University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Compiler Optimization
Karthik Dantu
Ethan Blanton
Computer Science and Engineering

University at Buffalo
kdantu@buffalo.edu

Slides adapted from course CMU course 15-213
Karthik Dantu

University at Buffalo

o LR ooyt Selnce Performance Realities

School of Engineering and Applied Sciences

There’s more to performance than asymptotic complexity

e Constant factors matter too!
* Easily see 10:1 performance range depending on how code is written

* Must optimize at multiple levels:
- algorithm, data representations, procedures, and loops

* Must understand system to optimize performance
* How programs are compiled and executed
* How modern processors + memory systems operate
* How to measure program performance and identify bottlenecks

* How to improve performance without destroying code modularity A
and generality

Karthik Dantu %

University at Buffalo

3| Department of Computer Scence Optimizing Compilers

School of Engineering and Applied Sciences

* Provide efficient mapping of program to machine
* register allocation
» code selection and ordering (scheduling)
* dead code elimination
* eliminating minor inefficiencies

* Don’t (usually) improve asymptotic efficiency

* up to programmer to select best overall algorithm
* big-O savings are (often) more important than constant factors
- but constant factors also matter
* Have difficulty overcoming “optimization blockers”
e potential memory aliasing
* potential procedure side-effects

Karthik Dantu

University at Buffalo

3| eparment of computersiene | imjtations of Optimizing Compilers

School of Engineering and Applied Sciences

e Operate under fundamental constraint
* Must not cause any change in program behavior
- Except, possibly when program making use of nonstandard language features

* Often prevents it from making optimizations that would only affect behavior under pathological
conditions.

Behavior that may be obvious to the programmer can be obfuscated by languages and coding
styles
* e.g., Data ranges may be more limited than variable types suggest

Most analysis is performed only within procedures
* Whole-program analysis is too expensive in most cases
* Newer versions of GCC do interprocedural analysis within individual files
- But, not between code in different files

Most analysis is based only on static information
* Compiler has difficulty anticipating run-time inputs

When in doubt, the compiler must be conservative .

Karthik Dantu %

University at Buffalo

B bepartmernt o omputersaenee - (3enerally Useful Optimizations

School of Engineering and Applied Sciences

e Optimizations that you or the compiler should do
regardless of processor / compiler

* Code Motion
* Reduce frequency with which computation performed

- If it will always produce same result
- Especially moving code out of loop

void set row(double *a, double *b,
long 1, long n)

{

long 7j;
for (3 = 0; 3 < n; Jj++)
aln*i+j] = b[j];

Karthik Dantu

University at Buffalo

5 | Depariment of Computer scence - Compiler-Generated Code Motion (-O1)

and Engineering

School of Engineering and Applied Sciences

void set row(double *a, double *Db,

long i, long n) long j;
{ long ni = n*i;

double *rowp = at+ni;
for (J = 0; j < n; Jj++)
*rowp++ = b[j];

long 7j;
for (J = 0; jJ < n; J++)
aln*i+j] =

Test n

If 0, goto done

ni = n*i

rowp = A + ni*8

3 =0

loop:

t = DblJ]

M[A+ni*8 + j*8] = t
J++

J:n

if !'=, goto loop Q
done:

$rcx, %$rcx

L1

grcx, %Srdx

(%rdi, $rdx, 8), S$rdx
S0, %eax

(%rsi, $rax, 8), %$xmmO
$xmm0, (%rdx,%rax, 8)
$1, %Srax

%rcx, %rax

L3

#
#
#
#
#
#
#
#
#
#
#
#

Karthik Dantu

University at Buffalo

S8 | Department of Computer Science Re d u Ct i on i N St ren gt h

and Engineering

School of Engineering and Applied Sciences

* Replace costly operation with simpler one

 Shift, add instead of multiply or divide
lo*x —-> X << 4
- Utility machine dependent
- Depends on cost of multiply or divide instruction

