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ABSTRACT
The proliferation of big data and big computing boosted
the adoption of machine learning across many application
domains. Several distributed machine learning platforms
emerged recently. We investigate the architectural design
of these distributed machine learning platforms, as the de-
sign decisions inevitably affect the performance, scalabil-
ity, and availability of those platforms. We study Spark
as a representative dataflow system, PMLS as a parameter-
server system, and TensorFlow and MXNet as examples of
more advanced dataflow systems. We take a distributed
systems perspective, and analyze the communication and
control bottlenecks for these approaches. We also consider
fault-tolerance and ease-of-development in these platforms.
In order to provide a quantitative evaluation, we evaluate
the performance of these three systems with basic machine
learning tasks: logistic regression, and an image classifica-
tion example on the MNIST dataset.

1. INTRODUCTION
The goal of machine learning is to “learn” from input

data and construct a suitable model by continously estimat-
ing, optimizing, and tuning parameters of the model. A
recent insight in machine learning is that it is possible to re-
place complexity in modeling with the use of very large scale
datasets for training [11]. With the proliferation of big data,
and with the advances in big data processing frameworks,
this insight led to very large scale machine learning deploy-
ments, and boosted the adoption of machine learning across
many application domains. Today, search engines employ
machine learning for classification, clustering, and index-
ing of documents. Recommendation systems and healthcare
services employ machine learning to improve their services.
In particular, deep learning, an important branch of ma-
chine learning, has achieved transformative success in pat-
tern recognition applications, including speech recognition
and image recognition.

Large scale machine learning platforms are inevitably built
as distributed data processing systems. Dataflow systems
take a functional programming view of data processing as
state transformations [8, 13, 16] and has been adopted widely

by distributed data processing systems. Examples of dataflow
systems include MapReduce [10], Naiad [15], Spark [21, 20].
When using these dataflow systems, the developer mod-
els/represents the computation using a directed graph ab-
straction composed from the system-provided primitives.
The vertex and edge in the directed graph are associated
with special meanings which vary from system to system.
(For example, in MapReduce a vertex corresponds to a map
or reduce task, and an edge corresponds to data communi-
cation/shuffle. In Spark, a vertex corresponds to a Resilient
Distributed Dataset (RDD) [20], and an edge corresponds
to RDD operations.) The dataflow platform then translates
this directed graph to a physical execution plan, consisting
of scheduled tasks, executes these tasks across a cluster of
machines.

Due to the success of dataflow paradigm in big data pro-
cessing systems, initially dataflow systems were adopted for
simple distributed machine learning tasks. For example,
Spark is designed as a general data processing framework,
and with the addition of MLlib [1], machine learning li-
braries, Spark is retrofitted for addressing some machine
learning problems.

For complex machine learning tasks, and especially for
training deep neural networks, the dataflow model fails to
scale as mutable state and iteration becomes crucial. Parameter-
server architecture was proposed to enable in-place updates
to very large parameters. In this model, the workers iterate
over computation in rounds, and are responsible for com-
puting an update to the model parameters in each round.
The parameter server maintains the model parameters using
a distributed store structure such as distributed table. Usu-
ally there is no communication across workers, and workers
only communicate with the parameter server. While data
parallel is the most dominant form of parallelism in this
approach, model-parallelism is also achievable. Examples of
parameter-server architecture includes Google DistBelief [9],
Parameter Server [14], and PMLS [19].

Finally more advanced dataflow systems have been devel-
oped recently to address distributed machine learning and
deep learning problems, including Google TensorFlow [6]
and MXNet [7]. These dataflow systems allow cyclic graphs
with mutable states and can mimic the functionality of a
parameter server. Writing the computation as a dataflow
symbolic computation graph enables these platforms to per-
form graph rewriting, partitioning, and placement to opti-
mize performance over distributed nodes. These platforms
also aim to provide flexibility of customizing the parameter-
server implementation (with different optimization algorithms,
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consistency schemes, and parallelization strategies) at the
application layer.

