
CSE 220: Systems Programming

Ethan Blanton

Department of Computer Science and Engineering
University at Buffalo



Logistics Review References

Date, Time & “Location”

The final will be Friday, December 18, at 3:30 PM EST.

Make-up exams are not yet scheduled.

The exam will be on UBlearns

©2020 Ethan Blanton / CSE 220: Systems Programming



Logistics Review References

Format and Materials
Watch Piazza for final information on this.

The exam will be open book, open note.
(The complete list of allowed materials will be on Piazza.)

Expect:
True/False
Multiple choice (more than one possible answer)
Fill-in-the-blank
Short answer

Short answers are two words to two sentences in most cases.

©2020 Ethan Blanton / CSE 220: Systems Programming



Logistics Review References

Updates

Watch Piazza for updates!

©2020 Ethan Blanton / CSE 220: Systems Programming



Logistics Review References

The Compiler and Toolchain

The “C compiler” is actually a chain of tools
We invoke the compiler driver
The preprocessor transforms the source code
The compiler turns C into assembly language
The assembler turns assembly language into machine code
in object files
The linker links object files into an executable

©2020 Ethan Blanton / CSE 220: Systems Programming



Logistics Review References

Compiler Optimization

Algorithmic improvements remain key.
Knowing how the compiler works help produce better code.
Optimizing compilers must not change semantics.
Compilers use static information.
We covered:

Constant folding
Code motion
Reduction in strength

Procedures are problematic.

©2020 Ethan Blanton / CSE 220: Systems Programming



Logistics Review References

Dynamic Memory Allocation

The OS notion of the heap is very simplistic.
The dynamic allocator has to manage the heap.
Metadata is required for management.
The heap can become fragmented:

Internal fragmentation is inside heap blocks.
External fragmentation is between heap blocks.

©2020 Ethan Blanton / CSE 220: Systems Programming



Logistics Review References

Virtual Memory
Virtual memory:

uses a memory management unit
allows the CPU to operate in a virtual address space that
may be different from the physical address space
the MMU translates virtual addresses to physical addresses

Paging is a common model for virtual memory.
Paged systems break both address spaces into pages.
Pages can be mapped individually between virtual and
physical addresses.
Page tables allow the MMU to translate addresses.
Page faults bring mapped but unallocated pages into
memory.

©2020 Ethan Blanton / CSE 220: Systems Programming



Logistics Review References

Caching and Locality

The CPU is much faster than memory or disks.
The difference in speeds is growing.
Programs exhibit locality:

Spatial
Temporal

Caching depends on locality to improve performance.
Writing good programs requires understanding locality.

©2020 Ethan Blanton / CSE 220: Systems Programming



Logistics Review References

Processes, Threads, and Concurrency

Logical control flows are execution steps through programs.
Concurrency is multiple logical control flows at one time.
Multiprocessing versus Multitasking
Processes versus Threads

©2020 Ethan Blanton / CSE 220: Systems Programming



Logistics Review References

Races and Synchronization
A race is a situation where program correctness depends
on the order of operations in concurrent flows.
Data races are races involving modification of data.
Synchronization is the deliberate ordering of events in a
program.
A critical section is a region of code that must be accessed
by at most one concurrent flow at a time.
Progress graphs visualize concurrent flows.
Synchronization primitives:

Atomic operations
Mutexes
Semaphores
Condition variables

Deadlock is a program error caused by synchronization.
©2020 Ethan Blanton / CSE 220: Systems Programming



Logistics Review References

POSIX Threads and Synchronization

The POSIX threads (pthreads) API provides a thread
abstraction on Unix
POSIX provides many synchronization primitives:

Mutexes
Semaphores
Condition variables
Thread joining

CS:APP covers semaphores in detail

©2020 Ethan Blanton / CSE 220: Systems Programming



Logistics Review References

The Kernel and User Mode

Exceptions are special control flow
Protection domains control access to hardware resources
Exception handlers run in supervisor mode in the kernel
Special trap exceptions can be used to implement system
calls
System calls allow user mode programs to request access
to the kernel

©2020 Ethan Blanton / CSE 220: Systems Programming



Logistics Review References

Input and Output

Unix I/O is defined by the POSIX Standard
Standard I/O is defined by the C Standard
The kernel tracks open files with file descriptors
All file I/O goes through the kernel
The standard I/O library is buffered

©2020 Ethan Blanton / CSE 220: Systems Programming



Logistics Review References

Memory and Concurrency

Caching and CPU architecture require more than just
temporal synchronization
Memory barriers force data visibility across cores
Memory barriers are a hardware feature
POSIX synchronization primitives use memory barriers
Shared memory requires kernel assistance

©2020 Ethan Blanton / CSE 220: Systems Programming



Logistics Review References

Big Concepts

Tie it all together!

©2020 Ethan Blanton / CSE 220: Systems Programming



Logistics Review References

References I

©2020 Ethan Blanton / CSE 220: Systems Programming



Logistics Review References

License

Copyright 2020 Ethan Blanton, All Rights Reserved.
Copyright 2019 Karthik Dantu, All Rights Reserved.

Reproduction of this material without written consent of the
author is prohibited.

To retrieve a copy of this material, or related materials, see
https://www.cse.buffalo.edu/~eblanton/.

©2020 Ethan Blanton / CSE 220: Systems Programming

https://www.cse.buffalo.edu/~eblanton/

	Logistics
	Review
	References

