
Dynamic Memory Allocation

CSE 220: Systems Programming

Ethan Blanton & Carl Alphonce
Department of Computer Science and Engineering

University at Buffalo



Introduction The OS “Heap” Managing the Heap Metadata and Overhead Summary References

Dynamic Memory Allocation

We have discussed two kinds of memory allocation:

Static allocation
Global variables
Static local or global variables

Dynamic allocation
Automatic variables
Manually allocated memory

We covered automatic variables in depth, now it’s time for
manual allocations!

©2022 Ethan Blanton / CSE 220: Systems Programming 2



Introduction The OS “Heap” Managing the Heap Metadata and Overhead Summary References

The Dynamic Allocator

The interface to the dynamic allocator is malloc() et al.

However, the underlying mechanism is more complex.

The operating system kernel provides only large allocations.

Its minimum allocation on x8664 is typically 4 KB.

The dynamic allocator must efficiently parcel out these
allocations.

©2022 Ethan Blanton / CSE 220: Systems Programming 3



Introduction The OS “Heap” Managing the Heap Metadata and Overhead Summary References

The System Break

The OS heap occupies the memory
above the BSS.

To the OS, it is one large block of
memory.

The dynamic allocator must manage it.

The OS provides one tool for this:
the system break.

Kernel

Process Stack

Text
(program code)

Data

BSS

Heap

Unmapped

brk

0x0 (NULL)

0xffffffffffffffff

Unmapped

©2022 Ethan Blanton / CSE 220: Systems Programming 4



Introduction The OS “Heap” Managing the Heap Metadata and Overhead Summary References

Managing the System Break

The break represents the address of the last byte of heap.¶

It can be moved with two system calls:

brk(): set the break to an address
sbrk(): move the break a relative number of bytes

A dynamic allocator can use this to request memory from the
OS.

©2022 Ethan Blanton / CSE 220: Systems Programming 5



Introduction The OS “Heap” Managing the Heap Metadata and Overhead Summary References

sbrk()

The sbrk() system call moves the system break:
void *sbrk(intptr_t increment);

It returns the old location of the system break.

A positive break value expands the heap.

This means sbrk() works a little bit like malloc:
void *mem = sbrk(size);

©2022 Ethan Blanton / CSE 220: Systems Programming 6



Introduction The OS “Heap” Managing the Heap Metadata and Overhead Summary References

Allocation API

The original Unix allocator required explicit sizes:
both allocating and freeing memory took a size.

The malloc() allocator does not.

This means that it must store that size somewhere!

There are many allocation strategies with different solutions to
this problem.

©2022 Ethan Blanton / CSE 220: Systems Programming 7



Introduction The OS “Heap” Managing the Heap Metadata and Overhead Summary References

Metadata

Metadata1 is stored for heap allocations.

This metadata allows for:

Identifying available memory on the heap
Determining the size of allocated memory for free()
Locating regions of memory that make up the heap
…

How this metadata is stored and managed can vary.

1Metadata is data about data.
©2022 Ethan Blanton / CSE 220: Systems Programming 8



Introduction The OS “Heap” Managing the Heap Metadata and Overhead Summary References

Allocation Blocks

Assume that the dynamic allocator allocates blocks of memory.

Each block contains:

Any metadata that is required for the allocator
Memory available to the user to serve an allocation

The set of all of these blocks makes up the heap.

©2022 Ethan Blanton / CSE 220: Systems Programming 9



Introduction The OS “Heap” Managing the Heap Metadata and Overhead Summary References

Explicit Metadata
When explicit metadata is in use, the block might contain:

An integer containing the size of the block
A flag indicating whether it is free or in use

This data is stored adjacent to, or nearby, the user memory:¶

Flags
Size

Application Memory

Heap Block

©2022 Ethan Blanton / CSE 220: Systems Programming 10



Introduction The OS “Heap” Managing the Heap Metadata and Overhead Summary References

Free Lists

A common allocation management technique is:

Blocks containing explicit sizes
Free blocks placed on a linked list

Sometimes allocated blocks may also be on a list.