Contributions of the paper. We investigate the archi-
tectural design of these distributed machine learning plat-
forms, as the design decisions inevitably affect the perfor-
mance, scalability, and availability of those platforms. More
specifically, we compare and contrast the strengths and draw-
backs of the dataflow and parameter-server approaches for
building distributed machine learning frameworks. We take
a distributed systems perspective, and analyze the com-
munication and control bottlenecks for these approaches.
We also consider fault-tolerance and ease-of-development of
these approaches.

In order to provide a quantitative evaluation, we per-
form experiments with representative systems: Spark for
dataflow, PMLS for parameter-server, and TensorFlow and
MXNet as examples of more advanced hybrid dataflow sys-
tems. We evaluate the performance of these systems with
the same basic machine learning tasks: logistic regression,
image classification using feed-forward neural network on
the MNIST dataset [2]. We also employ Ganglia system
monitoring tool [3] to inspect the network, CPU, and mem-
ory utilization during training in order to reveal potential
system bottlenecks.

Our experiments show that while Spark performs good
for simple logistic regression, its performance dips for more
involved machine learning tasks. Spark does not have a
parameter-server abstraction and this limits Spark’s scala-
bility, especially when facing a machine learning task con-
taining a large volume of model parameters. Keeping the
model as an RDD drags the performance of Spark signifi-
cantly, so in our experiments we maintained and updated
the model parameters at the driver. Even with this configu-
ration, Spark’s performance falls below the other platforms
for image classification task with single and two hidden lay-
ers. We also found that the computation speed varies sig-
nificantly with different numbers of RDD partitions.

Our experiments show that the parameter-server model
provides fast iteration and very good performance for train-
ing machine learning and deep learning tasks. Since PMLS
implements the parameter-server at a low-level using a high
performance programming language C++, it achieves the
best performance in terms of speed in our experiments. While
PMLS has very little overhead, on the negative side, this
means that the users of PMLS need to know how to handle
computation using relatively low-level APIs.

The advanced dataflow systems developed for machine
learning, TensorFlow and MXNet, failed to perform well
in terms of speed. This is due to the overhead caused by
the high levels abstractions used in these platforms. On the
other hand, these abstractions enable these systems to work
on multiple platforms and leverage not only CPU but also
GPU and other computational devices. While these systems
have been shown to scale to hundreds of machines, our ex-
periments were performed with up to 6 workers, so they do
not evaluate these platforms at large-scale. In our experi-
ments, we found that asynchronous training of the workers
with respect to the parameter-server achieved higher speeds
than synchronous training.

On the usability front, the advanced dataflow systems
provide several benefits. By adopting symbolic execution
graphs, they abstract away from the distributed execution

at the nodes level and also enable optimizations by graph
rewriting/partitioning when staging the computation on the
underlying distributed nodes. They provide, to some ex-
tent, flexibility of customizing the parameter-server imple-
mentation (with different optimization algorithms, consis-
tency schemes, and parallelization strategies) at the appli-
cation layer. While support for data-parallel training with
parameter-server abstraction is provided, it is still very cum-
bersome to program model-parallel training using these plat-
forms.

Outline of the rest of the paper. We provide a brief
architectural overviews of Spark, PMLS, TensorFlow, and
MXNet in Sections 2, 3, 4, and 5 respectively. In Section 6,
we evaluate the performance of these platforms, and in Sec-
tion 7 we present our concluding remarks and identify di-
rections for future work.

2. SPARK DATAFLOW SYSTEM
In order to achieve better performance than its forerunner

MapReduce, Spark enables in-memory caching of frequently
used data and avoids the overhead of writing a lot of inter-
mediate data to disk. For this Spark leverages on Resilient
Distributed Datasets (RDD), read-only, partitioned collec-
tion of records distributed across a set of machines.

