
Conditionals and Control Flow

CSE 220: Systems Programming

Ethan Blanton
Department of Computer Science and Engineering

University at Buffalo

Introduction Asides Boolean Logic Control Flow Summary References

Conditionals in C

Truth in C is simple but possibly non-intuitive:
Bit-wise 0 is false
anything else is true

However, boolean expressions and true and false are less
unpredictable:

true and true results are exactly 1
false and false results are exactly 0

©2022 Ethan Blanton / CSE 220: Systems Programming 2

Introduction Asides Boolean Logic Control Flow Summary References

Control Flow

We have discussed only the for loop in C.

Required readings in K&R have covered other control flow.

We will look at if and its implementation.

There are other control flow statements (discussed in K&R), but
they behave similarly.

©2022 Ethan Blanton / CSE 220: Systems Programming 3

Introduction Asides Boolean Logic Control Flow Summary References

Time Management
Keep a TODO!

Don’t lose time to “what do I do next?”
Don’t miss deadlines

For every course:
10-15 minutes every week for TODO management
Make a list of 5-7 items you can just do
If the list gets short, curate it!

Example items:
Good: Read Chapter 5 through 5.4
Good: PA1: Check command line arguments for validity
Bad: PA1

©2022 Ethan Blanton / CSE 220: Systems Programming 4

Introduction Asides Boolean Logic Control Flow Summary References

Administrivia

If you haven’t completed the following, you are behind:

Lab 01
AI Quiz
K&R up to and including 2.4

Impostor Syndrome is real!

If you already knew all of this, we wouldn’t make you take it.

©2022 Ethan Blanton / CSE 220: Systems Programming 5

Introduction Asides Boolean Logic Control Flow Summary References

Boolean Operators

C uses the following Boolean operators:
!: Logical not; inverts the following expression
&&: Logical and; true iff the LHS and RHS are both true
||: Logical or; true if either the RHS or LHS is true

Do not confuse these with the similarly-named bitwise operators!
(We will discuss those later.)

©2022 Ethan Blanton / CSE 220: Systems Programming 6

Introduction Asides Boolean Logic Control Flow Summary References

Boolean Logic in C

C uses short circuit evaluation for Boolean logic.

This means that evaluation of a Boolean sentence stops
as soon as its final truth value is known.

For example:
x && y

If x is false, then this sentence is false.

In that case, y will never be evaluated.

©2022 Ethan Blanton / CSE 220: Systems Programming 7

Introduction Asides Boolean Logic Control Flow Summary References

Short Circuit Consequences

The consequences of short-circuit evaluation can be surprising.

If terms in the sentence have side effects, those side effects
may not run.

This can be very useful, but also surprising!
if (i < len && array[i] == SOMEVAL) {

/* Useful! If array[i] is past the end of the
array , the illegal access never happens. */

}

©2022 Ethan Blanton / CSE 220: Systems Programming 8

Introduction Asides Boolean Logic Control Flow Summary References

Equality Operators

There are two equality operators:
==: Compares value equality, returns true if equal
!=: Compares value equality, returns false if equal

Note that these operators compare values, not logical truth!

In particular, note that many values are “true”, but true is 1!

This means that two logically true values may compare unequal.

©2022 Ethan Blanton / CSE 220: Systems Programming 9

Introduction Asides Boolean Logic Control Flow Summary References

Truthiness
bool x = true;
int y = 2;

if (x)
printf("x is true\n");

if (y)
printf("y is true\n");

if (x == y)
printf("x and y are equal\n");

Output:
x is true
y is true

©2022 Ethan Blanton / CSE 220: Systems Programming 10

Introduction Asides Boolean Logic Control Flow Summary References

Truthiness
bool x = true;
int y = 2;

if (x)
printf("x is true\n");

if (y)
printf("y is true\n");

if (x == y)
printf("x and y are equal\n");

Output:
x is true
y is true

©2022 Ethan Blanton / CSE 220: Systems Programming 11

Introduction Asides Boolean Logic Control Flow Summary References

stdbool
The header #include <stdbool.h> defines some useful things.

The type bool, which holds only 0 or 1
The values true and false

Before C99, these things didn’t exist in the standard, but were
widely defined in programs.

Therefore they were standardized to require a header.
bool b = 2;
printf("%d\n", b);

Output:
1

©2022 Ethan Blanton / CSE 220: Systems Programming 12

Introduction Asides Boolean Logic Control Flow Summary References

Control Flow

Control flow is the path that execution takes through a program.

The C model is linear flow by default.

Control flow statements can change the order of execution.

This is how our programs make decisions.

We will examine how this flow is achieved.

