
Processes, Threads, and Concurrency

CSE 220: Systems Programming

Ethan Blanton
Department of Computer Science and Engineering

University at Buffalo



Introduction Concurrency Processes Threads Summary References

Logical Control Flows

The text defines a logical control flow as:

[A] series of program counter values that [correspond] exclusively to
instructions contained in [a program’s] executable object file or in

shared objects linked to [it] dynamically at run time.

The system provides each program with the illusion that its
logical control flow runs on a dedicated computer.

©2021 Ethan Blanton / CSE 220: Systems Programming 2



Introduction Concurrency Processes Threads Summary References

Concurrency
Concurrency is when more than one logical control flow is
present in the system at the same time.

Concurrent flows are logical control flows whose execution
overlap in time.

Concurrent flows can be present even with only one processor.

Multiple flows can coexist on one processor via multitasking.

Multitasking time slices between multiple logical control flows.
Each flow runs for a brief period of time, then is interrupted
A context switch changes control to another flow
The new flow runs for a brief period of time (repeat)

©2021 Ethan Blanton / CSE 220: Systems Programming 3



Introduction Concurrency Processes Threads Summary References

The Process

Our fundamental logical control flow abstraction is the process.

A process encapsulates:
A set of instructions
The memory they use
The system resources they access
…

All process interactions other processes are through the OS.

This is due to the dedicated computer model.

©2021 Ethan Blanton / CSE 220: Systems Programming 4



Introduction Concurrency Processes Threads Summary References

Threads

Threads provide a conceptually similar abstraction to processes.

Threads also represent a logical control flow.

However:
One process may have multiple threads
Two threads within one process are much less isolated than
two processes, or threads in different processes

In particular, threads within a process share a memory map.

©2021 Ethan Blanton / CSE 220: Systems Programming 5



Introduction Concurrency Processes Threads Summary References

Multitasking and Multiprocessing

Multitasking Multiprocessing
A B C X Y Z

Ti
m
e

©2021 Ethan Blanton / CSE 220: Systems Programming 6



Introduction Concurrency Processes Threads Summary References

Multitasking
Concurrent flows in a multitasking environment do not execute
simultaneously.

However, from the point of view of any given flow, other flows
are making progress while it executes.

Consider:
Process A is executing at PC location L
A context switch occurs, removing A from the CPU and
switching to Process B
Process B does something
A context switch occurs, switching to Process A at location L

Process A will observe progress in Process B before and after L.
©2021 Ethan Blanton / CSE 220: Systems Programming 7



Introduction Concurrency Processes Threads Summary References

Multiprocessing

Concurrent flows in a multiprocessing environment may execute
simultaneously.

Even with multiprocessing, multitasking may also be used.

This is typical for modern systems.

The operating system provides the illusion of a dedicated
machine even to processes running simultaneously.

©2021 Ethan Blanton / CSE 220: Systems Programming 8



Introduction Concurrency Processes Threads Summary References

Concurrency and Separation
Concurrent flows may be related or unrelated in:

Design
Implementation
Memory space
Resource requirements
Timing requirements
…

When concurrent flows are completely unrelated, the dedicated
computer abstraction provided by modern systems is both
mostly complete and very appropriate.

When they are more related, it gets more complicated.
©2021 Ethan Blanton / CSE 220: Systems Programming 9



Introduction Concurrency Processes Threads Summary References

Motivation for Concurrency

There are many reasons to use concurrent flows:
Making computational progress while blocked on a slow
device
Achieving rapid response to a particular condition (e.g.,
human input, external event)
Utilizing multiple physical processors
…

In addition, simply taking advantage of the dedicated computer
model to simplify design and implementation.

©2021 Ethan Blanton / CSE 220: Systems Programming 10



Introduction Concurrency Processes Threads Summary References

Processes

We have already seen process-level concurrency.

(Consider the chat client and server!)

Multiple processes may:
Proceed independently on unrelated tasks
Proceed independently on related tasks
Cooperate on tasks

©2021 Ethan Blanton / CSE 220: Systems Programming 11



Introduction Concurrency Processes Threads Summary References

Independent, Unrelated Tasks

Independent, unrelated tasks are things like:

Your windowing environment versus a terminal session
A code editor and a music player

These tasks need not be aware of each other, and fit the
dedicated computer model very nicely.

