
Alignment, Padding, and Packing

CSE 220: Systems Programming

Ethan Blanton
Department of Computer Science and Engineering

University at Buffalo

Introduction Structures Memory Layout Stride Dumping Memory Other Representations Summary References

Scalars vs. Aggregates
C has two basic kinds of types: scalars and aggregates.

A scalar type is a type that contains a single value.

In C, the scalar types are:
arithmetic types (integers and floating point numbers)
pointers (which we have learned are special integers)

Aggregate types are collections of scalar values.

In C, the aggregate types are:
arrays of scalar values of the same type
structs containing scalars of the same or different types

©2021 Ethan Blanton / CSE 220: Systems Programming 2

Introduction Structures Memory Layout Stride Dumping Memory Other Representations Summary References

Memory Layout

Many data types must be located in memory according to
certain rules.

In most cases, this is not obvious to the programmer.

Aggregate types, and pointers to aggregate types, expose this.

We will explore alignment and stride.

©2021 Ethan Blanton / CSE 220: Systems Programming 3

Introduction Structures Memory Layout Stride Dumping Memory Other Representations Summary References

More on void Pointers

Void pointers are powerful for raw memory manipulation.

You can use them to put arbitrary values into memory.

You will use this in PA3 and PA4!

We will look at using void * to:
Pass a pointer of an arbitrary type
Read and write arbitrary types in memory
Manipulate memory without respect to alignment and stride

©2021 Ethan Blanton / CSE 220: Systems Programming 4

Introduction Structures Memory Layout Stride Dumping Memory Other Representations Summary References

The C Struct
A struct is an aggregate data type consisting of one or more
other types.
struct IntList {

int value;
struct IntList *next;

};

This struct contains an integer and a pointer.

value and next are called members of the structure.

Any variable of type struct IntList contains both of these
members.

©2021 Ethan Blanton / CSE 220: Systems Programming 5

Introduction Structures Memory Layout Stride Dumping Memory Other Representations Summary References

Declaring and Using Structures

The syntax for structure declaration is
struct StructureTypeName {

// Members in structure
// Each member has a type and a name

} instance; // semicolon required!

An instance of the structure may be created where the structure
is declared, or using the type name later:
struct StructureTypeName instance;

©2021 Ethan Blanton / CSE 220: Systems Programming 6

Introduction Structures Memory Layout Stride Dumping Memory Other Representations Summary References

Accessing Structure Members
The . operator is used to access the members of a structure.
struct IntList node;
node.value = 3;
node.next = NULL;

Any member of a structure can be accessed with .:
struct ComplexList {

struct Complex {
double real , im;

} complex;
struct ComplexList *next;

} complexlist;
complexlist.complex.real = 0.0;

©2021 Ethan Blanton / CSE 220: Systems Programming 7

Introduction Structures Memory Layout Stride Dumping Memory Other Representations Summary References

Structure Pointers

The . operator is cumbersome for structure pointers:
struct IntList *list = malloc(sizeof(struct IntList));
(*list).next = NULL;

The -> operator is syntactic sugar for (*).:
list ->next = NULL;

The -> operator can be used to access any member of a
structure via a pointer to the structure type.

©2021 Ethan Blanton / CSE 220: Systems Programming 8

Introduction Structures Memory Layout Stride Dumping Memory Other Representations Summary References

Operations on Structures

A structure value:
Can have its address taken with &
Can be copied with =
Can be used to access a member with .

A structure pointer:
Can do all the things any pointer can do
Can be used to access a member with ->

No other operations on structures are legal!

©2021 Ethan Blanton / CSE 220: Systems Programming 9

Introduction Structures Memory Layout Stride Dumping Memory Other Representations Summary References

Alignment
We have previously discussed words.

Recall that:
The memory bus has a certain width
Memory transfers data in words

Most systems can only access words in memory on addresses
divisible by the word size.

Often the address of a value must be evenly divisible by the size
of its type.
Thus, if an int is 32 bits, its address is divisible by 4.
(32 bits / 8 bits per byte = 4 bytes, addressed in bytes)

©2021 Ethan Blanton / CSE 220: Systems Programming 10

Introduction Structures Memory Layout Stride Dumping Memory Other Representations Summary References

Scalar Layout

Scalar values must typically be aligned to their size.