* On Intel Nehalem, integer multiply requires 3 CPU cycles

* Recognize sequence of products

Karthik Dantu

University at Buffalo

Department of Computer Science

o Eehiesie Share Common Subexpressions

School of Engineering and Applied Sciences

* Reuse portions of expressions
e GCC will do this with =01

/* Sum neighbors of 1,3 */ long inj = i*n + 7j;

up = val[(i-1)*n + j 1; up = val[in] - n];

down = wval[(i+l)*n + 7 1 down = wvall[inj + n];

left = wval[i*n + J=1] 2 left = wvallinj - 1];

right = val[i*n 4= gl 2 right = val[inj 1];

sum = up + down + left + right; sum = up + down + left + right;
3 multiplications: i*n, (i-1)*n, (i+1)*n 1 multiplication: i*n

leag 1(%rsi), %Srax # 1i+1 imulg $rcx, %rsi # i*n

leaqg -1 (%rsi), %r8 # i-1 addg $rdx, %$rsi # i*n+j
imulg %rcx, %$rsi # i*n movqg $rsi, %Srax # 1*n+]
imulg %rcx, $%$rax # (i+1)*n subqg rcx, Srax # i*n+j-n
imulg %rcx, %r8 # (1-1) *n leaq ($rsi, srcx), %rcx # i*n+j+n
addg $rdx, S%rsi # i*n+j

addg $rdx, %rax # (i+1) *n+j

addqg $rdx, %r8 # (i-1)*n+7

Karthik Dantu

University at Buffalo

38| Department of Computer sience - Qptimization Blocker #1: Procedure Calls

and Engineering

School of Engineering and Applied Sciences

* Procedure to convert String to Lower Case

void lowerl (char *s)

for (1 = 0;, 1 < strlen(s); 1i++)
if (s[i] >= 'A' && s[i] <= 'zZ'")
s[1] -= ('A' - 'a');

Karthik Dantu

University at Buffalo

Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Lower Case Conversion Performance

O
* Time quadruples when double string length
* Quadratic performance
250
4
200
[72]
2 150
8 lowerl
g /
> 100
o
3] /
50
0 <>—0—M ‘ . ; : :
0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000
String length o\
10 a \

Karthik Dantu X

University at Buffalo

B pepurmentof compuersience - Convert Loop To Goto Form

School of Engineering and Applied Sciences

void lower (char *s)
{
Sz el EREN=I Ol
if (i >= strlen(s))
goto done;
loop:
if (s[i] >= "A' && s]
s[i] -= ('A' - 'a
i++;
if (1 < strlen(s))
goto loop;
done:

}

i] <= '3")

- strlen executed every iteration

Karthik Dantu

University at Buffalo

Department of Computer Science

L e Calling strlen

/* My version of strlen */
size t strlen(const char *s)
{
size t length =
while (*s != '\O
s++;
length++;

0;
") A
}

return length;

}

* strlen performance

* Only way to determine length of string is to scan its entire length, looking for null
character.

* Overall performance, string of length N
* Ncallstostrlen
* Require times N, N-1, N-2, ..., 1
* Overall O(N?) performance

Karthik Dantu

University at Buffalo

G5 Department of Computer Science I m p rOVi n g Pe rfo r m a n C e

and Engineering

School of Engineering and Applied Sciences

void lower?2 (char *s)
{
size t 1i;
size t len = strlen(s);

for (1 = 0; i < len; i++)
if (s[i] >= '"A' && s[i] <= 'z'")
s[i] -= ('A'" - 'a');

* Move call to strlen outside of loop
 Since result does not change from one iteration to another
* Form of code motion

Karthik Dantu

University at Buffalo
Department of Computer Science

il EngiiegFing Lower Case Conversion Performance

School of Engineering and Applied Sciences

* Time doubles when double string length
 Linear performance of lower2

250
p

200

150
100 /

50
g : lower?2
0

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000
String length

CPU seconds

Karthik Dantu

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Optimization Blocker: Procedure Calls

* Why couldn’t compiler move strlen out of

inner loop?

