
Programming Practices

CSE 220: Systems Programming

Ethan Blanton & Carl Alphonce
Department of Computer Science and Engineering

University at Buffalo



Introduction Work Habits Program Design Tools Development Tactics Summary References

Effective Programming

The difference between a programmer and a good programmer
is large.

Some of that difference is talent and knowledge.

A lot of that difference is experience and practice.

There are practices you can adopt to become a better
programmer.

©2022 Ethan Blanton / CSE 220: Systems Programming 2



Introduction Work Habits Program Design Tools Development Tactics Summary References

Administrivia

Remember your lecture, lab, and handout quizzes
Remember to keep up with your readings
If you’re feeling behind, come get help!

©2022 Ethan Blanton / CSE 220: Systems Programming 3



Introduction Work Habits Program Design Tools Development Tactics Summary References

Work Habits

The advice in this section is mostly things you already know.

Start early
Work diligently
Comment and document
Write a second draft
Read and write

©2022 Ethan Blanton / CSE 220: Systems Programming 4



Introduction Work Habits Program Design Tools Development Tactics Summary References

Start Early

Start your programs early.

This is more than just time management.

Think about where and when you’ve had programming insights.

Shower?
Driving?
Walking?
Anywhere there’s no way you can type it in?

Your subconscious will work for you if you give it time.

©2022 Ethan Blanton / CSE 220: Systems Programming 5



Introduction Work Habits Program Design Tools Development Tactics Summary References

Comment and Document

Comment your code judiciously:
Include insightful comments
Avoid useless comments

Never do this:
i++; /* Increment i */

Document while you are writing the code.

This will help crystallize your ideas and identify logical errors.

©2022 Ethan Blanton / CSE 220: Systems Programming 6



Introduction Work Habits Program Design Tools Development Tactics Summary References

Write a Second Draft

Plan to throw one away; you will, anyhow.
— Fred Brooks, The Mythical Man Month

If you find that your approach is getting unwieldy:
Stop and consider what you’ve learned
Rewrite as necessary!

©2022 Ethan Blanton / CSE 220: Systems Programming 7



Introduction Work Habits Program Design Tools Development Tactics Summary References

Getting Started

Sometimes the hardest part is getting started.

Find something you know how to do, and do it.

Maybe you can:
Process program arguments
Perform a simple subcalculation
Define a data structure

Once the problem is started, it seems more tractable.

©2022 Ethan Blanton / CSE 220: Systems Programming 8



Introduction Work Habits Program Design Tools Development Tactics Summary References

Read and Write
Read documentation

Man pages
API specifications
Standards

Read Programming texts
There are several in the references

Write code
There is no substitute!

Write documentation
©2022 Ethan Blanton / CSE 220: Systems Programming 9



Introduction Work Habits Program Design Tools Development Tactics Summary References

Top Down and Bottom Up

For many projects, I recommend a twopass process:

Divide the task top down
Implement bottom up

©2022 Ethan Blanton / CSE 220: Systems Programming 10



Introduction Work Habits Program Design Tools Development Tactics Summary References

Top Down Design

Recursively apply the following steps:
Identify the problem to be solved
Determine what you need to solve it
Define a function/data structure/etc. to obtain what you need
Apply this method to each of those things

Try to identify common functionality among tasks while doing
this.

©2022 Ethan Blanton / CSE 220: Systems Programming 11



Introduction Work Habits Program Design Tools Development Tactics Summary References

Bottom Up Implementation

Recursively apply the following steps:
Identify subtasks you know how to solve
Solve them
Identify subtasks that can now be solved

You may need or want to refine your topdown design during this
phase!

©2022 Ethan Blanton / CSE 220: Systems Programming 12



Introduction Work Habits Program Design Tools Development Tactics Summary References

Managing Complexity

During development, you may find complexity growing.

You can manage this by:
Identifying routines that can be abstracted into functions
Defining and using constants
Creating data structures to simplify computation
Using standard library functions

©2022 Ethan Blanton / CSE 220: Systems Programming 13



Introduction Work Habits Program Design Tools Development Tactics Summary References

Tools

Using tools effectively is critical to efficient programming.

These tools might include:
Your editor
The compiler
Build system tools such as make
The debugger
Text or data processing tools

It’s worth taking extra time to learn your tools.
It will pay itself back!

©2022 Ethan Blanton / CSE 220: Systems Programming 14



Introduction Work Habits Program Design Tools Development Tactics Summary References

The Compiler

The compiler is very helpful in producing correct code.

Always compile with -Wall and maybe -Wextra.

Silence warnings.

Use functions instead of macros to get type checking.

Use the preprocessor for debugging.

©2022 Ethan Blanton / CSE 220: Systems Programming 15



Introduction Work Habits Program Design Tools Development Tactics Summary References

The Debugger

You don’t have time to not learn gdb.

Learn when to printf() and when to gdb.

Explore xxgdb, Emacs gdb mode, scripts, etc.

We will cover gdb in Lab 04.