Alignment rules vary between architectures.

Some platforms can still access unaligned scalars.

Some platforms will raise a hardware error for unaligned access.

Most platforms suffer a performance penalty for unaligned
access.

©2021 Ethan Blanton / CSE 220: Systems Programming 11

Introduction Structures Memory Layout Stride Dumping Memory Other Representations Summary References

Array Layout

The first element of an array of scalars is typically aligned to the
size of an array element.

This aligns all items in the array.

For other types of arrays, things can get more complicated.

To understand alignment of aggregate types, we must
understand structure layout.

©2021 Ethan Blanton / CSE 220: Systems Programming 12

Introduction Structures Memory Layout Stride Dumping Memory Other Representations Summary References

Structure Layout

The members of a structure are adjacent in memory.

This is similar to scalars in an array.

However, there are additional considerations regarding layout.

The alignment of array members must be preserved!

Padding is inserted between values to bring them into alignment.

Padding is unused memory and you cannot assume its value.

©2021 Ethan Blanton / CSE 220: Systems Programming 13

Introduction Structures Memory Layout Stride Dumping Memory Other Representations Summary References

Simple Layout

In the simple case, members
are adjacent.
Every member is laid out in
order.
struct ComplexFloat {

float real;
float imaginary;

};

real0x0
imaginary0x4

©2021 Ethan Blanton / CSE 220: Systems Programming 14

Introduction Structures Memory Layout Stride Dumping Memory Other Representations Summary References

Struct Padding

In a structure, padding is
applied between values.
struct IntList {

int value;
struct IntList *next;

};
This struct is 16 bytes and
contains 4 bytes of padding.

value0x0
padding0x4
next0x8

©2021 Ethan Blanton / CSE 220: Systems Programming 15

Introduction Structures Memory Layout Stride Dumping Memory Other Representations Summary References

Struct Alignment
For padding in structures to work, the struct must be aligned.

Consider the previous example:
If the address of the struct is divisible by 4, value is aligned,
but next might not be
If the address of the struct is divisible by 8, both are aligned

The struct itself is ordinarily aligned to the requirements of its
largest member.

value0x0
padding0x4
next0x8

©2021 Ethan Blanton / CSE 220: Systems Programming 16

Introduction Structures Memory Layout Stride Dumping Memory Other Representations Summary References

Alignment and Allocation

Recall that the standard allocator doesn’t know what you’re
allocating.

For this reason, malloc() et al. normally align to the largest
system requirement.

This ensures that any properly aligned structure will be aligned.

This leads to overhead which can cause significant waste.

We’ll see much more about this later.

©2021 Ethan Blanton / CSE 220: Systems Programming 17

Introduction Structures Memory Layout Stride Dumping Memory Other Representations Summary References

Stride
Stride is closely related to alignment, yet different.

Stride is the difference between two pointers to adjacent values
of a particular type.

For simple types, stride is the same as size.

For example:
int is 32 b, sizeof(int) is 4, stride of int * is 4.
double 64 b, sizeof(double) is 8, stride of double * is 8.

For aggregate types, this can get more complicated.

void * is a special case, and its stride is 1.
©2021 Ethan Blanton / CSE 220: Systems Programming 18

Introduction Structures Memory Layout Stride Dumping Memory Other Representations Summary References

Stride in Aggregate Types
Consider this struct:
struct IntList {

struct IntList *next;
int value;

};

It lays out in memory like this:

next0x0

value0x8
padding

Padding here is to adjust stride to preserve alignment.
©2021 Ethan Blanton / CSE 220: Systems Programming 19

Introduction Structures Memory Layout Stride Dumping Memory Other Representations Summary References

Pointer Arithmetic

Pointers are integer types, and can be computed.

Pointer arithmetic operates in stride-sized chunks.
(This is why pointers can dereference like arrays!)

double *dptr = &somedouble;

If the value of dptr were 0, dptr + 1 would be eight, not one!
This is because a double is 8 bytes wide.

©2021 Ethan Blanton / CSE 220: Systems Programming 20

Introduction Structures Memory Layout Stride Dumping Memory Other Representations Summary References

Pointer Arithmetic — Aggregate Types

Stride for aggregate types can be quite large.