* Procedure may have side effects
- Alters global state each time called

* Function may not return same value for given

arguments

- Depends on other parts of global state
- Procedure 1ower could interact with strlen

* Warning:

* Compiler treats procedure call as a black box

* Weak optimizations near them

e Remedies:
e Use of inline functions

- GCC does this with —01

* Within single file

* Do your own code motion

Karthik Dantu

size t lencnt = 0;

size t strlen(const char *s)

{

size t length = 0;
while (*s != '"\0")

st++; length++;
}
lencnt += length;
return length;

{

University at Buffalo

G5 Eﬁé}é;té?:ggr?:;omputer Science M e m O ry M att e rS

School of Engineering and Applied Sciences

/* Sum rows is of n X n matrix a
and store in vector b */

void sum rowsl (double *a, double *b,

long n) {
long i, 3J;
for (1 = 0

sum rowsl inner loop
SLd -

movsd ($rsi, %rax,8), %$xmmO # FP load
addsd ($rdi), %$xmmO # FP add
movsd $xmm0, (%rsi,%rax, 8) # FP

i < n; i++) |

0;

addg $8, %$rdi
cmpqg %$rcx, %Srdi
Jne .L4

* Code updates b [i] on every iteration
* Why couldn’t compiler optimize this away? h

Karthik Dantu o

University at Buffalo

Y8 | Department of Computer Science . :
angEngineering ’ Memory AllaSIHg

School of Engineering and Applied Sciences

/* Sum rows is of n X n matrix a
and store in vector b */
void sum rowsl (double *a, double *b, long n) ({
long i, Jj;
for (i =

Value of B:

{ 0,
4’ 16}! . -
2 128} ; _l = 0: [3, 8, 16]

double A+3;

sum_rowsl (A, B, 3); i = 2: [3, 22, 224]

* Code updates b [1] on every iteration

* Must consider possibility that these updates will affect program behavior
Karthik Dantu

University at Buffalo

Department of Computer Science

School of Engineering and Applied Sciences

3 Deprtert ofs Removing Aliasing

/* Sum rows is of n X n matrix a
and store in vector b */
void sum rows2 (double *a, double *b,
long i, 3J;
for (i = 0; 1 < n; i++) {
double val = 0;
for (3 = 0; J < n; Jj++)
val += al[i*n + J];
= val;

sum rows2 inner loop
.L10:
addsd $rdi), %$xmmO # FP load
addg $8, %rdi
cmpq rax, %srdi
Jjne .L10

* No need to store intermediate results

Karthik Dantu

long n)

+ add

{

University at Buffalo

GB | Department of Computer Science Opt|m|zat|on BIOCker. MemOry AlIaSIng

and Engineering

School of Engineering and Applied Sciences

* Aliasing
* Two different memory references specify single location
e Easy to have happeninC

- Since allowed to do address arithmetic
- Direct access to storage structures

e Get in habit of introducing local variables
- Accumulating within loops
- Your way of telling compiler not to check for aliasing

Karthik Dantu

University at Buffalo

GB | Department of Computer Science

R bkl Exploiting Instruction-Level Parallelism

School of Engineering and Applied Sciences

* Need general understanding of modern processor design
* Hardware can execute multiple instructions in parallel

* Performance limited by data dependencies

* Simple transformations can yield dramatic performance improvement
* Compilers often cannot make these transformations
* Lack of associativity and distributivity in floating-point arithmetic

Karthik Dantu

University at Buffalo

Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Benchmark Example: Data Type for Vectors

/* data structure for vectors */
typedef struct{

size t len;

data t *data;
} vec;

*Data Types

e Use different declarations for
data t

* int

* long

e float
* double

len 0 1
data p——>

len-1

/* retrieve vector element
and store at val */
int get vec element
(*vec v, size t 1dx, data t *val)
{
if (idx >= v->len)
return 0O;
*val = v->datal[idx];
return 1;

