
CSE 220: Systems Programming
Midterm Review

Ethan Blanton

Department of Computer Science and Engineering
University at Buffalo



Logistics Concepts in C Memory Programming Representation Architecture and Processes References

Time and Place

Your midterm will be
on UBlearns
at your regular lecture time

You must start in the first five minutes of lecture.

Log in early!

©2020 Ethan Blanton / CSE 220: Systems Programming



Logistics Concepts in C Memory Programming Representation Architecture and Processes References

Resources
You may use from this semester:

Lecture slides provided by me
Lab handouts and lab README.md files
Programming assignment handouts
Computer Systems: A Programmer’s Perspective[1]
The C Programming Language[2]
Notes written by you:

From one of the above allowed sources
From lecture content

Nothing else.
Not even notes written by you from another source!

©2020 Ethan Blanton / CSE 220: Systems Programming



Logistics Concepts in C Memory Programming Representation Architecture and Processes References

Time Lapse

You must take a time lapse video of your exam.

Instructions are on Piazza.

Set it up and test it ahead of time.

Be aware of:
Requirements of what must be visible
Lack of feedback on UBlearns upload

©2020 Ethan Blanton / CSE 220: Systems Programming



Logistics Concepts in C Memory Programming Representation Architecture and Processes References

Format

There will be several types of question on the exam:
True/False
Multiple choice
Calculated values
Short answer

On my tests, short answer is short answer:
typically, two words to two sentences, answer it and stop.

©2020 Ethan Blanton / CSE 220: Systems Programming



Logistics Concepts in C Memory Programming Representation Architecture and Processes References

Introduction to C

C is a high level language used in systems programming.
Architectural details are important in C.
The C/POSIX model is:

A dedicated machine for each program
Sequential execution of program instructions
Data is stored in accessible, addressed memory

We explored some trivial C programs.

©2020 Ethan Blanton / CSE 220: Systems Programming



Logistics Concepts in C Memory Programming Representation Architecture and Processes References

Variables, Strings, and Values
C is a typed language
Every variable has a type
Variable values must match the type
Variables have scope, and cannot be used outside that
scope
Arrays are contiguous memory locations
Array syntax uses []
C strings are arrays of characters
Every C string is terminated with a zero byte
For loop syntax
For loops are very flexible

©2020 Ethan Blanton / CSE 220: Systems Programming



Logistics Concepts in C Memory Programming Representation Architecture and Processes References

Conditionals and Control Flow

All nonzero values are true conditions in C.
All Boolean expressions use 1 for true.
The bool keyword holds only 0 or 1.
C uses short-circuit evaluation of Boolean logic.
if and switch implement conditionals.
Use blocks for if and else!
Control flow is implemented with comparisons and jumps.

©2020 Ethan Blanton / CSE 220: Systems Programming



Logistics Concepts in C Memory Programming Representation Architecture and Processes References

Memory and Pointers

Memory locations are identified by addresses.
Addresses are integers.
Our system’s memory is like one large array.
POSIX processes appear to have their own dedicated
memory.
Pointers hold addresses and have types.
Unix processes are divided into sections.
Pointers and arrays are closely related, but not the same.

©2020 Ethan Blanton / CSE 220: Systems Programming



Logistics Concepts in C Memory Programming Representation Architecture and Processes References

Memory Allocation

The heap is where you manually allocate memory.
The C standard library contains a flexible allocator.
Heap allocations are sized by the programmer.

©2020 Ethan Blanton / CSE 220: Systems Programming



Logistics Concepts in C Memory Programming Representation Architecture and Processes References

Programming Practices

Cultivate good work habits
Design your programs purposefully
Use your tools!
Practice good style and form
Debug with a plan

The only way to become a good programmer is to write
programs.

©2020 Ethan Blanton / CSE 220: Systems Programming



Logistics Concepts in C Memory Programming Representation Architecture and Processes References

Integers and Integer Representation

The CPU and memory deal only in words
Buses and registers have native word widths
Integers have different:

Bit widths
Endianness
Sign representation

Ones’ and two’s complement representation

©2020 Ethan Blanton / CSE 220: Systems Programming



Logistics Concepts in C Memory Programming Representation Architecture and Processes References

Floating Point Numbers

Numbers can have fractional portions
Both fixed and floating point representations can be
calculated in both binary and decimal
IEEE 754 standardizes a floating point representation
Floating point numbers have fixed precision, but variable
magnitude

©2020 Ethan Blanton / CSE 220: Systems Programming



Logistics Concepts in C Memory Programming Representation Architecture and Processes References

Bitwise Operations

C can manipulate individual bits in memory.
Bit operations can be subtle and tricky!
Signedness matters.
Bit manipulations can force endianness or other
representations.

©2020 Ethan Blanton / CSE 220: Systems Programming



Logistics Concepts in C Memory Programming Representation Architecture and Processes References

Alignment, Padding, and Packing
Integers, pointers, and floating point numbers are scalar
types.
Arrays and structures are aggregate types.
Structures can contain members of mixed type.
Scalar types must be aligned.
Aggregate types must align for scalars.
Allocation normally aligns to the largest type.
Pointer arithmetic uses stride in computations.
void * has a stride of 1.
The void * type can be used for raw memory manipulation
Casting void * to another type is convenient
Math on void * is by byte

©2020 Ethan Blanton / CSE 220: Systems Programming



Logistics Concepts in C Memory Programming Representation Architecture and Processes References

A Tour of Computer Systems

Architectural details matter
Bus widths
Numeric properties
Performance details

C and POSIX are just one possible system
All systems have those details
Software correctness can be critically important

©2020 Ethan Blanton / CSE 220: Systems Programming



Logistics Concepts in C Memory Programming Representation Architecture and Processes References

Process Anatomy

POSIX programs are laid out in sections
????? →
The stack grows downward
Automatic variables are allocated on the stack
Stack frames track function calls
Items removed from the stack are not cleared
Stack-allocated arguments are how C is call-by-value

©2020 Ethan Blanton / CSE 220: Systems Programming



Logistics Concepts in C Memory Programming Representation Architecture and Processes References

References I
Required Readings
[1] Randal E. Bryant and David R. O’Hallaron. Computer Science: A Programmer’s

Perspective. Third Edition. Pearson, 2016.

[2] Brian W. Kernighan and Dennis Ritchie. The C Programming Language. Second Edition.
Prentice Hall, 1988.

©2020 Ethan Blanton / CSE 220: Systems Programming



Logistics Concepts in C Memory Programming Representation Architecture and Processes References

License

Copyright 2020 Ethan Blanton, All Rights Reserved.
Copyright 2019 Karthik Dantu, All Rights Reserved.

Reproduction of this material without written consent of the
author is prohibited.

To retrieve a copy of this material, or related materials, see
https://www.cse.buffalo.edu/~eblanton/.

©2020 Ethan Blanton / CSE 220: Systems Programming

https://www.cse.buffalo.edu/~eblanton/

	Logistics
	Concepts in C
	Memory
	Programming
	Representation
	Architecture and Processes
	References

