
Memory Allocation

CSE 220: Systems Programming

Ethan Blanton & Carl Alphonce
Department of Computer Science and Engineering

University at Buffalo

Introduction The Heap Void Pointers The Standard Allocator Allocation Errors Summary References

Allocating Memory

We have seen how to use pointers to address:
An existing variable
An array element from a string or array constant

This lecture will discuss requesting memory from the system.

©2022 Ethan Blanton / CSE 220: Systems Programming 2

Introduction The Heap Void Pointers The Standard Allocator Allocation Errors Summary References

Memory Lifetime

All data we have seen so far have well­defined lifetime:

Persisting for the entire life of the program
Persisting for the duration of a single function call

Sometimes we need programmer­controlled lifetime.

For example:
Data created in one function, and destroyed in another
Data created during program execution, but lasts forever

©2022 Ethan Blanton / CSE 220: Systems Programming 3

Introduction The Heap Void Pointers The Standard Allocator Allocation Errors Summary References

Examples

int global; /* Lifetime of program */

void foo() {
int x; /* Lifetime of foo() */

}
Here, global is statically allocated:

It is allocated by the compiler
It is created when the program starts
It disappears when the program exits

©2022 Ethan Blanton / CSE 220: Systems Programming 4

Introduction The Heap Void Pointers The Standard Allocator Allocation Errors Summary References

Examples

int global; /* Lifetime of program */

void foo() {
int x; /* Lifetime of foo() */

}
Whereas x is automatically allocated:

It is allocated by the compiler
It is created when foo() is called¶
It disappears when foo() returns

©2022 Ethan Blanton / CSE 220: Systems Programming 5

Introduction The Heap Void Pointers The Standard Allocator Allocation Errors Summary References

Effective Questions

For programming questions, ask:
What did I do?
What did I expect to happen?
What actually happened?
How are they different?

You must know what you expected to identify the problem!

When asking us questions, tell us what you did, what you
expected, and what you got.

©2022 Ethan Blanton / CSE 220: Systems Programming 6

Introduction The Heap Void Pointers The Standard Allocator Allocation Errors Summary References

The Heap

The heap represents memory that is:
allocated and released at run time
managed explicitly by the programmer
only obtainable by address

Heap memory is just a range of bytes to C.

Memory from the heap is given a type by the programmer.

We will see much more about the heap later!

©2022 Ethan Blanton / CSE 220: Systems Programming 7

Introduction The Heap Void Pointers The Standard Allocator Allocation Errors Summary References

Heap Allocations

Each allocation from the heap is accessed via a pointer.

Each allocation has a fixed size.

This size is determined at allocation time.

Accesses outside of the allocation must not be made using the
allocated pointer!

©2022 Ethan Blanton / CSE 220: Systems Programming 8

Introduction The Heap Void Pointers The Standard Allocator Allocation Errors Summary References

Releasing Memory

Memory can be released back to the heap.

This memory can then be used for future heap allocations.

It can potentially (but often is not) be returned to the OS.

Memory that has been released must not be accessed again.

The C language will not detect accesses to released memory!

©2022 Ethan Blanton / CSE 220: Systems Programming 9

Introduction The Heap Void Pointers The Standard Allocator Allocation Errors Summary References

void *

The type void * is used to indicate a pointer of unknown type.

You may recall that void indicates a meaningless return value.

void * is treated specially by the C compiler and runtime:
A void * variable can store any pointer type
Type checks are mostly bypassed assigning to/from void *
Any attempt to dereference a void * pointer is an error

©2022 Ethan Blanton / CSE 220: Systems Programming 10

Introduction The Heap Void Pointers The Standard Allocator Allocation Errors Summary References

Pointer Assignments

Consider the following:
int i;
double d;
int *pi = &i;
double *pd = &d;
Each of these pointers is typed. These are errors:
pi = pd;
pd = pi;

©2022 Ethan Blanton / CSE 220: Systems Programming 11

Introduction The Heap Void Pointers The Standard Allocator Allocation Errors Summary References

Pointer Assignments

Consider the following:
int i;
double d;
int *pi = &i;
double *pd = &d;
This is where it gets dangerous:
void *p = pi;
pd = p;
This is perfectly legal.
(What does it mean?)