In Spark, a computation is modeled as a directed acyclic
graph (DAG), where each vertex denotes an RDD and each
edge denotes an operation on RDD. On a DAG, an edge E
from vertex A to vertex B implies that RDD B is a result of
performing operation E on RDD A. There are two kinds of
operations: transformations and actions. A transformation
(e.g., map, filter, join) performs an operation on a RDD
and produces a new RDD. An action (e.g., collect, count)
triggers a job in Spark. A typical Spark job performs a
couple of transformations on a sequence of RDDs and then
applies an action to the latest RDD in the lineage of the
whole computation. A Spark application runs multiple jobs
in sequence or in parallel.

Figure 1: Spark Architecture

Figure 1 shows the architecture of a Spark cluster, which
comprises of a master and multiple worker. A master is
responsible for negotiating resource requests made by the
Spark driver program corresponding to the submitted Spark
application. Worker processes hold Spark executors (each of
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Figure 2: RDD Stages

which is a JVM instance) that are responsible for executing
Spark tasks. The Spark driver contains two scheduler com-
ponents: the DAG scheduler and the task scheduler. The
DAG scheduler is responsible for stage-oriented scheduling,
and the task scheduler is responsible for submitting tasks
produced by the DAG scheduler to the Spark executors.

Unlike the MapReduce framework that consists of only
two computational stages, map and reduce, a Spark job
may consist of a DAG of multiple stages. The stages are
run in topological order. A stage contains a set of inde-
pendent tasks which perform computation on partitions of
RDDs. These tasks can be executed either in parallel or as
pipelined. Spark defines two types of dependency relation
that can capture data dependency among a set of RDDs:
narrow dependency and shuffle dependency (also called wide
dependency). Narrow dependency means each partition of
the parent RDD is used by at most one partition of the child
RDD. Examples include map, filter, and union transforma-
tions. Wide dependency means multiple child partitions of
RDD may depend on a single parent RDD partition. Ex-
amples include groupby and join transformations. It is the
wide/shuffle dependency that defines the boundary of two
connected stages. Data exchange across executors only hap-
pens between two adjacent stages and the result of shuffled
data from the previous stage constitutes the input of the
next stage.

Figure 2 is a diagram of how Spark computes job stages.
Spark employs a mechanism called “lazy evaluation” which
means a transformation is not performed immediately. It
will wait until the whole computation DAG is built and
eventually the execution including that transformation will
be triggered by an action in the same DAG. In this scenario,
to run an action on RDD G, the Spark system builds stages
at wide dependencies and pipelines narrow transformation
inside each stage. In other words, narrow dependencies are
good for efficient execution, whereas wide dependencies in-
troduce bottlenecks since they disrupt pipelining and require
communication intensive shuffle operations.

Fault tolerance. Spark uses the DAG to track the lin-
eage of operations on RDDs. For shuffle dependency, the
intermediate records from one stage are materialized on the
machines holding parent partitions. This intermediate data
is used for simplifying failure recovery. If a task fails, the
task will be retried as long as its stage’s parents are still

accessible. If some stages that are required are no longer
available, the missing partitions will be re-computed in par-
allel. Spark is unable to tolerate a scheduler failure of the
driver, but this can be addressed by replicating the meta-
data of the scheduler.

The task scheduler monitors the state of running tasks and
retries failed tasks. Sometimes, a slow straggler task may
drag the progress of a Spark job. As the size of cluster and
the number of tasks increase, the impact of stragglers be-
come more significant. The task scheduler uses speculative
relaunch of straggling tasks in order to reduce the impact of
stragglers.

Machine learning on Spark. Spark is not designed
specifically for machine learning, however, it has been retrofitted
with a machine learning library called MLlib that contains
common machine learning algorithms, utilities, and linear
algebra operations. In the basic machine learning setup,
Spark stores the model parameters in the driver, and the
workers communicate with the driver to update the param-
eters after each iteration. However, for large scale machine
learning deployments, the model parameters may not fit into
the driver node and they would need to be maintained as
an RDD. This introduces a lot of overhead because a new
RDD will need to be created in each iteration to hold the
updated model parameters. Since updating the model usu-
ally involves shuffling data across machines, this limits the
scalability of Spark.

