
CSE 220: Systems Programming

Lab 04: Introduction to gdb

Introduction

The GNU Debugger, or gdb, is a powerful symbolic debugger. Symbolic debuggers are available for many lan-
guages and platforms, and allow you to examine your program at the source code level.

You can use gdb to debug either a running program or a program that has crashed and left a core file. A core
file is an image of the memory that a programwas using at the time that it crashed. Running processes can be
debugged either by starting the process and then attaching gdb, or starting the process from within gdb. Once
gdb is debugging a process (or examining a core), a variety of commands may be used to examine the current
state of the program or (if it is running) manipulate that state directly.

A debugger is a powerful complement to passive, print- or log-style debugging, as it lets you halt a program
at a suspected problem point and then examine a broad range of characteristics, potentially including things
you may not have thought to check before learning about the execution through interactive examination. It
is not a panacea, however, as it disturbs timings and is not well-suited to finding unknown or unexpected bugs
that may be discovered by principled and complete logs or execution traces.

In this lab, you will use gdb to examine and modify the execution of a running process to fix bugs. In the
real world, this technique is often useful to move past a specific real bug in order to continue execution and
perform additional debugging or development. You will learn how to:

• Examine local variables

• Examine memory

• Stop execution at a chosen point

• Modify memory or variables

• Move through the call stack

1 Getting Started

You will need to run this lab either on timberlake.cse.buffalo.edu or the course virtual machine; no other envi-
ronments are guaranteed to produce the correct results. The file you should download to complete this lab
depends on which machine you wish to use, as follows.

Machine URL
timberlake https://www.cse.buffalo.edu/~eblanton/course/cse220-2019-2f/materials/lab04-timberlake.tar
UBCSEVM https://www.cse.buffalo.edu/~eblanton/course/cse220-2019-2f/materials/lab04-vm.tar

Retrieve the appropriate file, then extract it on the machine where you will be performing this lab with the
command tar xf filename.tar, where filename.tar is the file you downloaded. You should find an extracted
directory named gdb_project containing the files debug and public.c. The file debug is an executable built from
the source file public.c and a second source file that is not provided to you. This allows you to examine the
execution of public.c easily, but prevents you from fixing the sources in public.c and simply recompiling debug.

Start gdb as gdb debug in the extracted directory. You should see something like this:

[eblanton@timberlake]~/work/gdb/src/gdb_project$ gdb debug
GNU gdb (GDB) Red Hat Enterprise Linux (7.2-92.el6)
Copyright (C) 2010 Free Software Foundation, Inc.
License GPLv3+఍ GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.

1

https://www.cse.buffalo.edu/~eblanton/course/cse220-2019-2f/materials/lab04-timberlake.tar
https://www.cse.buffalo.edu/~eblanton/course/cse220-2019-2f/materials/lab04-vm.tar

This GDB was configured as "x86_64-redhat-linux-gnu".
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>...
Reading symbols from /home/csefaculty/eblanton/work/gdb/src/gdb_project/debug...done.
(gdb)

2 Using gdb
As mentioned above, gdb can start a program to be debugged, attach to an already running program, or debug
a program that has crashed from a core file. You can control whichmode gdb runs in by how you invoke it. You
can also change the mode at run time, but that will not be described in this document.

In general, if you start gdb with one argument, it assumes that that one argument is the name of an exe-
cutable file that you will want to debug. It will look in the current directory for a file of that name, and if it
cannot find it there, it will search your $PATH for a matching file. If you start it with two arguments, it will
go through the same search for an executable to debug, but it will assume that you are either attaching to a
running program or performing a post mortem debugging session on a core file. If the second argument is the
numeric process ID of a running process, it will attempt to attach to the running process; if it is a core file on
disk, it will load the image for examination.

Thus, when we run gdb debug, we are telling gdb that we want to debug the executable named debug, and
that we do not want it to either attach to a running program or load a core file. It will then load the symbols
present in the debug executable and prepare it to be debugged when started. The program under debug can be
started and will run until it either completes or crashes by issuing the command run at the (gdb) prompt. Try
it now, and you should see something like this:

(gdb) run
Starting program: /home/elb/work/buffalo/cse220/recitations/gdb/src/debug
This program is using 'eblanton' as your UBITName. If that is not your
UBITName, you should set the CSE220_UBIT environment variable to reflect
your actual UBITName.

Starting tests.