Karthik Dantu

O

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Benchmark Computation

void combinel (vec ptr v, data t *dest)
{
long int 1i;
*dest = IDENT;
for (i = 0; 1 < vec length(v);
data t val;
get vec element (v, 1,
*dest = *dest OP val;

i++)

&val) ;

{

*Data Types *Operations
* Use different declarations for
data t and IDENT
* int * +/0
* long e * /1
* float
* double

Karthik Dantu

Compute sum or product
of vector elements

e Use different definitions of OP

University at Buffalo
Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Cycles Per Element (CPE)

e Convenient way to express performance of program that

operates on vectors or lists

* Length=n
e T=CPE*n + Overhead

* CPE is slope of line

2500

psuml
Slope =9.0

2000
// ps um2

Slope =6.0

Cycles

1000 /

500 | _—=

200

100
Elements

150

Karthik Dantu

University at Buffalo

o LR ooyt Selnce Benchmark Performance

School of Engineering and Applied Sciences

void combinel (vec ptr v, data t *dest)
{
long int i; Compute sum or

eleEEs = LB | product of vector

for (1 = 0; 1 < vec length(v); 1++) {
S 1o ol - elements
get_;ec_element(v, i, &val);
*dest = *dest OP wval;

Method Integer Double FP

Operation Add Mult Add Mult
Combine1 22.68 20.02 19.98 20.18
unoptimized

Combine1 -0O1 10.12 10.12 10.17 11.14 °~\

Karthik Dantu %

University at Buffalo

B | Department of Computer Science Ba S | C O pt| m | zat | ons

and Engineering

School of Engineering and Applied Sciences

void combine4 (vec ptr v, data t *dest)
{

long 1;

long length = vec length(v);

data t *d = get vec start(v);

data t t = IDENT;

for (i = 0; i < length; i++)
t = OP dI[i];

*dest = t;

* Move vec_length out of loop
* Avoid bounds check on each cycle

e Accumulate in temporary

Karthik Dantu

University at Buffalo
Department of Computer Science

and Engineering Effect of Basic Optimizations

School of Engineering and Applied Sciences

void combine4 (vec ptr v, data t *dest)
{

long 1;

long length = vec length (v);

data t *d = get vec start(v);

data t t = IDENT;
for (i = 0; i < length; i++)

t =t OP d[i];
*dest = t;
}
Method Integer Double FP
Operation Add Mult Add Mult
Combine1 -0O1 10.12 10.12 10.17 11.14
Combine4 1.27 3.01 3.01 5.01 o
* Eliminates sources of overhead in loop
26 - A

Karthik Dantu %

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Modern CPU Design

SUSEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Fetch

: Retirement Control

Unit
Register
File

Instruction

Cache

Instruction Instructions

Decode

Operations

Register Updates

Prediction OK?

Functional
Units

A 4
a A A 2

\ 4 \ 4 A\ 4 A\ 4 A 4 \ 4

a a

Operation Results

Addr. Addr.

Data Data

Data
Cache

Karthik Dantu

University at Buffalo

S8 | Department of Computer Science Su perscala r Processor

and Engineering

School of Engineering and Applied Sciences

* Definition: A superscalar processor can issue and execute multiple
instructions in one cycle. The instructions are retrieved from a
sequential instruction stream and are usually scheduled dynamically.

