
Races and Synchronization

CSE 220: Systems Programming

Ethan Blanton & Carl Alphonce
Department of Computer Science and Engineering

University at Buffalo



Introduction Races Synchronization Deadlock Summary References

Races

Races, or race conditions, are situations where:
Two or more events are dependent upon each other
Some of the events may happen in more than one order, or
even simultaneously
There exists some ordering of the events that is incorrect

For example:
Some state will be updated multiple times
Output will be produced based on the state

If some order of updates results in invalid output, this is a race.

©2022 Ethan Blanton / CSE 220: Systems Programming 2



Introduction Races Synchronization Deadlock Summary References

Synchronization
Synchronization, in the context of a computer program, is the
deliberate ordering of events via some mechanism.

There are many synchronization mechanisms, working in
different ways.

Synchronization mechanisms may:
Directly order events
Simply ensure that events do not happen simultaneously
Ensure that two events begin at the same time
…

Synchronization is how we avoid races.
©2022 Ethan Blanton / CSE 220: Systems Programming 3



Introduction Races Synchronization Deadlock Summary References

Race Conditions
CS:APP [1] defines a race as:

[…] when the correctness of a program depends on one thread
reaching point x in its control flow before another thread reaches

point y.

Note that there may be many points x and y in a program!

The relationship between x and y may change over time, as well.

For example, “once thread T1 has reached point p, it must reach
point x before any other thread reaches point y.”

©2022 Ethan Blanton / CSE 220: Systems Programming 4



Introduction Races Synchronization Deadlock Summary References

Data Races
While data races, or races involving modification of data, are not
the only kind of race, they are very common.

A data race occurs when:
Two or more concurrent flows access shared state
One or more of these flows modifies the state
The order of the accesses/modifications is important
The synchronization in use is insufficient to preserve the
necessary order

Races among any number of concurrent flows for the same data
may be reduced to a set of pairwise races.

At least one access in each pair must be a modifying operation.
©2022 Ethan Blanton / CSE 220: Systems Programming 5



Introduction Races Synchronization Deadlock Summary References

Example Race
Consider two threads running the following code:

char *strings [4];
int nstrings;

void setstring(char *str)
{

int index = nstrings;
strings[index] = str;
nstrings ++;

}

T1 index:
T2 index:
nstrings:

strings:
NULL
NULL
NULL

0
←NULL

0T1 → 0
← T2
← T2

T2

T1 →

T1

T1 → 1

←

← T2 2

←

This is probably not what was intended!

©2022 Ethan Blanton / CSE 220: Systems Programming 6



Introduction Races Synchronization Deadlock Summary References

Example Race
Consider two threads running the following code:

char *strings [4];
int nstrings;

void setstring(char *str)
{

int index = nstrings;
strings[index] = str;
nstrings ++;

}

T1 index:
T2 index:
nstrings:

strings:
NULL
NULL
NULL

0
←NULL

0

T1 →

0

← T2
← T2

T2

T1 →

T1

T1 →

1

←

← T2

2

←

This is probably not what was intended!

©2022 Ethan Blanton / CSE 220: Systems Programming 7



Introduction Races Synchronization Deadlock Summary References

Example Race
Consider two threads running the following code:

char *strings [4];
int nstrings;

void setstring(char *str)
{

int index = nstrings;
strings[index] = str;
nstrings ++;

}

T1 index:
T2 index:
nstrings:

strings:
NULL
NULL
NULL

0
←NULL

0

T1 →

0

← T2

← T2

T2

T1 →

T1

T1 →

1

←

← T2

2

←

This is probably not what was intended!

©2022 Ethan Blanton / CSE 220: Systems Programming 8



Introduction Races Synchronization Deadlock Summary References

Example Race
Consider two threads running the following code:

char *strings [4];
int nstrings;

void setstring(char *str)
{

int index = nstrings;
strings[index] = str;
nstrings ++;

}

T1 index:
T2 index:
nstrings:

strings:
NULL
NULL
NULL

0
←

NULL

0

T1 →

0

← T2

← T2

T2

T1 →

T1

T1 →

1

←

← T2

2

←

This is probably not what was intended!