Program received signal SIGSEGV, Segmentation fault.
0x0000555555554eac in initialize_array (numbers=0x7fffffffded0, len=201527) at public.c:44
44 numbers[i] = i + 1;
(gdb)

This tells us that the program started, but then crashed with a segmentation fault (which means it at-
tempted to access memory that did not belong to it) in the function initialize_array(), which can be found in
the file public.c, on line 38 of that file. The offending line is then printed for reference. You can see more lines
around that point by typing list, or you can consult the named source file for context.

More information about the crash can be gathered with various query commands provided by gdb. Try
running the debug program in gdb now, and let it crash. After it crashes, try the following commands at the
(gdb) prompt:

• backtrace to print the program execution stack— that is, the function calls that led it to the crash point

• backtrace full to print the backtrace along with more information

• list to see the source code around the current line

• disassemble to see the machine instructions for the current function

When you are finished, type kill to kill the crashed program so that it can be run again. Since it crashed
in initialize_array(), you can keep it from crashing by halting execution when initialize_array() is called so

2

that you may be able to prevent the crash. (The information you learned from backtrace full should have told
you why it crashed!) To cause it to halt when this function is called, type break initialize_array and then start
the program again by typing run. You should see something similar to the following:

(gdb) break initialize_array
Breakpoint 1 at 0x555555554e89: file public.c, line 43.
(gdb) run
Starting program: /home/elb/work/buffalo/cse220/recitations/gdb/src/debug
This program is using 'eblanton' as your UBITName. If that is not your
UBITName, you should set the CSE220_UBIT environment variable to reflect
your actual UBITName.

Starting tests.

Breakpoint 1, initialize_array (numbers=0x7fffffffded0, len=201527) at public.c:43
43 for (int i = 0; i < len; i++) {
(gdb)

The line that is printed at the bottom, just before the prompt, is the line of code that is about to be executed,
but has not yet been executed. The command nextwill cause it to execute. Since this line of code seems unlikely
to be the source of the bug we are experiencing, go ahead and run next:

(gdb) next
37 for (i = 0; i < 4; i++) {
(gdb)

If you consult the listing of public.c, you will see that althoughwewent from line 35 to 37, 37 is the first line
after 35 that actually contains executable code:

(gdb) list
32 * contain the digits 1-4 and 0.
33 */
34 void initialize_array() {
35 int *numbers = NULL, i = 0;
36
37 for (i = 0; i < 4; i++) {
38 numbers[i] = i + 1;
39 }
40 numbers[4] = 0;
41
(gdb)

In general, execution can be controlled via the following commands:

• break sets a breakpoint, which will stop execution when the program being debugged reaches a named
point in the code. It takes an argument, which can be a source code line of the form file:line (or just line
for the current file), such as public.c:37, in which case it breaks as soon as the line is reached (but before
it executes); a function name, in which case it breaks as soon as the function is called (but, again, before it
executes). It will print out the breakpoint number, which can be used to modify or delete the breakpoint
later.

• delete removes all breakpoints if executed with no arguments, or a specified breakpoint if specified by
number as an argument to the command.

• watch sets awatchpoint, which is amemory address or expression to bemonitored for change. If amemory
address (or variable name) is given, the program will stop when the data at that address or stored in the

3

variable changes. If an expression (in C syntax) is given, the program will change when the result of the
expression changes. For example, watch i < 4, if executed when i == 0, will run without halting as long
as i is negative or between 0 and 3, but will halt if i takes a value 4 or greater.

• next executes the program under debug until it reaches the next line of code, or a breakpoint/watchpoint
(whichever comes first). The “next line of code” is the next line of code within the current function, so
function calls will be executed as a single line of code.

• step, like next, executes the program under debug until it reaches the next line of code, but will “step into”
a function if the current line of code includes a function call, halting inside the called function before its
first line of code.

• run starts theprogram fromthebeginning, and executes it until completion, crash, or a breakpoint/watch-
point is reached. To pass arguments to the command being run, give them to the run command. For
example, to run the program debugwith the argument --sort, you would start gdb as gdb debug, and then
type run --sort at the (gdb) prompt.

• continue continues execution where it was left off after halting for debugging, and runs until the next
breakpoint/watchpoint, program completion, or a crash.

• Control-C will immediately halt the program (whatever it happens to be doing) for debugging. This is
particularly useful if the program appears to have entered an infinite loop.