©2021 Ethan Blanton / CSE 220: Systems Programming 12



Introduction Concurrency Processes Threads Summary References

Independent, Related Tasks

Independent, related tasks might be:
Make and the compiler
Your chat client and the chat server
A shell pipeline

These are programs that may or may not have been designed
together, but are doing related work within the dedicated
computer model.

©2021 Ethan Blanton / CSE 220: Systems Programming 13



Introduction Concurrency Processes Threads Summary References

Cooperating Tasks

Cooperating tasks could be:
The individual tabs in a Chrome instance

These processes work closely together and may use the
dedicated computer model for isolation, but are aware of each
other.

©2021 Ethan Blanton / CSE 220: Systems Programming 14



Introduction Concurrency Processes Threads Summary References

Designing for Multiple Processes

A multi-process design can be robust and reliable.

The isolation in memory and resources provided by the system
protects processes from certain faults in their neighbors.

Communication and cooperation can be expensive, though:
Separate memory spaces protect, but also divide
Many inter-process communication (IPC) mechanisms
require interaction with the OS, which is slow

©2021 Ethan Blanton / CSE 220: Systems Programming 15



Introduction Concurrency Processes Threads Summary References

Threads

Thread are like processes that share almost everything.

They:
Share memory
Share system resources (such as open files)
Run the same executable code
…

Switching between threads is often less expensive than
processes in a multitasking system.

©2021 Ethan Blanton / CSE 220: Systems Programming 16



Introduction Concurrency Processes Threads Summary References

Threads vs. Processes

P1
Kernel

Heap
BSS
Data

Stack

P2
Kernel

Heap
BSS
Data

Stack

Processes
P3

Kernel

Heap
BSS
Data

T1 Stack

T2 Stack

Threads

©2021 Ethan Blanton / CSE 220: Systems Programming 17



Introduction Concurrency Processes Threads Summary References

Threading Advantages

Threads are much cheaper than processes:
They share memory maps
They share permissions and operating system resources
Context switches between two threads in the same process
are much less involved than between processes

Inter-thread communication is trivial, due to shared memory.

©2021 Ethan Blanton / CSE 220: Systems Programming 18



Introduction Concurrency Processes Threads Summary References

Threading Disadvantages

Concurrent access to shared resources is very tricky.

Many established APIs are not thread-safe.
(Over the next few lectures, think about a thread-safe malloc()!)

Breaking down the dedicated computer model makes reasoning
about process behavior harder.

©2021 Ethan Blanton / CSE 220: Systems Programming 19



Introduction Concurrency Processes Threads Summary References

Threading Use Cases

Threading is often appropriate for tasks which require:
Very rapid change of control between parallel tasks
Lots of large, shared data structures
Blocking operations that do not inhibit other progress
More rapid computation than can be performed on a single
CPU

Multiple processes may also solve some of these problems.

The costs of threading must be weighed against its advantages
on a case-by-case basis.

©2021 Ethan Blanton / CSE 220: Systems Programming 20



Introduction Concurrency Processes Threads Summary References

Summary

Logical control flows are execution steps through programs.
Concurrency is multiple logical control flows at one time.
Multiprocessing versus Multitasking
Processes versus Threads

©2021 Ethan Blanton / CSE 220: Systems Programming 21



Introduction Concurrency Processes Threads Summary References

Next Time …

Races and Synchronization

©2021 Ethan Blanton / CSE 220: Systems Programming 22



Introduction Concurrency Processes Threads Summary References

References I
Required Readings

[1] Randal E. Bryant and David R. O’Hallaron. Computer Science: A Programmer’s
Perspective. Third Edition. Chapter 8: 8.2; Chapter 12: Intro, 12.1, 12.3. Pearson, 2016.

©2021 Ethan Blanton / CSE 220: Systems Programming 23



Introduction Concurrency Processes Threads Summary References

License

Copyright 2019, 2020, 2021 Ethan Blanton, All Rights Reserved.
Copyright 2019 Karthik Dantu, All Rights Reserved.

Reproduction of this material without written consent of the
author is prohibited.

To retrieve a copy of this material, or related materials, see
https://www.cse.buffalo.edu/~eblanton/.

©2021 Ethan Blanton / CSE 220: Systems Programming 24

https://www.cse.buffalo.edu/~eblanton/

	Introduction
	Concurrency
	Processes
	Threads
	Summary
	References