3. PMLS PARAMETER-SERVER SYSTEM
PMLS [19] takes a clean-slate approach and starts by iden-

tifying the objectives and features of machine learning sys-
tems. Most machine learning algorithms work in iterations.
In each iteration the system performs computation on the
dataset and the current model state and outputs an inter-
mediate result, and secondly updates the model state based
on the result. Thus in PMLS, a worker process/thread is
responsible for requesting up to date model parameters and
carrying out computation over a partition of data, and a
parameter-server thread is responsible for storing and up-
dating model parameters and making response to the re-
quest from workers. 1

Figure 3 shows the architecture of PMLS. The parame-
ter server is implemented as distributed tables. All model
parameters are stored via these tables. A PMLS applica-
tion can register more than one table. These tables are
maintained by server threads. Each table consists of mul-
tiple rows. Each cell in a row is identified by a column ID
and typically stores one parameter. The rows of the tables
can be stored across multiple servers on different machines.
Workers are responsible for performing computation defined
by a user on partitioned dataset in each iteration and need
to request up to date parameters for its computation. Each
worker may contain multiple working threads. There is no
communication across workers. Instead, workers only com-
municate with servers. Note that “worker” and “server” are
not necessarily separated physically. In fact server threads
co-locate with the worker processes/threads in PMLS.

1Originally, PMLS was named Petuum. PMLS consists of
Bösen sub-system and Shards sub-system. In this paper we
focus on the Bösen sub-system which provides data-parallel
training.
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Figure 3: PMLS (Bösen) Architecture

PMLS exploits the error-tolerant property of many ma-
chine learning algorithms to make a trade-off between effi-
ciency and consistency. Most machine learning algorithms
can tolerate bounded error in their iterative optimization
process [12]. In order to leverage such error-tolerant prop-
erty, PMLS follows Staleness Synchronous Parallel (SSP)
[12] model instead of Bulk Synchronous Parellel (BSP) model
[18] commonly used in dataflow systems and enables users
to set staleness threshold. In SSP model, worker threads can
proceed without waiting for slow threads. Fast threads may
carry out computation using stale model parameters. Per-
forming computation on stale version of model parameter
does cause errors, however these errors are bounded. The
usage of SSP model reduces as much the impact of stragglers
as possible in a PMLS cluster.

The communication protocol between workers and servers
can guarantee that the model parameters that a working
thread reads from its local cache is of bounded staleness.
With this protocol, PMLS ensures that the fastest working
thread can not be s iteration ahead of the slowest working
thread, where the staleness threshold s should be configured
by a user.

Fault tolerance. Fault tolerance in PMLS is achieved
by checkpointing the model parameters in the parameter
server periodically. To resume from a failure, the whole sys-
tem restarts from the last checkpoint. PMLS does not take
checkpoint at each iteration, considering the heavy memory
and network overhead caused by checkpointing. The check-
pointing period is configurable.

Programing interface. PMLS is written in C++. It
does not decouple user APIs from its system APIs in its
documents explicitly, which means users can use any public
methods in a PMLS’s core class. To write custom appli-
cation, a user first needs to define tables to store model
parameters. Each table can contain multiple rows of a spe-
cific type. One table can be used to store a set of param-
eters in a machine learning algorithm. By its client APIs,
users can access to model parameters in its cache and server
threads. For updating parameter, users can either specify
an entry of a row to update: Inc() or perform batch update:
BatchInc() on a whole row of a table. PMLS system pro-
vides Clock() method which is used to inform all servers that
current threads has finished a computation round. When
Clock() is invoked, the client will release buffered parame-

ter updates to servers. While PMLS has very little overhead,
on the negative side, the users of PMLS need to know how
to handle computation using relatively low-level APIs.