©2022 Ethan Blanton / CSE 220: Systems Programming 13

Introduction Asides Boolean Logic Control Flow Summary References

The if Statement

The simplest control statement in C is if.

Its syntax is:
if (condition) {

body;
}

If the expression condition evaluates to any true value, body
runs.
Otherwise, body is skipped.

©2022 Ethan Blanton / CSE 220: Systems Programming 14

Introduction Asides Boolean Logic Control Flow Summary References

Implementing if

The if statement must be compiled to machine instructions.

Those machine instructions must encode the condition check
and jump.

This is normally implemented as a conditional branch instruction.

You don’t have to learn assembly for this course, but we will look
at some machine instruction concepts.

©2022 Ethan Blanton / CSE 220: Systems Programming 15

Introduction Asides Boolean Logic Control Flow Summary References

A Simple Condition — C

int main(int argc , char *argv [])
{

if (argc == 2 && argv [1][0] == '-') {
puts("negative");

}
return 0;

}

©2022 Ethan Blanton / CSE 220: Systems Programming 16

Introduction Asides Boolean Logic Control Flow Summary References

A Simple Condition — Assembly

cmpl $2, %edi ; compare argc to 2
je .L8 ; jump to .L8 if ==

.L4:
xorl %eax , %eax ; set up return value
ret ; return 0

.L8:
movq 8(%rsi), %rax ; load argv [2][0] into %rax
cmpb $45 , (%rax) ; compare %rax to 45 ('-')
jne .L4 ; jump to .L4 if !=
leaq .LC0(%rip), %rdi; load "negative" into %rdi
subq $8, %rsp ; make room on stack
call puts@PLT ; call puts(" negative ")

; another return 0 goes here
©2022 Ethan Blanton / CSE 220: Systems Programming 17

Introduction Asides Boolean Logic Control Flow Summary References

Conditional Instruction Flow

Note that the structure of the program was lost.

One of the advantages of high-level languages is structure.

The computer can generally only: ¶

Make simple comparisons (sometimes only to zero!)
Jump to a program location

Anything more complicated is a software construction.

©2022 Ethan Blanton / CSE 220: Systems Programming 18

Introduction Asides Boolean Logic Control Flow Summary References

The else Clause

The else clause is simply either:

The next instruction after a jump
The jump destination (with the if body being the next
instruction)

Which layout the compiler uses depends on the code and
architecture.

©2022 Ethan Blanton / CSE 220: Systems Programming 19

Introduction Asides Boolean Logic Control Flow Summary References

else Gotchas

I strongly advocate always using blocks.
Here is a place where it really matters:

if (modify_x)
if (negate)

x = x * -1;
else

y = -x;

©2022 Ethan Blanton / CSE 220: Systems Programming 20

Introduction Asides Boolean Logic Control Flow Summary References

else Gotchas

I strongly advocate always using blocks.
What this actually means is:

if (modify_x)
if (negate)

x = x * -1;
else

y = -x;

©2022 Ethan Blanton / CSE 220: Systems Programming 21

Introduction Asides Boolean Logic Control Flow Summary References

else Gotchas

I strongly advocate always using blocks.
What you should use is:

if (modify_x) {
if (negate) {

x = x * -1;
}

} else {
y = -x;

}

©2022 Ethan Blanton / CSE 220: Systems Programming 22

Introduction Asides Boolean Logic Control Flow Summary References

Summary

All nonzero values are true conditions in C.
All Boolean expressions use 1 for true.
The bool keyword holds only 0 or 1.
C uses short-circuit evaluation of Boolean logic.
Control flow is implemented with comparisons and jumps.
Use blocks for if and else!

©2022 Ethan Blanton / CSE 220: Systems Programming 23

Introduction Asides Boolean Logic Control Flow Summary References

Next Time …

POSIX memory model
Pointer types
Process layout

©2022 Ethan Blanton / CSE 220: Systems Programming 24

Introduction Asides Boolean Logic Control Flow Summary References

References I
Required Readings

[1] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. Second
Edition. Chapter 2: 2.6; Chapter 3: Intro, 3.1–3.7. Prentice Hall, 1988.

©2022 Ethan Blanton / CSE 220: Systems Programming 25

Introduction Asides Boolean Logic Control Flow Summary References

License

Copyright 2020, 2021, 2022 Ethan Blanton, All Rights Reserved.
Copyright 2019 Karthik Dantu, All Rights Reserved.

Reproduction of this material without written consent of the
author is prohibited.

To retrieve a copy of this material, or related materials, see
https://www.cse.buffalo.edu/~eblanton/.

©2022 Ethan Blanton / CSE 220: Systems Programming 26

https://www.cse.buffalo.edu/~eblanton/

	Introduction
	Asides
	Boolean Logic
	Control Flow
	Summary
	References