©2022 Ethan Blanton / CSE 220: Systems Programming 9



Introduction Races Synchronization Deadlock Summary References

Example Race
Consider two threads running the following code:

char *strings [4];
int nstrings;

void setstring(char *str)
{

int index = nstrings;
strings[index] = str;
nstrings ++;

}

T1 index:
T2 index:
nstrings:

strings:
NULL
NULL
NULL

0
←

NULL

0

T1 →

0

← T2

← T2

T2

T1 →

T1

T1 →

1

←

← T2

2

←

This is probably not what was intended!

©2022 Ethan Blanton / CSE 220: Systems Programming 10



Introduction Races Synchronization Deadlock Summary References

Example Race
Consider two threads running the following code:

char *strings [4];
int nstrings;

void setstring(char *str)
{

int index = nstrings;
strings[index] = str;
nstrings ++;

}

T1 index:
T2 index:
nstrings:

strings:
NULL
NULL
NULL

0
←NULL

0

T1 →

0

← T2

← T2

T2

T1 →

T1

T1 →

1

←

← T2

2

←

This is probably not what was intended!

©2022 Ethan Blanton / CSE 220: Systems Programming 11



Introduction Races Synchronization Deadlock Summary References

Example Race
Consider two threads running the following code:

char *strings [4];
int nstrings;

void setstring(char *str)
{

int index = nstrings;
strings[index] = str;
nstrings ++;

}

T1 index:
T2 index:
nstrings:

strings:
NULL
NULL
NULL

0
←NULL

0

T1 →

0

← T2
← T2

T2

T1 →

T1

T1 →

1

←

← T2

2

←

This is probably not what was intended!

©2022 Ethan Blanton / CSE 220: Systems Programming 12



Introduction Races Synchronization Deadlock Summary References

Example Race
Consider two threads running the following code:

char *strings [4];
int nstrings;

void setstring(char *str)
{

int index = nstrings;
strings[index] = str;
nstrings ++;

}

T1 index:
T2 index:
nstrings:

strings:
NULL
NULL
NULL

0
←NULL

0

T1 →

0

← T2
← T2

T2

T1 →

T1

T1 →

1

←

← T2

2

←

This is probably not what was intended!
©2022 Ethan Blanton / CSE 220: Systems Programming 13



Introduction Races Synchronization Deadlock Summary References

Critical Sections

1 void setstring(char *str) {
2 int index = nstrings;
3 strings[index] = str;
4 nstrings ++;
5 }

Lines 24 of setstring() form a critical section.

A critical section is a region of code that must be accessed by at
most one control flow at a time.

©2022 Ethan Blanton / CSE 220: Systems Programming 14



Introduction Races Synchronization Deadlock Summary References

Critical Sections

Critical sections often contain code that accesses shared state.

In most cases, any write to shared state is a critical section.1

Reads from shared state may not be critical sections,
particularly if the state is immutable or changes infrequently.

It is important to define critical sections carefully and completely.

1There exist protocols that allow concurrent writes, however.
©2022 Ethan Blanton / CSE 220: Systems Programming 15



Introduction Races Synchronization Deadlock Summary References

Atomic Operations

Atomic operations are the simplest synchronization mechanism.

An atomic operation:
Cannot be interrupted
Appears as if no other operations run concurrently
Always either fully succeeds or fails with no effects

Every atomic operation requires hardware support.

Not all machine instructions are atomic!
(In fact, often very few are.)

©2022 Ethan Blanton / CSE 220: Systems Programming 16



Introduction Races Synchronization Deadlock Summary References

Atomic Operations in C

C provides no guaranteed atomic operations.2

Atomic operations for synchronization from C require one of:
Inline assembly code
Library functions
Knowledge of the compiler implementation
Kernel assistance

2There is sig_atomic_t, which is atomic with respect to signals.
©2022 Ethan Blanton / CSE 220: Systems Programming 17



Introduction Races Synchronization Deadlock Summary References

Mutual Exclusion

Mutual exclusion is a tool for ensuring that only one logical
control flow accesses some resource.