4. TENSORFLOW
Leveraging their experience with DistBelief [9], a first gen-

eration distributed parameter-server system, Google open-
sourced TensorFlow [6] in November 2015. Similar to other
dataflow systems, in TensorFlow the computation is ab-
stracted and represented by a directed graph. But unlike
traditional dataflow systems, TensorFlow allows nodes to
represent computations that own or update mutable state.
It provides stateful operations Variable, which owns muta-
ble buffer, and can be used to store model parameters that
need to be updated at each iteration. Nodes in the graph
represent operations, and some operations are control flow
operations. Values that flow along the directed edges in the
TensorFlow graph are Tensors, arbitrary dimensionality ma-
trices. An operation can take in one or more tensors and pro-
duce a result tensor. In addition, special edges called con-
trol dependencies can be added into TensorFlow’s dataflow
graph with no data flowing along such edges. In summary,
TensorFlow is a dataflow system that offers mutable state
and allows cyclic computation graph, and as such enables
training a machine learning algorithm with parameter-server
model.

The Tensorflow runtime consists of three main compo-
nents: client, master, worker. A client is responsible for
holding a session where a user can define computational
graph to run. When a client requests the evaluation of a
Tensorflow graph via a session object, the request is sent
to master service. The master then schedules the job over
one or more workers and coordinates the execution of the
computational graph. Each worker handles requests from
the master and schedules the execution of the kernels2in the
computational graph. The dataflow executor in a worker
dispatches the kernels to local devices and runs the kernels
in parallel when possible.

If multiple devices are involved in computation, a pro-
cedure called node placement is executed in a Tensorflow
runtime. Tensorflow uses a cost model to estimate the cost
of executing an operation on all available devices (such as
CPUs and GPUs) and assigns an operation to a suitable
device to execute, subject to implicit or explicit device con-
straints in the graph. TensorFlow supports multiple commu-
nication protocols, including gRPC over TCP, and RDMA
over Converged Ethernet.

TensorFlow supports sub-graph execution. A single round
of executing a graph/sub-graph is called a step. A training
application contains two type of jobs: parameter server (ps)
job and worker job. Like data parallelism in PMLS, Ten-
sorFlow’s data parallelism training involves multiple tasks
in a worker job training the same model on different mini-
batches of data, updating shared parameters hosted in a one
or more tasks in a ps job.

Figure 4 illustrates a typical replicated training structure
called between-graph replication, where there is a separate
client for each worker task, typically in the same process
as the worker task. Each client builds a similar graph con-
taining the parameters (pinned to ps) and a single copy of

2 The implementation of an operation on a particular device
is called a kernel.
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Figure 4: TensorFlow Between-Graph Replicated Training

the compute-intensive part of the computational graph that
is pinned to the local task in the worker job. An exam-
ple of a compute-intensive part is to compute gradient dur-
ing each iteration of stochastic gradient descent algorithm.
Users can also specify the consistency model in the between-
graph replicated training as either synchronous training or
asynchronous training. In asynchronous mode, each replica
of the graph has an independent training loop that executes
without coordination. In synchronous mode, all of the repli-
cas read the same values for the current parameters, com-
pute gradients in parallel, and then apply them to a stateful
accumulators which act as barriers for updating variables.

Fault tolerance. TensorFlow provides user-controllable
checkpointing for fault tolerance via primitive operations:
save writes tensors to checkpoint file, and restore reads ten-
sors from a checkpointing file. Usually a variable is con-
nected to a save operation. During the execution of a Ten-
sorFlow job, save operations are run periodically to produce
a new checkpoint. The last checkpoint is used to restart Ten-
sorFlow computation. TensorFlow allows customized fault
tolerance mechanism through its primitive operations, which
provides users the ability to make a balance between relia-
bility and checkpointing overhead.

TensorFlow employs backup workers to mitigate strag-
glers. The TensorFlow runtime takes the first m of n up-
dates produced at each iteration of the training.