* Benefit: without programming effort, superscalar processor can take
advantage of the instruction level parallelism that most programs
have

* Most modern CPUs are superscalar.
* Intel: since Pentium (1993)

Karthik Dantu

University at Buffalo

GB | Department of Computer Science P|pe||nEd FunCtlonaI Un|tS

and Engineering

School of Engineering and Applied Sciences

O
| !
long mult eg(long a, long b, long c) { Stage 1
long pl = a*b; - l
long p2 = a*c; (S)
long p3 = pl * p2; L tage
return p3; p l
} Stage 3
Stage 1 a*b a*c pl*p2
Stage 2 a*b a*c pl*p2
Stage 3 a*b a*c pl*p2
* Divide computation into stages
* Pass partial computations from stage to stage "
e Stage i can start on new computation once values passed to i+1
* E.g., complete 3 multiplications in 7 cycles, even though each requires 3 cycles 29
“ Y

Karthik Dantu Y

University at Buffalo

Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Haswell CPU

O
e 8 Total Functional Units
* Multiple instructions can execute in parallel
2 load, with address computation
1 store, with address computation
4 integer
2 FP multiply
1 FP add
1 FP divide
 Some instructions take > 1 cycle, but can be pipelined
Instruction Latency Cycles/Issue
Load / Store 4 1
Integer Multiply 3 1
Integer/Long Divide 3-30 3-30
Single/Double FP Multiply 5 1
Single/Double FP Add 3 1 &
Single/Double FP Divide 3-15 3-15 Y
| 30 o X
Karthik Dantu s *x

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

x86-64 Compilation of Combine4

O
* Inner Loop (Case: Integer Multiply)
.L519: # Loop:
imull (%rax, %rdx,4), %ecx # t =t * d[1i]
addg $1, S%$rdx # 1++
cmpg rdx, Srbp # Compare length:i
jg .L519 # If >, goto Loop
Method Integer Double FP
Operation Add Mulit Add Mulit
Combine4 1.27 3.01 3.01 5.01
Latency 1.00 3.00 3.00 5.00
Bound
Q\
| 31 . X
Karthik Dantu ‘ b

University at Buffalo

GB | Department of Computer Science Combine4 = Serial Computat|on (OP = *)

and Engineering

School of Engineering and Applied Sciences

O

 Computation (length=8)

(CCCCCL * d[0]) * d[1]) * d[2]) * d[3])

* d[4]) * d[5]) * d[6]) * d[7])
* Sequential dependence

* Performance: determined by latency of OP
d;
.
32 t \\

Karthik Dantu %

University at Buffalo

GB | Department of Computer Science LO 0) p U Nro I I | N g (2X 1)

and Engineering

School of Engineering and Applied Sciences

void unroll2a combine (vec ptr v, data t *dest)
{
long length = vec length(v);
long limit = length-1;
data t *d = get vec start(v);
data t x = IDENT;
long 1i;
/* Combine 2 elements at a time */
for (1 = 0; i < limit; 1+=2) {
x = (x OP d[i]) OP d[i+1l];
}
/* Finish any remaining elements */
for (; 1 < length; i++) {
x = x OP d[i];
}

*dest = x;

* Perform 2x more useful work per iteration

Karthik Dantu

University at Buffalo

| Departmert of Computer scence—— Effact of Loop Unrolling

School of Engineering and Applied Sciences

Method Integer Double FP
Operation Add Mult Add Mulit
Combine4 1.27 3.01 3.01 5.01
Unroll 2x1 1.01 3.01 3.01 5.01
Latency 1.00 3.00 3.00 5.00
Bound

* Helps integer add

x = (x OP d[i]) OP d[i+1];

* Achieves latency bound

* Others don’t improve. Why?
* Still sequential dependency

Karthik Dantu

University at Buffalo

B pepartment of computer scence | 0o Unrolling with Reassociation (2x1a)

and Engineering

School of Engineering and Applied Sciences

void unrollZaa combine (vec ptr v, data t *dest)
{
long length = vec length (v);
long limit = length-1;
data t *d = get vec start(v);
data t x = IDENT;
long 1i;
/* Combine 2 elements at a time */
for (1 = 0; i < limit; 1+=2) {
x = x OP (d[i] OP d[i+1]);
}
/* Finish any remaining elements */
for (; 1 < length; i++) {
x = x OP df[i]; Compare to before

x = (x OP d[i1]) OP df[i+1];

}

*dest = x;

}

* Can this change the result of the computation? Q

* Yes, for FP. Why?

