
2-complete

dlv, smodels, . . .

Scope

arbitrary first-order queries

universal constraints

approach unlikely to yield tractable cases

INFOMIX (Eiter et al. [EFGL03])

combines CQA with data integration (GAV)

uses dlv for repair computations

optimization techniques: localization, factorization

tested on small-to-medium-size legacy databases
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Inconsistency and Incompleteness

There is a clear correspondence between repairs and possible worlds.

Name City Salary

Gates Redmond 20M

Gates Redmond 30M

Jobs Cupertino 10M

Name → City Salary

Emp(Gates,Redmond , 20M) ∨ Emp(Gates,Redmond , 30M)

Emp(Jobs,Cupertino, 10M)
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Minimal models

Repairs vs. minimal models (Molinaro, Ch., Marcinkowski, 2008)

For denial constraints, the set of repairs of an instance can be represented as the set
of minimal models of a disjunctive database of at most exponential size

The size of the disjunctive database is polynomial for a primary-key FD but may be
exponential for two key FDs or one non-key FD.

Conclusion

It is unlikely that new tractable cases of CQA will be obtained through the disjunctive
database representation of the repairs:

but (Imielinski, van der Meyden, Vadaparty [IvdMV95])...

Name City Salary

Gates Redmond OR(20M,30M)

Jobs Cupertino 10M
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Co-NP-completeness of CQA

Theorem (Ch., Marcinkowski [CM05a])

For primary-key functional dependencies and conjunctive queries, consistent query
answering is data-complete for co-NP.

Proof.

Membership: S is a repair iff S |= IC and W 6|= IC if W = S ∪M.
Co-NP-hardness: reduction from MONOTONE 3-SAT.

1 Positive clauses β1 = φ1 ∧ · · · ∧ φm, negative clauses β2 = ψm+1 ∧ · · · ∧ ψl .
2 Database D contains two binary relations R(A,B) and S(A,B):

R(i , p) if variable p occurs in φi , i = 1, . . . ,m.
S(i , p) if variable p occurs in ψi , i = m + 1, . . . , l .

3 A is the primary key of both R and S .

4 Query Q ≡ ∃x , y , z .
(
R(x , y) ∧ S(z , y)

)
.

5 There is an assignment which satisfies β1 ∧ β2 iff there exists a repair in which Q is
false.

Q does not belong to Cforest .
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Data complexity of CQA

Primary keys Arbitrary keys Denial Universal

σ,×,−

PTIME PTIME PTIME PTIME: binary

Πp
2-complete

σ,×,−,∪

PTIME PTIME PTIME Πp
2-complete

σ, π

PTIME co-NPC co-NPC Πp
2-complete

σ, π,×

co-NPC co-NPC co-NPC Πp
2-complete

PTIME: Cforest

σ, π,×,−,∪

co-NPC co-NPC co-NPC Πp
2-complete

(Arenas, Bertossi, Ch. [ABC99])

(Ch., Marcinkowski [CM05a])

(Fuxman, Miller [FM07])
(Staworko, Ph.D., 2007), (Staworko, Ch., 2008):

quantifier-free queries
co-NPC for full TGDs and denial constraints
PTIME for acyclic full TGDs, join dependencies and denial constraints
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The Explosion of Semantics

Tuple-based repairs

asymmetric treatment of insertion and deletion:
repairs by minimal deletions only (Ch., Marcinkowski [CM05a]): data possibly incorrect
but complete
repairs by minimal deletions and arbitrary insertions (Cal̀ı, Lembo, Rosati [CLR03a]):
data possibly incorrect and incomplete

minimal cardinality changes (Lopatenko, Bertossi [LB07])

more in the pipeline...

Attribute-based repairs

(A) ground and non-ground repairs (Wijsen [Wij05])

(B) project-join repairs (Wijsen [Wij06])

(C) repairs minimizing Euclidean distance (Bertossi et al. [BBFL08])

(D) repairs of minimum cost (Bohannon et al. [BFFR05])

Computational complexity

(A) and (B): similar to tuple based repairs

(C) and (D): checking existence of a repair of cost < K NP-complete.
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The Need for Attribute-based Repairing

Tuple-based repairing leads to information loss.