©2022 Ethan Blanton / CSE 220: Systems Programming 12

Introduction The Heap Void Pointers The Standard Allocator Allocation Errors Summary References

Aside: The sizeof operator

There are several operators used to help with reflection in C.

One of these is the sizeof operator.
It returns the size in bytes of its operand, which can be:

A variable
An expression that is “like” a variable
A type

(Expressions “like” a variable include, e.g., members of structures.)

©2022 Ethan Blanton / CSE 220: Systems Programming 13

Introduction The Heap Void Pointers The Standard Allocator Allocation Errors Summary References

Looking at sizeof
Examples:
void func(int matrix [2][3]) {

double dist;

sizeof(int); // yields 4
sizeof(dist); // yields 8
sizeof(matrix); // yields ... 8?

}

Note that sizeof arrays is not reliable.
Only arrays declared within the current scope will be correct.¶

We will discuss the sizes of things in more detail, later.
©2022 Ethan Blanton / CSE 220: Systems Programming 14

Introduction The Heap Void Pointers The Standard Allocator Allocation Errors Summary References

The Standard Allocator

The C library contains a standard allocator.
#include <stdlib.h>

void *malloc(size_t size);
void *calloc(size_t nmemb , size_t size);
void *realloc(void *ptr , size_t size);
void free(void *ptr);

These functions allow you to:
Request memory (malloc(), calloc(), realloc())
Release memory (free())

©2022 Ethan Blanton / CSE 220: Systems Programming 15

Introduction The Heap Void Pointers The Standard Allocator Allocation Errors Summary References

Allocating

The allocating functions request memory in slightly different
ways.
void *malloc(size_t size);
void *calloc(size_t nmemb , size_t size);
void *realloc(void *ptr , size_t size);

All three return a non­null void pointer on success.

All three return NULL on failure.

©2022 Ethan Blanton / CSE 220: Systems Programming 16

Introduction The Heap Void Pointers The Standard Allocator Allocation Errors Summary References

malloc()
void *malloc(size_t size);

Malloc returns a void * pointer, which can point to anything.

It allocates at least size bytes.

size is often the result of a sizeof() expression.

To allocate an integer:
Determine the size of an int
Request enough memory to hold one

int *pi = malloc(sizeof(int));

©2022 Ethan Blanton / CSE 220: Systems Programming 17

Introduction The Heap Void Pointers The Standard Allocator Allocation Errors Summary References

Allocating an array

To allocate an array with 10 int entries dynamically, we:
Determine the size of a single int
Tell the system we want ten of those
Assign the result to an appropriate pointer

int *array = malloc (10 * sizeof(int));

The variable array can now be used as a regular int array.

©2022 Ethan Blanton / CSE 220: Systems Programming 18

Introduction The Heap Void Pointers The Standard Allocator Allocation Errors Summary References

calloc()

void *calloc(size_t nmemb , size_t size);

The closely­related calloc() allocates cleared memory.

The memory returned by malloc() is uninitialized.

The memory returned by calloc() is set to bitwise zero.

Note that invocation is slightly different!

©2022 Ethan Blanton / CSE 220: Systems Programming 19

Introduction The Heap Void Pointers The Standard Allocator Allocation Errors Summary References

realloc()
void *realloc(void *ptr , size_t size);

Allocation sizes are fixed, but you can request a resize.

realloc() will attempt to change the size of an allocation.

If it cannot, it may create a new allocation of the requested size.

Normal usage is:
ptr = realloc(ptr , newsize);

This handles the case where the resize is not possible.

©2022 Ethan Blanton / CSE 220: Systems Programming 20

Introduction The Heap Void Pointers The Standard Allocator Allocation Errors Summary References

free()

void free(void *ptr);

Free accepts a void * pointer, which can point to anything.

Freed memory returns to the system to be allocated again later
via malloc().
free(array);

Note that free does not modify the value of its argument.
Thus you cannot “tell” that a particular location has been freed!