Programming interface. TensorFlow software can be
divided into 3 functional layers as in Figure 5. The user
client layer provides client APIs in various languages such as
Python and C++ as well as language-specific libraries. All
the programming APIs in TensorFlow are encapsulated in
this layer. TensorFlow provides not only low level math op-
erations APIs, but also many high level operations and op-
timization algorithms for facilitating machine learning/deep
learning. A thin C API layer separates client APIs and
TensorFlow core library. The TensorFlow core library is im-
plemented in C++ and contains the core runtime.

Compared with Spark and PMLS, TensorFlow provides
more APIs and primitives. That means user can either de-
ploy their machine learning/deep learning algorithms with
build-in modules (a set of APIs with a specific purpose) or
build their algorithms from scratch by low-level APIs.

5. MXNET

Figure 5: Software Layers in TensorFlow

MXNet [4] is a collaborative open source project that
emerged from many deep learning projects such as CXXNet,
Minverva, and Purine2 in 2015. Similar to TensorFlow,
MXNet is a dataflow system that allows cyclic computation
graphs with mutable states, and supports training with pa-
rameter server model. Similar to TensorFlow, MXNet pro-
vides good support for data-parallelism on multiple CPU/GPU,
and also allows model-parallelism to be implemented. MXNet
allows both synchronous and asynchronous training [7].

Figure 6 illustrates main components of MXNet. The run-
time dependency engine analyzes the dependencies in com-
putation processes and parallelizes the computations that
are not dependent. On top of runtime dependency engine,
MXNet has a middle layer for graph and memory optimiza-
tion.

Figure 6: MXNet Components

Fault tolerance. MXNet supports basic fault tolerance
through checkpointing, and provides save and load model
operations. The save operaton writes the model parameters
to the checkpoint file and the load operation reads model
parameters from the checkpoint file.

Programming Interface. MXNet uses declarative pro-
gramming to represent computations in directed graphs and
also allows some imperative programming to be used for
defining tensor computation and control flow. MXNet pro-
vides client APIs written in several languages such as C++,
Python, R, and Scala. Similar to TensorFlow, the back-end
core engine of MXNet library is written in C++.

5



6. EVALUATION
In order to provide a quantitative evaluation of Spark,

PMLS, TensorFlow and MXNet, we evaluated the perfor-
mance of these four systems with some typical machine learn-
ing tasks: logistic regression and image classification using
a neural network. All of our experiments are conducted in
Amazon EC2 cloud computing platform using m4.xlarge in-
stances. Each instance contains 4 vCPU powered by Intel
Xeon E5-2676 v3 processor and 16GiB RAM. The dedicated
EBS Bandwidth of m4.xlarge instance is 750Mbps.

Logistic regression experiments. We implemented a
two class logistic regression algorithm on these four plat-
forms. Our synthetically created dataset contains 10,000
data samples and each of the sample has 10000 features.
The total size of the dataset is 750MB. On PMLS, we imple-
mented logistic regression using stochastic gradient descent
algorithm with batch size 1 and SSP=3. 3 Since Spark is
suitable for batch data processing, we used full batch gra-
dient descent (batch size =10000) to train the model. The
model parameters are stored in Spark’s driver (as they fit
there) instead of being stored as RDD (which would kill the
performance as we discuss in Section 2). For TensorFlow
(TF) and MXNet, we implemented synchronous stochas-
tic gradient descent training with varying batch sizes: 100,
500. The TensorFlow logistic regression was performed by
between-graph replicated synchronous training. In these
experiments, the cluster of each system contains 3 worker
nodes and an extra node is needed to serve as the driver
or parameter server (ps) in Spark, Tensorflow, and MXNet.
The speed of these systems are shown in Table 1.