©2022 Ethan Blanton / CSE 220: Systems Programming 16



Introduction Work Habits Program Design Tools Development Tactics Summary References

Your Editor
Find a good editor, and trust it.

If it thinks something is hinky, figure out why.

For example:
It wants to indent funny
It colors a variable name unexpectedly
It can’t find a completion
…

This may mean things like:
You’ve misplaced braces
You’re shadowing a system variable
etc.

©2022 Ethan Blanton / CSE 220: Systems Programming 17

https://www.gnu.org/software/emacs/


Introduction Work Habits Program Design Tools Development Tactics Summary References

Helper Functions
Use helper functions to:

Factor out repeated operations
Reduce the state in any given function
Provide debug assistance

Declare file local helper functions static.

Declare projectwide helper functions in header files.

Keep an eye out for refactoring opportunities:
Easy ways to handle more cases in the same function
More code that can be lifted into helpers
Different approaches that factor out larger blocks

©2022 Ethan Blanton / CSE 220: Systems Programming 18



Introduction Work Habits Program Design Tools Development Tactics Summary References

Types

Pay close attention to types!

Don’t fix type errors without understanding them!

Declare variables as the tightest type possible:
Prefer something * over void *
Prefer something[] over something *
Prefer int32_t over int
…

©2022 Ethan Blanton / CSE 220: Systems Programming 19



Introduction Work Habits Program Design Tools Development Tactics Summary References

Magic Values

Never use magic values!

Use named constants instead of integers or strings with
semantic meaning.
#define MESSAGE 2
#define LIVE 'X'

Once you have them, use them.
*(int *) packed = 2; // WHYYYYYYYYY ???????

©2022 Ethan Blanton / CSE 220: Systems Programming 20



Introduction Work Habits Program Design Tools Development Tactics Summary References

Format Your Code

Format your code precisely.

The style you pick is not as important as picking a style.

Badlyindented code should bother you.

Code formatting should help you spot logical errors.

©2022 Ethan Blanton / CSE 220: Systems Programming 21



Introduction Work Habits Program Design Tools Development Tactics Summary References

Invariants

Invariants are properties of a program that are always true, or
predictably true.

We often speak of loop invariants.

You should know and define invariants.

A professor once told me:

If you write a loop and you don’t know its invariant, it’s wrong.

©2022 Ethan Blanton / CSE 220: Systems Programming 22



Introduction Work Habits Program Design Tools Development Tactics Summary References

Violating Invariants

Invariants must often be violated temporarily.

If you violate an invariant, you must:
not invoke code that expects it to be maintained
Know when and where it will be restored
Ensure that it is restored on every code path

Example:
A doublylinked list’s prev and next pointers are inconsistent
during node insertion.

©2022 Ethan Blanton / CSE 220: Systems Programming 23



Introduction Work Habits Program Design Tools Development Tactics Summary References

Pre and PostConditions

Closely related to invariants.

Rules that must be maintained before and after an operation.
Loop
Function
I/O
etc.

Identify and document pre and postconditions in comments!

Verify conditions at run time!

©2022 Ethan Blanton / CSE 220: Systems Programming 24



Introduction Work Habits Program Design Tools Development Tactics Summary References

Make Purposeful Changes

Don’t just change code without forethought.

Make purposeful changes designed to address an issue.

It is better to take longer and understand the problem.

Programming by Brownian Motion is seldom successful.

Sometimes quick fixes cover up a problem without fixing!

©2022 Ethan Blanton / CSE 220: Systems Programming 25



Introduction Work Habits Program Design Tools Development Tactics Summary References

Summary

Cultivate good work habits
Design your programs purposefully
Use your tools!
Practice good style and form
Debug with a plan

The only way to become a good programmer is to write
programs.

©2022 Ethan Blanton / CSE 220: Systems Programming 26



Introduction Work Habits Program Design Tools Development Tactics Summary References

References I

Optional Readings

[1] Andrew Hunt and Dave Thomas. The Pragmatic Programmer: From Journeyman to
Master. AddisonWesley, 1999.

[2] Frederick P. Brooks Jr. The Mythical ManMonth: Essays on Software Engineering. 20th
Anniversary Edition. AddisonWesley, 1995.

[3] Brian W. Kernighan and Rob Pike. The Practice of Programming. AddisonWesley, 1999.

©2022 Ethan Blanton / CSE 220: Systems Programming 27



Introduction Work Habits Program Design Tools Development Tactics Summary References

License

Copyright 2019–2022 Ethan Blanton, All Rights Reserved.
Copyright 2022 Carl Alphonce, All Rights Reserved.
Copyright 2019 Karthik Dantu, All Rights Reserved.

Reproduction of this material without written consent of the
author is prohibited.

To retrieve a copy of this material, or related materials, see
https://www.cse.buffalo.edu/~eblanton/.

©2022 Ethan Blanton / CSE 220: Systems Programming 28

https://www.cse.buffalo.edu/~eblanton/

	Introduction
	Work Habits
	Program Design
	Tools
	Development Tactics
	Summary
	References