©2022 Ethan Blanton / CSE 220: Systems Programming 21

Introduction The Heap Void Pointers The Standard Allocator Allocation Errors Summary References

Failed allocations

Allocations can fail.

A failed allocation will return NULL.

On a modern machine, this usually means an unreasonable
allocation.

E.g., you accidentally allocated 2 GB instead of 2 KB.

On smaller systems, failed allocations are normal.

Often you can’t do much about a failed allocation, of course.

©2022 Ethan Blanton / CSE 220: Systems Programming 22

Introduction The Heap Void Pointers The Standard Allocator Allocation Errors Summary References

Use­after­free
A common class of error is use­after­free.

This is when a freed pointer is used.

This is particularly dangerous, because the allocator may reuse
that pointer.

Therefore, it is:
Pointing to usable memory
Not valid
Likely to corrupt data!

Setting free’d pointers to NULL can help prevent this.
©2022 Ethan Blanton / CSE 220: Systems Programming 23

Introduction The Heap Void Pointers The Standard Allocator Allocation Errors Summary References

Out­of­bounds access

Because heap allocations have no obvious size, out­of­bounds
access is easy.
int *array = malloc (2 * sizeof(int)); /* int [2] */
for (int i = 0; i <= 2; i++) { /* 0, 1, 2! */

array[i] = 0; /* Illegal */
}

The compiler will not catch this.

©2022 Ethan Blanton / CSE 220: Systems Programming 24

Introduction The Heap Void Pointers The Standard Allocator Allocation Errors Summary References

Practice Example 1

1 int a[2];
2 int *b = malloc (2 * sizeof(int));
3 int *c;
4

5 a[2] = 5;
6 b[0] += 2;
7 c = b + 3;
8 free (&(a[0]));
9 free(b);

10 free(b);
11 b[0] = 5;

Where are the errors?

1. Line 5
2. Line 6
3. Line 8
4. Line 10
5. Line 11

©2022 Ethan Blanton / CSE 220: Systems Programming 25

Introduction The Heap Void Pointers The Standard Allocator Allocation Errors Summary References

Practice Example 2

1 int a[2];
2 int *b = malloc (2 * sizeof(int));
3 int *c;
4

5 a[2] = 5;
6 b[0] += 2;
7 c = b + 3;
8 free (&(a[0]));
9 free(b);

10 free(b);
11 b[0] = 5;

Where is the first
guaranteed error?
1. Line 5
2. Line 6
3. Line 8
4. Line 10
5. Line 11

©2022 Ethan Blanton / CSE 220: Systems Programming 26

Introduction The Heap Void Pointers The Standard Allocator Allocation Errors Summary References

Summary

The heap is where you manually allocate memory.
The C standard library contains a flexible allocator.
Heap allocations are sized by the programmer.

©2022 Ethan Blanton / CSE 220: Systems Programming 27

Introduction The Heap Void Pointers The Standard Allocator Allocation Errors Summary References

Next Time …

Integer properties
Bit widths
Integer representation

©2022 Ethan Blanton / CSE 220: Systems Programming 28

Introduction The Heap Void Pointers The Standard Allocator Allocation Errors Summary References

References I
Required Readings

[1] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. Second
Edition. Chapter 2: 2.7. Prentice Hall, 1988.

©2022 Ethan Blanton / CSE 220: Systems Programming 29

Introduction The Heap Void Pointers The Standard Allocator Allocation Errors Summary References

License

Copyright 2019–2022 Ethan Blanton, All Rights Reserved.
Copyright 2022 Carl Alphonce, All Rights Reserved.
Copyright 2019 Karthik Dantu, All Rights Reserved.

Reproduction of this material without written consent of the
author is prohibited.

To retrieve a copy of this material, or related materials, see
https://www.cse.buffalo.edu/~eblanton/.

©2022 Ethan Blanton / CSE 220: Systems Programming 30

https://www.cse.buffalo.edu/~eblanton/

	Introduction
	The Heap
	Void Pointers
	The Standard Allocator
	Allocation Errors
	Summary
	References