Karthik Dantu ,

University at Buffalo

8 Deparinentof Computersience— Fffact of Reassociation

School of Engineering and Applied Sciences

O
Method Integer Double FP
Operation Add Mult Add Mulit
Combine4 1.27 3.01 3.01 5.01
Unroll 2x1 1.01 3.01 3.01 5.01
Unroll 2x1a 1.01 1.51 1.51 2.51
Latency 1.00 3.00 3.00 5.00
Bound
Throughput 0.50 1.00 1.00 0.50
Bound
* Nearly 2x speedup for Int *, FP +, FR * 5 func. units for EP *
* Reason: Breaks sequential dependency 2 func. units for load
x = x OP (d[i] OP d[i+1]); 4 func. units for int + e
* Why is that? (next slide) 2 func. units for load \‘\\
36 o« A

Karthik Dantu %

University at Buffalo

e [Reassociated Computation

School of Engineering and Applied Sciences

x = x OP (d[i] OP d[i+1]); * What changed:

* Ops inthe next iteration can be
started early (no dependency)

dO dl
1dz ds e Overall Performance
b 4 4 * N elements, D cycles latency/op
* 4 Qs
* (N/2+1)*D cycles:

_@ d. d, CPE = D/2

Karthik Dantu %

University at Buffalo

138 Department of Computer Science Loop Unrolling with Separate Accumulators (2x2)

and Engineering

School of Engineering and Applied Sciences

0
void unroll2a combine(vec ptr v, data t *dest)

{
long length = vec length(v);
long limit = length-1;
data t *d = get vec start(v);
data t x0 = IDENT;
data t x1 = IDENT;
long i;
/* Combine 2 elements at a time */
for (1 = 0; 1 < limit; i+=2) {
x0 = x0 OP d[i];
x1l = x1 OP d[i+1];
}
/* Finish any remaining elements */
for (; 1 < length; i++) {
x0 = x0 OP d[i];
}
*dest = x0 OP x1;

e Different form of reassociation
Karthik Dantu Y%

University at Buffalo

Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Effect of Separate Accumulators

Method Integer Double FP

Operation Add Mulit Add Mulit
Combine4 1.27 3.01 3.01 5.01
Unroll 2x1 1.01 3.01 3.01 5.01
Unroll 2x1a 1.01 1.51 1.51 2.51
Unroll 2x2 0.81 1.51 1.51 2.51
Latency Bound 1.00 3.00 3.00 5.00
Throughput Bound 0.50 1.00 1.00 0.50

* |Int + makes use of two load units

x0
x1

= x0 OP df[1i];
= x1 OP d[i+1];

e 2x speedup (over unroll2) for Int *, FP +, FP *

Karthik Dantu

University at Buffalo

= e ~mpltersdence Separate Accumulators

School of Engineering and Applied Sciences

O
x0 = x0 OP d[i]; m What changed:
x1 = x1 OP d[i+1]; = Two independent “streams” of
operations
14, 14,
éb éb m Overall Performance
d; ds = N elements, D cycles latency/op
_,Gb d _,Gb d = Should be (N/2+1)*D cycles:
4 > CPE=D/2
,é de’é d, ® CPE matches prediction!
L& L
What Now?
—>q—
Q\
40 + X

Karthik Dantu %

University at Buffalo

B permentof Computersience | Jnrolling & Accumulating

School of Engineering and Applied Sciences

* |dea
e Can unroll to any degree L
e Can accumulate K results in parallel
* L must be multiple of K

* Limitations
* Diminishing returns
- Cannot go beyond throughput limitations of execution units

* Large overhead for short lengths

- Finish off iterations sequentially

Karthik Dantu

University at Buffalo

| Depariment of compuersience——— |Jnrolling & Accumulating: Double *

and Engineering

School of Engineering and Applied Sciences

O
* Case
* Intel Haswell
* Double FP Multiplication
* Latency bound: 5.00. Throughput bound: 0.50
1 501 501 501 501 501 501 501
2 2.51 2.51 2.51
0
S 3 1.67
RS
2 4 1.25 1.26
S 6 0.84 0.88
= 8 0.63
10 0.51 Q
12 0.52
42 X

