
A Tour of Computer Systems

CSE 220: Systems Programming

Ethan Blanton
Department of Computer Science and Engineering

University at Buffalo



Introduction Architectural Details Details Matter The Computer Summary References

Concept versus Implementation

The C language and POSIX are implementations of systems.

There are many possible implementations.

Certain conceptual considerations are presented by underlying
architecture.

We will look at some of those concepts.

©2021 Ethan Blanton / CSE 220: Systems Programming 2



Introduction Architectural Details Details Matter The Computer Summary References

Understanding How Things Work
“Why do I need to know this stuff?”

Abstraction is good, but don’t forget reality!

Most CS courses emphasize abstraction
Abstract data types
Asymptotic analysis

These abstractions have limits
Sometimes you need to understand the underlying
implementation
Sometimes the abstract interfaces are not as flexible or
performant as you need
Sometimes there are bugs

©2021 Ethan Blanton / CSE 220: Systems Programming 3



Introduction Architectural Details Details Matter The Computer Summary References

Time Management

Make progress by setting a timer.

Set a timer for 15 minutes. When it expires:
Are you still working?

If not, why not? Fix the problem!
Are you making progress?

If not, why not? Fix the problem!

Time spent is different from results achieved.

©2021 Ethan Blanton / CSE 220: Systems Programming 4



Introduction Architectural Details Details Matter The Computer Summary References

Numeric Representations
ints are not integers, floats are not real numbers!

Example 1: Is x2 ≥ 0?
float: yes!
int: well …

40000 * 40000 → 1600000000
50000 * 50000 → ???

Example 2: Is (x+ y) + z = x+ (y+ z)?
int: yes!
float:

(1e20 + -1e20)+ 3.14 → 3.14
1e20 + (-1e20 + 3.14) → ???

©2021 Ethan Blanton / CSE 220: Systems Programming 5



Introduction Architectural Details Details Matter The Computer Summary References

Computer Arithmetic
Computer operations do have mathematical properties.

However, you cannot assume all usual mathematical properties!
Finite representations cause various effects
Integer operations satisfy ring properties:

Commutativity, associativity, distributivity
Floating point operations satisfy ordering properties:

Monotonicity, sign values

You must understand which abstractions apply where.

These are important issues for compiler writers, systems
programmers, serious application programmers.

©2021 Ethan Blanton / CSE 220: Systems Programming 6



Introduction Architectural Details Details Matter The Computer Summary References

Assembly Language

You need to know assembly.
You’ll see it next in CSE 341!

You’ll probably never write programs in assembly.
(Compilers are better at it and much more patient than you are!)

Understanding assembly is key to understanding the machine.

©2021 Ethan Blanton / CSE 220: Systems Programming 7



Introduction Architectural Details Details Matter The Computer Summary References

Where Will I Use Assembly?
Understanding the behavior of programs in the presence of bugs

High-level language models break down

Tuning program performance
Understand optimizations the compiler can and cannot do
Understand sources of program inefficiency

Implementing system software
Compilers target assembly
Operating systems manage hardware state

Creating and fighting malware
Most malware is in x86 assembly!

©2021 Ethan Blanton / CSE 220: Systems Programming 8



Introduction Architectural Details Details Matter The Computer Summary References

Memory Management and Layout
Memory matters.

Memory is not unbounded!
It must be allocated and managed
Many applications are memory-dominated

Memory referencing bugs are especially pernicious
Their effects may be distant in both time and space

Memory performance is not uniform
Cache and virtual memory effects can affect program
performance
Adapting programs to the memory system can have major
speed implications

©2021 Ethan Blanton / CSE 220: Systems Programming 9



Introduction Architectural Details Details Matter The Computer Summary References

Why Memory Performance Matters

void copyij(int src [2048][2048] ,
int dst [2048][2048]) {

for (int i = 0; i < 2048; i++) {
for (int j = 0; j < 2048; j++) {

dst[i][j] = src[i][j];
}

}
}

3.8 ms

void copyji(int src [2048][2048] ,
int dst [2048][2048]) {

for (int j = 0; j < 2048; j++) {
for (int i = 0; i < 2048; i++) {

dst[i][j] = src[i][j];
}

}
}

72.2 ms

All that changed is the order of the loops!

©2021 Ethan Blanton / CSE 220: Systems Programming 10



Introduction Architectural Details Details Matter The Computer Summary References

Therac-25
An infamous accident in software engineering: Therac-25

https://medium.com/swlh/software-architecture-therac-25-the-killer-radiation-machine-8a05e0705d5b

People died.
Arithmetic bugs were involved.
Poorly understood copied code was involved.
(Stack Overflow kills!)

©2021 Ethan Blanton / CSE 220: Systems Programming 11

https://medium.com/swlh/software-architecture-therac-25-the-killer-radiation-machine-8a05e0705d5b


Introduction Architectural Details Details Matter The Computer Summary References

Toyota Acceleration
Some Toyota vehicles experienced unintended acceleration in
the late 2000s.