In addition to controlling program execution, the program’s local variables and memory can be modified
and examined, and a running program can be caused to execute (almost) arbitrary C code. In order to examine
variables and memory, two valuable commands are print and x. The print command accepts a C expression as
an argument and prints its value:

(gdb) print i
$1 = 0
(gdb) print len
$2 = 201527
(gdb)

Note that if the expressionbeingprinted has side effects, those side effectswill also be executed! For example:

(gdb) print i = 1
$3 = 1
(gdb)

After this command, the actual value of i in the executing program is 1. Program state can be conveniently
modified in this way (hint, hint). You can also call functions using print:

(gdb) print puts("This is a debug print")
This is a debug print
$8 = 22
(gdb)

Be careful, as in some cases this may cause your program to execute code in a state where it is not fully
prepared to do so. In particular, using standard I/O functions (such as puts, above) before the program itself
has initialized the standard I/O library is likely to lead to segmentation faults.

The x command is somewhat more complicated to use, but very powerful; it allows an arbitrary range of
memory to be examined as various nativeword types. Its syntax is x/FMT, where FMT is a format string describing
the number of words to be examined, the type of output desired, and the size of the word being examined. For
example, to analyze the first 8 bytes of the executable code for the function main(), you would use:
(gdb) x/8xb main
0x555555554d53 <main>఍ 0x55 0x48 0x89 0xe5 0x48 0x83 0xec 0x10
(gdb)

Consult the gdb documentation (see Section 2.1) for usage of the x command.

4

Throughout this course, you will find the backtrace and frame commands to be among the most useful for
analyzing the flow of data through your program. The backtrace command displays the program’s call stack as
it was when execution was halted:

(gdb) run
Starting program: /home/elb/work/buffalo/cse220/recitations/gdb/src/debug
This program is using 'eblanton' as your UBITName. If that is not your
UBITName, you should set the CSE220_UBIT environment variable to reflect
your actual UBITName.

Starting tests.

Breakpoint 1, initialize_array (numbers=0x7fffffffded0, len=201527) at public.c:43
43 for (int i = 0; i < len; i++) {
(gdb) backtrace
#0 initialize_array (numbers=0x7fffffffded0, len=201527) at public.c:43
#1 0x0000555555554e4b in main (argc=1, argv=0x7fffffffdfd8) at public.c:27
(gdb)

This backtrace indicates that the main() function called the initialize_array() function. Each of these func-
tions is contained in what is called a stack frame. We will learn more about stack frames later in the semester.
The number at the beginning of each line is the stack frame identifier. You can inspect a specific frame using
the frame command followed by the identifier of the stack frame you want to view, at which point you can use
any of the debugging strategies previously described:

(gdb) frame 1
#1 0x0000555555554e4b in main (argc=1, argv=0x7fffffffdfd8) at public.c:27
27 initialize_array(numbers, len);
(gdb) list
22 private_init(&len);
23
24 printf("Starting tests.\n");
25 fflush(stdout);
26
27 initialize_array(numbers, len);
28
29 copy_string();
30
31 bubble_sort();

Consult the gdb documentation (see Section 2.1) for further explanation of the backtrace and frame com-
mands.

2.1 gdbDocumentation

There are two primary sources of gdb documentation: the help command and the info pages. Youmay remem-
ber GNU Info from the make documentation. You can access the gdb info pages with the command info gdb.
For more information on using info, see the handout for the Introduction to Make lab. The gdb online help via
the help command is also very valuable. Explore help x and help info for two good examples of powerful and
useful commands that are difficult to summarize.

3 Requirements

Youmust correct the bugs in public.c by stopping the program at appropriate points and using gdb to examine
and fix the program logic in-memory. In doing so, you will receive three “tokens” (which will be printed by the

5

program during execution). Save these tokens to a text file and submit it to Autograder. The tokens will be
emitted on lines looking something like this:

Array token: arircDCZiszpw

You may include either the entire line or only the token itself in the file that you submit to Autograder.
There are three functions with bugs in the given code: initialize_array, copy_string, and is_valid_integer.

Each function has one logic, memory management, or initial condition bug that you must correct in order to
receive a token.

So that you do not have to start over at the beginning if you make a mistake in generating a token, you can
run the debug program with arguments to skip to a particular test. Examine the source of public.c to see how.

4 Grading

You will receive one point for each bug you “fix”, submitting the associated token to Autograder.

6

	Getting Started
	Using gdb
	gdb Documentation

	Requirements
	Grading