It is one of the most basic synchronization methods.

Mutual exclusion maps almost directly to critical sections:
The code of the critical section is the resource

©2022 Ethan Blanton / CSE 220: Systems Programming 18



Introduction Races Synchronization Deadlock Summary References

The Mutex
A software tool for providing mutual exclusion is the mutex.

It provides two operations:
Lock
Unlock

Operation Mutex State Action
Lock Unlocked Lock mutex immediately3
Lock Locked Block until unlocked, then lock
Unlock Locked Unlock mutex immediately
Unlock Unlocked Implementation dependent

3If a flow locks a mutex that the same flow has already locked, behavior is
implementationdependent.

©2022 Ethan Blanton / CSE 220: Systems Programming 19



Introduction Races Synchronization Deadlock Summary References

Synchronization with Mutexes
Mutexes can be used to provided synchronization.

They can:
Ensure that two actions do not happen simultaneously
Ensure that one action follows another

They can be used to create mechanisms to:
Directly order events
Ensure that two events begin at the same time
…

Many other synchronization “primitives” use mutexes.
©2022 Ethan Blanton / CSE 220: Systems Programming 20



Introduction Races Synchronization Deadlock Summary References

Using Mutexes around Critical Sections

The typical use of a mutex is to protect a critical section.

Every concurrent flow will:
1. Lock a mutex
2. Execute the critical section
3. Unlock the mutex

Since only one flow can lock the mutex at a time, this ensures
mutual exclusion in the critical section.

©2022 Ethan Blanton / CSE 220: Systems Programming 21



Introduction Races Synchronization Deadlock Summary References

Semaphores

Semaphores are a generalization of the mutex.

A semaphore is associated with a number.

There are two operations on a semaphore, variously named:
P and V
down and up
wait and post
…

We will use P and V (after the original Dijkstra paper).

©2022 Ethan Blanton / CSE 220: Systems Programming 22



Introduction Races Synchronization Deadlock Summary References

Semaphore Operations
P (for proberen in Dutch, or “to test”)
V (for verhogen, “to increment”)

A semaphore s is initialized with a nonnegative integer.

P(s) attempts to decrement the integer:
If it can be decremented and remain nonnegative
(i.e., it is ≥ 1), P returns immediately
If decrementing it would make it negative
(i.e., it is 0), P blocks until it is > 0

V(s) increments the integer:
If the incremented value is 1, it releases one flow blocked
on P, if such a flow exists

©2022 Ethan Blanton / CSE 220: Systems Programming 23



Introduction Races Synchronization Deadlock Summary References

Semaphores as Mutexes

A semaphore initialized with the value 1 behaves like a mutex.

P(s) succeeds immediately for the first logical control flow to
attempt it
Any further flows block on P(s) because s is now zero
V(s) releases one flow blocked on s because s is now one

Semaphore value Equivalent mutex state
1 Unlocked
0 Locked

©2022 Ethan Blanton / CSE 220: Systems Programming 24



Introduction Races Synchronization Deadlock Summary References

Condition Variables
Condition variables allow a logical control flow to block until
some condition is met.

They work with mutexes to provide efficient blocking.

The holder of a mutex that is locked can block for a certain
condition by:

Waiting on a condition variable in a loop
Testing the condition when awakened
Breaking the loop if the condition is met

A concurrent flow that may have satisfied the condition can:
Broadcast to all waiting flows
Signal one waiting flow

©2022 Ethan Blanton / CSE 220: Systems Programming 25



Introduction Races Synchronization Deadlock Summary References

Mutex Interactions

The waiting flow must hold a mutex to wait.

The mutex must protect data used in the condition check.

Upon waiting, the mutex will be unlocked.

Upon awaking, the waiting flow will relock the mutex.

This means that the waiting flow cannot assume the protected
data remained unchanged while it waited.

This complicated mutex interaction allows the signaling flow to
modify the protected data.