Toyota was fined 1.2 billion dollars
~9 million vehicles were recalled

Expert analysis identified:
Memory corruption from software bugs
Copied code (“Stack overflow …bugs led to memory
corruption”)

From material Copyright Phil Koopman, CC-BY-4.0
https://users.ece.cmu.edu/~koopman/pubs/koopman14_toyota_ua_slides.pdf

©2021 Ethan Blanton / CSE 220: Systems Programming 12

https://users.ece.cmu.edu/~koopman/pubs/koopman14_toyota_ua_slides.pdf


Introduction Architectural Details Details Matter The Computer Summary References

Mars Pathfinder

The Pathfinder Mars rover frequently
stopped responding.

The problem was system scheduling
Low-level debugging identified the issue
Testing could have identified the
problem on the ground

(Credit: NASA)

https://www.rapitasystems.com/blog/what-really-happened-to-the-software-on-the-mars-pathfinder-spacecraft

©2021 Ethan Blanton / CSE 220: Systems Programming 13

https://www.rapitasystems.com/blog/what-really-happened-to-the-software-on-the-mars-pathfinder-spacecraft 


Introduction Architectural Details Details Matter The Computer Summary References

A Bit About Architecture

CPU
Main

memory

Peripherals

System
Bus

I/O (North)
Bridge

I/O (South)
Bridge

Memory
Bus

I/O
Bus

©2021 Ethan Blanton / CSE 220: Systems Programming 14



Introduction Architectural Details Details Matter The Computer Summary References

Buses

A bus has a width, which is literally the number of wires it has. ¶

(This is a little less clear on a serial bus, where the width is a
protocol convention.)

Each wire transmits one bit per transfer.

Every bus transfer is of that width, though some bits may be
ignored.

Therefore, memory has a word size from the view of the CPU:
the number of wires on that bus.

©2021 Ethan Blanton / CSE 220: Systems Programming 15



Introduction Architectural Details Details Matter The Computer Summary References

A Modern CPU

CPU

I/O (North)
Bridge

Bus
Interface

L1
cache

Register

file
ALU

L2
cache

©2021 Ethan Blanton / CSE 220: Systems Programming 16



Introduction Architectural Details Details Matter The Computer Summary References

CPU Properties
Both internal and external busses have fixed widths.

A small number of storage locations called registers:
Have very fast access time ¶

Have a fixed width
Are fixed in number

The ALU performs computation.
It may be able to access only registers
It may be able to access memory
It may have arbitrary restrictions

©2021 Ethan Blanton / CSE 220: Systems Programming 17



Introduction Architectural Details Details Matter The Computer Summary References

CPU ↔ Memory Transfer
The CPU fetches data from memory in words the width of the
memory bus.

It places those words in registers the width of a cpu word.
This register width is the native integer size.1

These word widths may or may not be the same.

If they’re not, a transfer may require:
multiple registers, or
multiple memory transfers.

1Some CPUs (including x86-64) can manipulate more than one size of
integer in a single register.

©2021 Ethan Blanton / CSE 220: Systems Programming 18



Introduction Architectural Details Details Matter The Computer Summary References

Imposing Structure on Memory
That said, programming languages expose things like:

Booleans
classes
strings
structures

How is that?

We impose meaning on words in memory by convention.

E.g., as we saw before, a C string is a sequence of bytes that
happen to be adjacent in memory.

©2021 Ethan Blanton / CSE 220: Systems Programming 19



Introduction Architectural Details Details Matter The Computer Summary References

Summary

Architectural details matter
Bus widths
Numeric properties
Performance details

C and POSIX are just one possible system
All systems have those details
Software correctness can be critically important

©2021 Ethan Blanton / CSE 220: Systems Programming 20



Introduction Architectural Details Details Matter The Computer Summary References

Next Time …

Memory allocation
The program heap

©2021 Ethan Blanton / CSE 220: Systems Programming 21



Introduction Architectural Details Details Matter The Computer Summary References

References I
Required Readings

[1] Randal E. Bryant and David R. O’Hallaron. Computer Science: A Programmer’s
Perspective. Third Edition. Chapter 1: Intro, 1.1–1.7. Pearson, 2016.

©2021 Ethan Blanton / CSE 220: Systems Programming 22



Introduction Architectural Details Details Matter The Computer Summary References

License

Copyright 2020, 2021 Ethan Blanton, All Rights Reserved.
Copyright 2019 Karthik Dantu, All Rights Reserved.

These slides use material from the CMU 15-213: Intro to
Computer Systems lecture notes provided to instructors using
CS:APP3e.

Reproduction of this material without written consent of the
author is prohibited.

To retrieve a copy of this material, or related materials, see
https://www.cse.buffalo.edu/~eblanton/.

©2021 Ethan Blanton / CSE 220: Systems Programming 23

https://www.cse.buffalo.edu/~eblanton/

	Introduction
	Architectural Details
	Details Matter
	The Computer
	Summary
	References