For logistic regression experiment, PMLS and MXNet are
the fastest two systems and Tensorflow is the slowest one in
terms of system speed. Spark comes between them. There
are several reasons that lead to this result. First, PMLS is a
lightweight system compared to Spark and TensorFlow. It
is implemented with high performance C++ programming
language compared with Spark which is written by Scala
language, running on Java Virtual Machine (JVM). Second,
PMLS contains less abstractions compared with TensorFlow
which has too many abstractions. Abstractions increase the
complexity of a system and lead to runtime overhead.

MNIST image classification experiments. For Spark,
TensorFlow, and MXNet, we evaluated an image classifica-
tion application with different models on MNIST dataset [2].
(This experiment does not include PLMS, as by the time
we did this experiment no suitable example code was re-
leased from PLMS.) In addition to measuring the efficiency
in terms of training speed, we also employed the Ganglia [3]
monitoring tool to measure the utilization of CPU, network,
memory of both worker and ps node—for Spark ps refers to
the driver.

Different models with the same cluster size: We fixed the
size of the EC2 cluster to 3 worker nodes and 1 ps node
for each system and conducted training with three models:
softmax, single-layer neural network (SNN), and multi-layer
neural network (MLY), which contains two hidden layers.
We used the example codes that are released by these plat-
forms to make the comparison fair. For all the comparison,

3The example code of logistic regression in PMLS use batch
size 1, and we followed the default setting.
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Figure 8: Memory Utilization of Training on Softmax, Single
Layer Neural Network, Multilayer Neural Network(2 hidden
Layers) cluster size:3 workers+1 ps

we use the same setting and hyperparameters such as learn-
ing rate, optimizer, activation function, the number of units
in the layer and so on, with only one exception that we used
full batch training with Spark. (Using full batch is the de-
fault setting in MLlib for training the models as it usually
yields the best performance.) For Tensorflow and MXNet,
both synchronous training and asynchronous training are
implemented. The system speeds of the three systems are
shown in the Table 3. We find that MXNet is a little bit
faster than Tensorflow except for the asynchronous train-
ing on single layer NN and two layers NN. The speed of
Spark decreases more significantly than the other two as the
model size increases. At the same time, we find that train-
ing a larger model in Spark uses more CPU than other two.
These two findings indicate a potential CPU-bottleneck for
Spark.

Figure 7 and Figure 9, 10, 11 shows the CPU and network
utilization performance. Spark uses more CPU than the
other two systems but less network per worker. This finding
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Table 1: System Speed of Logistic Regression Training (Samples/second)

Spark TF 100 TF 500 Mnxet 100 MXNet 500 PMLS ssp3
System Speed 5,883 403 443 19,277 19,283 21132

Table 2: PMLS Speed with Different SSP

SSP=0 SSP=3 SSP=6
Speed (records/sec) 20958 21132 21353
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Figure 9: Network Utilization of Softmax Training on the
Three Systems, Cluster size =3 (3 workers +1 ps)

is in accordance with that in [17]. Researchers found that se-
rialization and some collection operations are CPU intensive
in Scala on which Spark is built [5]. Spark’s low network uti-
lization is due to the less data communication between the
driver and the workers in a given period of time. In this
experiment, Spark uses full batch training. Tensorflow and
MXNet use a mini-batch size of 500 to train the model. The
data communication 4 frequency of Tensorflow and MXNet
is much greater than that of Spark. Therefore, given a pe-
riod of time the worker of Tensorflow and MXNet pushes
and pull more data chunk to and from the PS than that of
Spark, thus leading to a high network utilization. MXNet
uses less CPU when facing a relative bigger model, and we
are unable explain this counter-intuitive result.

Figure 8 shows the memory utilization. Spark’s memory
utilization is relatively higher than Tensorflow and MXNet.
This is because Spark needs to cache the whole training
data as RDD during the training process. By contrast, for
Tensorflow and MXNet the memory utilization of storing
data is smaller, as they only need to keep a mini-batch of
training data in memory.