Karthik Dantu X

University at Buffalo

S8 | Department of Computer Science Unrolllng & Accumulatlng: Int +

and Engineering

School of Engineering and Applied Sciences

O
* Case
* Intel Haswell
* Integer addition
* Latency bound: 1.00. Throughput bound: 1.00
1 127 101 101 1.01 1.01 101 1.01
2 0.81 0.69 0.54
0
S 3 0.74
RS
S 4 0.69 1.24
S 6 0.56 0.56
= 8 0.54
10 0.54 Q
12 0.56
43 « X

Karthik Dantu X

University at Buffalo

G5 Department of Computer Science

?c?ogil Oggggij::igearniﬂgpm . AC h i eva b | e Pe rfO r m a n C e
Method Integer Double FP
Operation Add Mulit Add Mulit
Best 0.54 1.01 1.01 0.52
Latency Bound 1.00 3.00 3.00 5.00
Throughput Bound 0.50 1.00 1.00 0.50

* Limited only by throughput of functional units

* Up to 42X improvement over original, unoptimized
code

Karthik Dantu

95

University at Buffalo

Department of Computer Science P rog ra m m | n g W|t h AVXZ

and Engineering

School of Engineering and ADPM MM Re g i Ste rS

M 16 total, each 32 bytes
M 32 single-byte integers

]

W16 16-bit integers

LI | 1 1

M8 32-bit integers

M 8 single-precision floats

B4 double-precision floats

M 1 single-precision float

M1 double-precision float

University at Buffalo

G5 Efgéggfggr?:gCOmputer Science S I M D O p e rat i ons

School of Engineering and Applied Sciences

BSIMD Operations: Single Precision °
vaddsd $ymmO, $ymml, $ymml
% ymmO
~ ~ ~ ~ ~ ~ ~ ~
/@\./@\/@\./@\/@\./@\/@\./@\lo
Symml
vaddpd %$ymmO, $ymml, $ymml
BCIND Niuaoraticonce: Daubla Dracician
‘ ‘ ‘ ‘ % ymmO
pV pV pV pV
/® AN /® AN /® AN /® AN a
$ymml Y
% o X

Karthik Dantu

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Using Vector Instructions

Method Integer Double FP
Operation Add Mulit Add Mulit
Scalar Best 0.54 1.01 1.01 0.52
Vector Best 0.06 0.24 0.25 0.16
Latency Bound 0.50 3.00 3.00 5.00
Throughput Bound 0.50 1.00 1.00 0.50
Vec Throughput 0.06 0.12 0.25 0.12
Bound

e Make use of AVX Instructions

* Parallel operations on multiple data elements
e See Web Aside OPT:SIMD on CS:APP web page

Karthik Dantu

University at Buffalo

Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

What About Branches?

* Challenge

* Instruction Control Unit must work well ahead of Execution Unit
to generate enough operations to keep EU busy

404663
404668:
40466b:
404060d:

404685:

} Executing

How to continue?

mov S0x0, $eax

cmp (%rdi), %rsi
jge 404685 <
mov 0x8 (%rdi), Srax

repz retqg

* When encounters conditional branch, cannot reliably determine
where to continue fetching

Karthik Dantu

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Modern CPU Design

SUSEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Fetch

: Retirement Control

Unit
Register
File

Instruction

Cache

Instruction Instructions

Decode

Operations

Register Updates

Prediction OK?

Functional
Units

A 4
a A A 2

\ 4 \ 4 A\ 4 A\ 4 A 4 \ 4

a a

Operation Results

Addr. Addr.

