
CSE 220: Systems Programming
Bitwise Operations

Ethan Blanton

Department of Computer Science and Engineering
University at Buffalo

Introduction Bit Operations C Bit Manipulation Summary References

Bitwise Operations
We have seen arithmetic and logical integer operations.

C also supports bitwise operations.

These operations correspond to logical circuit elements.

They are often related to, yet different from, logical operations.

The major operations are:
Bitwise negation
Bit shifts (left and right)
Bitwise AND, OR, and XOR

©2020 Ethan Blanton / CSE 220: Systems Programming

Introduction Bit Operations C Bit Manipulation Summary References

Truth Tables
You should already be familiar with truth tables.

Every bitwise operation (except shift) is defined by a truth table.

A truth table represents one or two input bits and their output bit.

For example, bitwise OR:

x y Result
0 0 0
1 0 1
0 1 1
1 1 1

©2020 Ethan Blanton / CSE 220: Systems Programming

Introduction Bit Operations C Bit Manipulation Summary References

Bitwise Operations
OR (∨):

x y Result
0 0 0
1 0 1
0 1 1
1 1 1

XOR (⊕):
x y Result
0 0 0
1 0 1
0 1 1
1 1 0

AND (∧):
x y Result
0 0 0
1 0 0
0 1 0
1 1 1

NOT (¬):
x Result
0 1
1 0

©2020 Ethan Blanton / CSE 220: Systems Programming

Introduction Bit Operations C Bit Manipulation Summary References

Bit Operations on Words

Each of these bit operations can be applied to a word.

Each bit position will have the operation applied individually.

E.g., the application of XOR to an n-bit word is:

∀n−1
i=0 Resulti = xi ⊕ yi

Each operation applies to a single bit, so no carries are needed.

©2020 Ethan Blanton / CSE 220: Systems Programming

Introduction Bit Operations C Bit Manipulation Summary References

Bit Shifting

Bit shifts are slightly more complicated.

C can shift bits left or right.
Left shift (<<): bits move toward larger bit values
Right shift (>>): bits move toward smaller bit values

For left shift, zeroes are shifted in on the right.

Examples:
0111 left shift 1 bit → 1110
0010 left shift 2 bits → 1000

©2020 Ethan Blanton / CSE 220: Systems Programming

Introduction Bit Operations C Bit Manipulation Summary References

Right Shifts
Right shifts are somewhat trickier.

In particular, they may obey sign extension.

If the shifted integer is unsigned, zeroes are shifted in on the left:
0110 right shift 1 bit → 0011
1010 right shift 2 bits → 0010

If the shifted integer is signed, the sign bit may affect the shift.
If it is zero, shifts behave as unsigned
If it is one, it might shift in ones

If [the shifted value] is a signed type and a negative value, the
resulting value is implementation-defined. — ISO C99

©2020 Ethan Blanton / CSE 220: Systems Programming

Introduction Bit Operations C Bit Manipulation Summary References

Administrivia

Remember that mid-semester course evaluations are due
Midterm is Wednesday, March 11 during class

©2020 Ethan Blanton / CSE 220: Systems Programming

Introduction Bit Operations C Bit Manipulation Summary References

Operators
The C bitwise operators divide into unary and binary operators:

Unary:
~x: Bitwise negation of x

Binary:
x | y: Bitwise OR of x and y
x & y: Bitwise AND of x and y
x ^ y: Bitwise XOR of x and y
x << y: Left shift x by y bits
x >> y: Right shift x by y bits

©2020 Ethan Blanton / CSE 220: Systems Programming

Introduction Bit Operations C Bit Manipulation Summary References

Bit versus Logical Operators

Do not confuse the bit and logical operators!

Some of them work correctly for integers; e.g., |.
Some decidedly do not, e.g., &:
1 & 2 → logical false!

Not (~) and and (&) are particularly pernicious because they
often work.

©2020 Ethan Blanton / CSE 220: Systems Programming

Introduction Bit Operations C Bit Manipulation Summary References

Masking
Many bitwise operations are used to work on a portion of a word.

This typically requires masking either:
The bits to be modified
The bits to be ignored

Masking uses & and sometimes ~.
For example, to get the lowest 8 bits of an integer:
eightbits = x & 0xff;

(You might remember this from dumpmem().)

©2020 Ethan Blanton / CSE 220: Systems Programming

Introduction Bit Operations C Bit Manipulation Summary References

Bit Twiddling
Setting and unsetting individual bits typically uses masking.

Assume we want to set bit zero:
#define LOWBIT 0x1

x = x | LOWBIT;

Later, we want to unset bit zero:
x = x & ~LOWBIT;

In this case, ~LOWBIT is a mask for all bits except 0.

©2020 Ethan Blanton / CSE 220: Systems Programming

Introduction Bit Operations C Bit Manipulation Summary References

Twiddling with XOR
If you always want to flip the state of a bit, you can use XOR.

This comes from the truth table; assume y is a constant 1:
x y Result
0 0 0
1 0 1
0 1 1
1 1 0

x = x ^ LOWBIT;

©2020 Ethan Blanton / CSE 220: Systems Programming

Introduction Bit Operations C Bit Manipulation Summary References

Shifting and Powers of 2

Note that bit shifting is multiplying by powers of 2!

A one-bit shift is multiplying by 2:
0010 → 2
0100 → 4

0011 → 3
0110 → 6

Successive bit shifts continue to multiply by 2.
1 (= 20)
1 << k (= 2k)

©2020 Ethan Blanton / CSE 220: Systems Programming

Introduction Bit Operations C Bit Manipulation Summary References

Forcing Endianness

int htonl(int input) {
int output;
char *outb = (char *)&output;
for (int b = 0; b < sizeof(int); b++) {

int shift = (sizeof(int) - b - 1) * 8;
outb[b] = (input >> shift) & 0xff;

}
return output;

}

©2020 Ethan Blanton / CSE 220: Systems Programming

Introduction Bit Operations C Bit Manipulation Summary References

htonl in Action

int x = 0x01020304;
int y = htonl(x);

dump_mem (&x, sizeof(x));
dump_mem (&y, sizeof(y));

04 03 02 01
01 02 03 04

©2020 Ethan Blanton / CSE 220: Systems Programming

Introduction Bit Operations C Bit Manipulation Summary References

Summary

C can manipulate individual bits in memory.
Bit operations can be subtle and tricky!
Signedness matters.
Bit manipulations can force endianness or other
representations.

©2020 Ethan Blanton / CSE 220: Systems Programming

Introduction Bit Operations C Bit Manipulation Summary References

References I
Required Readings
[1] Randal E. Bryant and David R. O’Hallaron. Computer Science: A Programmer’s

Perspective. Third Edition. Chapter 2, 2.1.6 and 2.1.7. Pearson, 2016.

[2] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. Second
Edition. Chapter 2, 2.9, Appendix A, A7.4.6, A7.8, A7.11-A7.13. Prentice Hall, 1988.

©2020 Ethan Blanton / CSE 220: Systems Programming

Introduction Bit Operations C Bit Manipulation Summary References

License

Copyright 2020 Ethan Blanton, All Rights Reserved.
Copyright 2019 Karthik Dantu, All Rights Reserved.

Reproduction of this material without written consent of the
author is prohibited.

To retrieve a copy of this material, or related materials, see
https://www.cse.buffalo.edu/~eblanton/.

©2020 Ethan Blanton / CSE 220: Systems Programming

https://www.cse.buffalo.edu/~eblanton/

	Introduction
	Bit Operations
	C Bit Manipulation
	Summary
	References