When the user asks for memory, available memory is located on
this list.

©2022 Ethan Blanton / CSE 220: Systems Programming 11



Introduction The OS “Heap” Managing the Heap Metadata and Overhead Summary References

Sharing Space
Sometimes metadata is required only when a block is free.

This metadata can be stored inside the application memory
portion of the block.

Since the block is not in use, this memory is available.

This reduces the overhead of free memory blocks.

Flags
Size

Application Memory

Free Metadata

©2022 Ethan Blanton / CSE 220: Systems Programming 12



Introduction The OS “Heap” Managing the Heap Metadata and Overhead Summary References

Overhead

Allocators have overhead.

This is extra memory used only by the allocator.

It is important to minimize this overhead.

There are two primary sources of overhead:

Metadata
Fragmentation

©2022 Ethan Blanton / CSE 220: Systems Programming 13



Introduction The OS “Heap” Managing the Heap Metadata and Overhead Summary References

Fragmentation

Fragmentation is space used by the allocator that is not useful to
the application.

Sometimes metadata is included in fragmentation.

There are two kinds of fragmentation:

Internal: unused memory inside a heap block
External: unused memory between heap blocks

©2022 Ethan Blanton / CSE 220: Systems Programming 14



Introduction The OS “Heap” Managing the Heap Metadata and Overhead Summary References

Internal Fragmentation

Internal fragmentation is like packing in a structure.

It is memory that is required by the allocator, but not useful.

It often arises because allocator blocks either:

Must be aligned
Have limited possible sizes

For example: an allocator only creates blocks of size 2k, but the
user asks for 2k − 1 bytes of memory.

©2022 Ethan Blanton / CSE 220: Systems Programming 15



Introduction The OS “Heap” Managing the Heap Metadata and Overhead Summary References

External Fragmentation
External fragmentation is due to user allocation patterns.

The allocator has free blocks, but they are not suitable.

32B 32B 64B 32B

free used

What if:
this is the entire heap
the user wants a 64B block?

©2022 Ethan Blanton / CSE 220: Systems Programming 16



Introduction The OS “Heap” Managing the Heap Metadata and Overhead Summary References

Exploration

Let’s explore some of these concepts in diagrams.

©2022 Ethan Blanton / CSE 220: Systems Programming 17



Introduction The OS “Heap” Managing the Heap Metadata and Overhead Summary References

Summary

The OS notion of the heap is very simplistic.
The dynamic allocator has to manage the heap.
Metadata is required for management.
The heap can become fragmented:

Internal fragmentation is inside heap blocks.
External fragmentation is between heap blocks.

©2022 Ethan Blanton / CSE 220: Systems Programming 18



Introduction The OS “Heap” Managing the Heap Metadata and Overhead Summary References

References I
Required Readings

[1] Randal E. Bryant and David R. O’Hallaron. Computer Science: A Programmer’s
Perspective. Third Edition. Chapter 9: 9.9, 9.11. Pearson, 2016.

©2022 Ethan Blanton / CSE 220: Systems Programming 19



Introduction The OS “Heap” Managing the Heap Metadata and Overhead Summary References

License

Copyright 2020, 2022 Ethan Blanton, All Rights Reserved.
Copyright 2022 Carl Alphonce, All Rights Reserved.
Copyright 2019 Karthik Dantu, All Rights Reserved.

Reproduction of this material without written consent of the
author is prohibited.

To retrieve a copy of this material, or related materials, see
https://www.cse.buffalo.edu/~eblanton/.

©2022 Ethan Blanton / CSE 220: Systems Programming 20

https://www.cse.buffalo.edu/~eblanton/

	Introduction
	The OS ``Heap''
	Managing the Heap
	Metadata and Overhead
	Summary
	References