Data Data

Data
Cache

Karthik Dantu

University at Buffalo

GB | Department of Computer Science B ranc h O utcomes

and Engineering

School of Engineering and Applied Sciences

* When encounter conditional branch, cannot determine where to
continue fetching

- Branch Taken: Transfer control to branch target
- Branch Not-Taken: Continue with next instruction in sequence

* Cannot resolve until outcome determined by branch/integer unit

404663: mov S0x0, $eax
404668: cmp (%5rdi), %rsi
40466b: jge 404685

Branch Not-Taken
40466d: mov 0x8 (%rdi), Srax ;;;:’

Branch Taken

404685: repz retq

Karthik Dantu o %

University at Buffalo

Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Branch Prediction

* |dea

* Guess which way branch will go

* Begin executing instructions at predicted position
- But don’t actually modify register or memory data

4046063:
404668:
40466b:
404060d:

404685:

mov S0x0, $eax

cmp ($rdi), Srsi
jge 404685

mov 0x8 (%rdi), Srax

repz retqg

_7 Predict Taken

Begin
Execution

Karthik Dantu

University at Buffalo

Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Branch Prediction Through Loop

—

401029: vmulsd (%rdx), sxmm0, $xmmO
40102d: add S0x8, $rdx

401031: cmp $rax, srdx .
401034: dne 401029 i=98
401029: vmulsd (%rdx), sxmm0, $xmmO
40102d: add S0x8, $rdx

401031: cmp srax, srdx)
401034: dne 401029 i=99
401029: vmulsd (%rdx), sxmm0, $xmmO
40102d: add $0x8,%rdx T
401031: cmp rax, srdx

401034: Jne 401029 i=100
401029: vmulsd (%rdx), sxmm0, $xmmO
40102d: add S0x8, $rdx

401031: cmp srax, srdx .
401034: Jne 401029 i=101

Karthik Dantu

7 location ——

Assume
vector length = 100

Predict Taken (OK)

Predict Taken
(Oops) T

Read Executed
invalid

University at Buffalo

Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Branch Misprediction Invalidation

—

401029: vmulsd (%rdx), sxmm0, $xmmO
40102d: add S0x8, $rdx

401031: cmp $rax, srdx .
401034: dne 401029 i=98
401029: vmulsd (%rdx), sxmm0, $xmmO
40102d: add S0x8, $rdx

401031: cmp srax, srdx)
401034: dne 401029 i=99
4010290: vmpulsd ($rdx) . Sxmm0 ., Sxmm0
40102d: add S0x8, $rdx

401031: cmp Srax, srdx

401034: Jne 401029 i =100
407029 - vmulaed (2rdwx) Ssemm0 . Sxmm(
401024: =44 S0x8 Srdx

A01 037 - ocmn QYQVIQVHV

401034¢ “ng 401090 i=101

Karthik Dantu

—

Assume
vector length = 100

Predict Taken (OK)

Predict Taken
(Oops)
'\

> Invalidate

University at Buffalo

GB | Department of Computer Science Branc h Mis pre d iction Recove ry

and Engineering

School of Engineering and Applied Sciences

O

401029: vmulsd (%rdx), sxmm0, $xmmO
40102d: add S0x8, $rdx i=99
401031: cmp Srax, $rdx Definitely not taken
401034: Jne 401029
401036: Jjmp 401040 — Reload

o } Pipeline
401040: vmovsd %$xmmO, (%rl2)

* Performance Cost
* Multiple clock cycles on modern processor
e Can be a major performance limiter
Q\
54 .+ X

Karthik Dantu %

University at Buffalo

GB | Department of Computer Science

and Enginieering Getting High Performance

School of Engineering and Applied Sciences

* Good compiler and flags

* Don’t do anything stupid
e Watch out for hidden algorithmic inefficiencies

* Write compiler-friendly code

- Watch out for optimization blockers:
procedure calls & memory references

* Look carefully at innermost loops (where most work is
done)

* Tune code for machine
* Exploit instruction-level parallelism
* Avoid unpredictable branches
* Make code cache friendly (Covered later in course)

Karthik Dantu