Consider:
struct Big {

char array [256];
};
struct Big *b = NULL;

In this case, b + 1 is the address 256!

©2021 Ethan Blanton / CSE 220: Systems Programming 21

Introduction Structures Memory Layout Stride Dumping Memory Other Representations Summary References

Dumping Memory
#include <stdio.h>

void dump_mem(const void *mem , size_t len) {
const char *buffer = mem; // Cast to char *
size_t i;

for (i = 0; i < len; i++) {
if (i > 0 && i % 8 == 0) { putchar('\n'); }

printf("%02x ", buffer[i] & 0xff);
}

}

©2021 Ethan Blanton / CSE 220: Systems Programming 22

Introduction Structures Memory Layout Stride Dumping Memory Other Representations Summary References

dump_mem Details

What is this for?
const char *buffer = mem;

It tells the compiler “we’re going to use mem as an array of bytes”.

What about this:
if (i > 0 && i % 8 == 0){ putchar('\n'); }
It prints a newline after every 8th byte excepting the first.

Finally:
buffer[i] & 0xff
This is necessary to avoid sign extension.

©2021 Ethan Blanton / CSE 220: Systems Programming 23

Introduction Structures Memory Layout Stride Dumping Memory Other Representations Summary References

dump_mem Details

What is this for?
const char *buffer = mem;
It tells the compiler “we’re going to use mem as an array of bytes”.

What about this:
if (i > 0 && i % 8 == 0){ putchar('\n'); }
It prints a newline after every 8th byte excepting the first.

Finally:
buffer[i] & 0xff
This is necessary to avoid sign extension.

©2021 Ethan Blanton / CSE 220: Systems Programming 24

Introduction Structures Memory Layout Stride Dumping Memory Other Representations Summary References

dump_mem Details

What is this for?
const char *buffer = mem;
It tells the compiler “we’re going to use mem as an array of bytes”.

What about this:
if (i > 0 && i % 8 == 0){ putchar('\n'); }

It prints a newline after every 8th byte excepting the first.

Finally:
buffer[i] & 0xff
This is necessary to avoid sign extension.

©2021 Ethan Blanton / CSE 220: Systems Programming 25

Introduction Structures Memory Layout Stride Dumping Memory Other Representations Summary References

dump_mem Details

What is this for?
const char *buffer = mem;
It tells the compiler “we’re going to use mem as an array of bytes”.

What about this:
if (i > 0 && i % 8 == 0){ putchar('\n'); }
It prints a newline after every 8th byte excepting the first.

Finally:
buffer[i] & 0xff
This is necessary to avoid sign extension.

©2021 Ethan Blanton / CSE 220: Systems Programming 26

Introduction Structures Memory Layout Stride Dumping Memory Other Representations Summary References

dump_mem Details

What is this for?
const char *buffer = mem;
It tells the compiler “we’re going to use mem as an array of bytes”.

What about this:
if (i > 0 && i % 8 == 0){ putchar('\n'); }
It prints a newline after every 8th byte excepting the first.

Finally:
buffer[i] & 0xff

This is necessary to avoid sign extension.

©2021 Ethan Blanton / CSE 220: Systems Programming 27

Introduction Structures Memory Layout Stride Dumping Memory Other Representations Summary References

dump_mem Details

What is this for?
const char *buffer = mem;
It tells the compiler “we’re going to use mem as an array of bytes”.

What about this:
if (i > 0 && i % 8 == 0){ putchar('\n'); }
It prints a newline after every 8th byte excepting the first.

Finally:
buffer[i] & 0xff
This is necessary to avoid sign extension.

©2021 Ethan Blanton / CSE 220: Systems Programming 28

Introduction Structures Memory Layout Stride Dumping Memory Other Representations Summary References

Inconvenient Representation
Pointers to void * can be used to store and interpret
representations that are inconveniently represented in C.

Consider the following structure:
struct Inconvenient {

int fourbytes;
long eightbytes;

} inconvenient;

This structure contains 12 bytes of data, but occupies 16 bytes.
(Because of padding…)

To communicate this structure we wish to send only 12 bytes.
©2021 Ethan Blanton / CSE 220: Systems Programming 29

Introduction Structures Memory Layout Stride Dumping Memory Other Representations Summary References

Serialization
Communicating such data is often done via serialization.