Different cluster sizes with the same model: In order to
evaluate how the system performance changes as we scale
the cluster size, we conduct SNN synchronous training with
1 worker, 3 workers, and 5 workers. Each of the three sys-
tems has one ps node. Figure 12 shows the system speed

4In our experiment, the data communication happens when
the worker pushes gradient to the ps and fetch the up-to-
date model parameters

0

5

10

15

20

25

30

35

N
e
tw

o
rk
 I
n
 (
M
B
/s

)

Network Utilization of Worker Node on SNN Training( ClusterSize:3)

Spark

TF sync

TF async

Mxnet sync

Mxnet async

0 200 400 600 800 1000 1200
Time (second)

0

5

10

15

20

25

30

35

N
e

tw
o

rk
 O

u
t 

(M
B

/s
)

Figure 10: Network Utilization of Single Layer Neural Net-
work (SNN) Training on the Three Systems, Cluster size =3
(3 workers +1 ps)

change and the per worker speed change as we increase the
size of the cluster. The cost of synchronization for Tensor-
flow and MXNet is higher than that for Spark. For Tensor-
flow and MXNet, we can see the per worker speed decreases
more significantly as we increase the number of workers.

Figure 13 shows the CPU utilization of per worker and
ps as we increase the number of workers. We can see the
CPU utilization of the worker is highly correlated with the
training speed of worker. The CPU utilization of ps node
increases as we increase the number of workers in the cluster.
This is because the ps CPU needs to serve more network I/O
system calls as the size of the cluster increases.

Figure 15 shows the network utilization of per worker and
ps as we increase the number of workers. One thing to note
is Spark uses the least network because Spark employs full
batch training and has a low frequency of transferring data
between worker and ps. Figure 14 shows the memory utiliza-
tion of both ps and worker. The memory utilization of Spark
is twice as high as Tensorflow and MXNet in the SNN syn-
chronous training. In general, MXNet uses the least memory
in both worker node and ps node.

7. CONCLUDING REMARKS
In this work we investigated the architectural design de-

cisions in distributed machine learning platforms and their
impact on scalability, performance, availability, and even
usability of these platforms. We find that for complex ma-
chine learning tasks, and especially for training deep neural
networks, the basic dataflow model fails to scale due to its
lack of support for mutable state and fast iterations. The
parameter-server model addresses these requirements and
has been adopted widely by the machine learning and deep

7



Table 3: System Speed with Different Models (Images/second)

Spark TF Sync TF Async MXNet Sync MXNet Async
Softmax 424,600 113,787 149,759 221,853 259,076
Single Layer NN 24,303 23,485 27,099 24,383 25,644
Two Layers NN 9,133 15,283 22,206 16,122 18,511

Note: system speed means how many images per second can be processed.
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Figure 12: Scalability of the three systems in terms of image
process speed
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Figure 11: Network Utilization of Multi-layers NN Training
on the Three Systems, Cluster size =3 (3 workers +1 ps)

learning platforms. More advanced dataflow systems are de-
veloped to allow cyclic execution graphs with mutable states
in order to support the parameter-server model.

Below we present some promising directions for future
work where the distributed systems researchers can con-
tribute for improving the performance of machine learn-
ing and deep learning platforms. Converting the execution
graph to an optimized distributed execution is a promising
area for research. More advanced graph partitioning tech-
niques that stage the computation graph over the underly-
ing distributed nodes in a fashion that avoids potential bot-
tlenecks would be beneficial. Furthermore, the distributed
systems can provide some dynamic scheduling support to
the machine learning platforms running atop. Currently,
even in TensorFlow and MXNet, the number of parameter-
server and workers–and even the number of processes inside
a worker– need to be explicitly specified by the application
developer. However, the underlying distributed system can
monitor/profile the application at runtime and provide an
informed provisioning of computation, memory, network re-
sources to the tasks running atop. Finally research is needed
on varying degree of consistency for the parameter-server
model and on more effective parameter-server worker syn-
chronization mechanisms.
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