©2022 Ethan Blanton / CSE 220: Systems Programming 26



Introduction Races Synchronization Deadlock Summary References

Wake and Check

The wake and check procedure allows:
A thread to safely signal the condition even if it is not sure it
has been met
A condition to be signaled in the presence of newcomers
that may falsify it before the waiting thread is scheduled
Threads to be spuriously woken for other reasons (e.g.,
asynchronous notifications)

©2022 Ethan Blanton / CSE 220: Systems Programming 27



Introduction Races Synchronization Deadlock Summary References

Example Condition Control Flow
Mutex m
ConditionVariable cv
Data d

waiter () {
lock m
while condition on d {

wait on cv
}
take action
unlock m

}

signaler () {
lock m
modify d
signal cv
unlock m

}

©2022 Ethan Blanton / CSE 220: Systems Programming 28



Introduction Races Synchronization Deadlock Summary References

Deadlock
Deadlock is a condition in concurrent programming where two or
more concurrent flows are waiting for each other and thus can
never make progress.

Consider:
flow A:

lock mutex m0
lock mutex m1
do something

flow B:
lock mutex m1
lock mutex m0
do something

If flow A is interrupted by flow B after locking m0 and before
locking m1, deadlock occurs.

Neither flow can proceed, and neither can release the other.
©2022 Ethan Blanton / CSE 220: Systems Programming 29



Introduction Races Synchronization Deadlock Summary References

Necessary Conditions

For deadlock to occur, all of the following must be true [2]:

At least one resource is mutually exclusive.
Flows hold locks while waiting for other locks to become
available
Locks cannot be preempted: once a flow holds a lock, it
holds it until it voluntarily releases it.
A circular chain of flows exists, such that each flow holds
some lock required by the next flow

©2022 Ethan Blanton / CSE 220: Systems Programming 30



Introduction Races Synchronization Deadlock Summary References

Avoiding Deadlock

Deadlock is caused by synchronization.

There are various techniques to avoid deadlock.

For deadlock caused by mutual exclusion on multiple locks,
there is a simple solution:

All mutexes in a system are ordered (perhaps artificially)
All flows lock mutexes in order
All flows unlock mutexes in reverse order

©2022 Ethan Blanton / CSE 220: Systems Programming 31



Introduction Races Synchronization Deadlock Summary References

Summary
A race is a situation where program correctness depends
on the order of operations in concurrent flows.
Data races are races involving modification of data.
Synchronization is the deliberate ordering of events.
A critical section is a region of code that must be accessed
by at most one concurrent flow at a time.
Progress graphs visualize concurrent flows.
Synchronization primitives:

Atomic operations
Mutexes
Semaphores
Condition variables

Deadlock is a program error caused by synchronization.
©2022 Ethan Blanton / CSE 220: Systems Programming 32



Introduction Races Synchronization Deadlock Summary References

Next Time …

POSIX threads
POSIX mutexes
POSIX semaphores
POSIX condition variables
Basically POSIX

©2022 Ethan Blanton / CSE 220: Systems Programming 33



Introduction Races Synchronization Deadlock Summary References

References I
Required Readings

[1] Randal E. Bryant and David R. O’Hallaron. Computer Science: A Programmer’s
Perspective. Third Edition. Chapter 12: 12.412.7. Pearson, 2016.

Optional Readings

[2] E. G. Coffman Jr., M. J. Elphick, and A. Shoshani. “System Deadlocks”. In: Computing
Surveys 3.2 (June 1971).

©2022 Ethan Blanton / CSE 220: Systems Programming 34



Introduction Races Synchronization Deadlock Summary References

License

Copyright 2018–2022 Ethan Blanton, All Rights Reserved.
Copyright 2022 Carl Alphonce, All Rights Reserved.
Copyright 2019 Karthik Dantu, All Rights Reserved.

Reproduction of this material without written consent of the
author is prohibited.

To retrieve a copy of this material, or related materials, see
https://www.cse.buffalo.edu/~eblanton/.

©2022 Ethan Blanton / CSE 220: Systems Programming 35

https://www.cse.buffalo.edu/~eblanton/

	Introduction
	Races
	Synchronization
	Deadlock
	Summary
	References