Serialization is the storage of data into a byte sequence.

In C, we do this with pointers, and often void pointers.

Consider:
void *p = malloc (12);
*(int *)p = inconvenient.fourbytes;
*(long *)(p + sizeof(int)) = inconvenient.eightbytes;

This builds a 12-byte structure without padding.
(In the process, it violates alignment restrictions.)

©2021 Ethan Blanton / CSE 220: Systems Programming 30

Introduction Structures Memory Layout Stride Dumping Memory Other Representations Summary References

Flexible Sizes

Another use for void pointer representation is flexible sizes.

Consider a structure (not legal C):
struct Variable {

size_t nentries;
int entries[nentries];
char name []; /* name is NUL -terminated */

} variable;

This structure does not have a well-defined size.

Its size depends on nentries and the length of name!

©2021 Ethan Blanton / CSE 220: Systems Programming 31

Introduction Structures Memory Layout Stride Dumping Memory Other Representations Summary References

Packing the Data

We can serialize this data as follows:

size_t nentries = 3;
int entries [] = { 42, 31337 , 0x1701D };
const char *name = "Caleb Widogast";

void *buf = malloc(sizeof(size_t)
+ nentries * sizeof(int)
+ strlen(name) + 1);

void *cur = buf;

©2021 Ethan Blanton / CSE 220: Systems Programming 32

Introduction Structures Memory Layout Stride Dumping Memory Other Representations Summary References

Packing the Data

We can serialize this data as follows:

*(size_t *)cur = nentries;
cur += sizeof(size_t);
for (int i = 0; i < nentries; i++) {

*(int *)cur = entries[i];
cur += sizeof(int);

}

for (int i = 0; i <= strlen(name); i++) {
*(char *)cur++ = name[i];

}

©2021 Ethan Blanton / CSE 220: Systems Programming 33

Introduction Structures Memory Layout Stride Dumping Memory Other Representations Summary References

Packing the Data

We can serialize this data as follows:

size_t nentries = 3;
int entries [] = { 42, 31337 , 0x1701D };
const char *name = "Caleb Widogast";

03 00 00 00 00 00 00 00
2a 00 00 00 69 7a 00 00
1d 70 01 00 43 61 6c 65
62 20 57 69 64 6f 67 61
73 74 00

©2021 Ethan Blanton / CSE 220: Systems Programming 34

Introduction Structures Memory Layout Stride Dumping Memory Other Representations Summary References

Summary
Integers, pointers, and floating point numbers are scalar
types.
Arrays and structures are aggregate types.
Structures can contain members of mixed type.
Scalar types must be aligned.
Aggregate types must align for scalars.
Allocation normally aligns to the largest type.
Pointer arithmetic uses stride in computations.
void * has a stride of 1.
The void * type can be used for raw memory manipulation
Casting void * to another type is convenient
Math on void * is by byte

©2021 Ethan Blanton / CSE 220: Systems Programming 35

Introduction Structures Memory Layout Stride Dumping Memory Other Representations Summary References

References I
Required Readings

[1] Randal E. Bryant and David R. O’Hallaron. Computer Science: A Programmer’s
Perspective. Third Edition. Chapter 3: 3.8.1, 3.8.2, 3.9.1, 3.9.3. Pearson, 2016.

[2] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. Second
Edition. Chapter 5: Intro, 5.1-5.7; Chapter 6: Intro, 6.1-6.7. Prentice Hall, 1988.

©2021 Ethan Blanton / CSE 220: Systems Programming 36

Introduction Structures Memory Layout Stride Dumping Memory Other Representations Summary References

License

Copyright 2019, 2020, 2021 Ethan Blanton, All Rights Reserved.
Copyright 2019 Karthik Dantu, All Rights Reserved.

Reproduction of this material without written consent of the
author is prohibited.

To retrieve a copy of this material, or related materials, see
https://www.cse.buffalo.edu/~eblanton/.

©2021 Ethan Blanton / CSE 220: Systems Programming 37

https://www.cse.buffalo.edu/~eblanton/

	Introduction
	Structures
	Memory Layout
	Stride
	Dumping Memory
	Other Representations
	Summary
	References