EmpDept

Name Dept Location

John Sales Buffalo

Mary Sales Toronto

Name → Dept

Dept → City

Name Dept Location

John Sales Buffalo

Name → Dept

Dept → City

Name Dept Location

Mary Sales Toronto

Name → Dept

Dept → City
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Attribute-based Repairs through Tuple-based Repairs (Wijsen [Wij06])

Repair the lossless join decomposition:

πName,Dept(EmpDept) 1 πDept,Location(EmpDept)
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Probabilistic framework for “dirty” databases

(Andritsos, Fuxman, Miller [AFM06])

potential duplicates identified and grouped into clusters

worlds ≈ repairs: one tuple from each cluster

world probability: product of tuple probabilities

clean answers: in the query result in some (supporting) world

clean answer probability: sum of the probabilities of supporting worlds
consistent answer: clean answer with probability 1

Salaries with probabilities

EmpProb

Name Salary Prob

Gates 20M 0.7

Gates 30M 0.3

Jobs 10M 0.5

Jobs 20M 0.5

Name → Salary

Jan Chomicki () CQA October 1, 2008 31 / 37



Probabilistic framework for “dirty” databases

(Andritsos, Fuxman, Miller [AFM06])

potential duplicates identified and grouped into clusters

worlds ≈ repairs: one tuple from each cluster

world probability: product of tuple probabilities

clean answers: in the query result in some (supporting) world

clean answer probability: sum of the probabilities of supporting worlds
consistent answer: clean answer with probability 1

Salaries with probabilities

EmpProb

Name Salary Prob

Gates 20M 0.7

Gates 30M 0.3

Jobs 10M 0.5

Jobs 20M 0.5

Name → SalaryJan Chomicki () CQA October 1, 2008 31 / 37



Computing Clean Answers

SQL query

SELECT Name

FROM EmpProb e

WHERE e.Salary > 15M

SQL rewritten query

SELECT e.Name,SUM(e.Prob)

FROM EmpProb e

WHERE e.Salary > 15M

GROUP BY e.Name

EmpProb

Name Salary Prob

Gates 20M 0.7

Gates 30M 0.3

Jobs 10M 0.5

Jobs 20M 0.5

Name → Salary

Name Prob

Gates 1

Jobs 0.5

SELECT e.Name,SUM(e.Prob)

FROM EmpProb e

WHERE e.Salary > 15M

GROUP BY e.Name
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Taking Stock: Good News

Technology

practical methods for CQA for subsets of SQL:
restricted conjunctive/aggregation queries, primary/foreign-key constraints
quantifier-free queries, denial constraints/acyclic TGDs/JDs
LP-based approaches for expressive query/constraint languages

(slow) emergence of generic techniques

implemented in prototype systems

tested on medium-size databases

The CQA Community

over 30 active researchers

over 100 publications (since 1999)

at least 8 doctoral dissertations in Europe and North America

2007 SIGMOD Doctoral Dissertation Award (Ariel Fuxman)

overview papers [BC03, Ber06, Cho07, CM05b]
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Taking Stock: Initial Progress

“Blending in” CQA

data integration: tension between repairing and satisfying source-to-target
dependencies

Extensions

uncertainty:
inconsistency leads to but cannot be reduced to uncertainty
repairs vs. possible worlds
probabilistic data
nulls: SQL conformance

priorities:
preferred repairs
application: conflict resolution

XML
notions of integrity constraint and repair
repair minimality based on tree edit distance?

aggregate constraints
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Taking Stock: Largely Open Issues

Applications

no deployed applications

repairing vs. CQA: data and query
characteristics

heuristics for CQA and repairing

CQA in context

taming the semantic explosion

CQA and data cleaning

CQA and schema matching/mapping

Foundations

repair checking

defining measures of consistency

proving non-existence of rewritings
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