
The Compiler and Toolchain

CSE 220: Systems Programming

Ethan Blanton & Carl Alphonce

Department of Computer Science and Engineering

University at Buffalo

Introduction The Compiler Driver Preprocessor Compiler Assembler Linker Summary References

The C Toolchain

The C compiler as we know it is actually a driver for a chain of

tools; it is sometimes referred to as a compiler driver, which

invokes the following tools:

The preprocessor transforms the source code into C code

The compiler turns C code into assembly code

The assembler turns assembly code into machine code in

object files

The linker links object files into an executable file

Notice that the compiler is only a single step of the multi-step

process!

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 2

Introduction The Compiler Driver Preprocessor Compiler Assembler Linker Summary References

The Complete Toolchain

.c source

Included
Headers

CPP

Linker

C Compiler

Assembler

External
Libraries

Pre-
processed
.i source

Compiled
.s assembly

Executable
Object
.o file

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 3

Introduction The Compiler Driver Preprocessor Compiler Assembler Linker Summary References

An example

We’ll explore the compilation process using Hello World as an

example:

#include <stdio.h>

int main(int argc , char *argv []) {

puts("Hello , world!");

return 0;

}

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 4

Introduction The Compiler Driver Preprocessor Compiler Assembler Linker Summary References

Compiling Hello World, part I

Consider the following gcc invocation to compile Hello World:

$ gcc -Wall -Werror -O2 -g -std=c99 -o helloworld helloworld.c

This command passes many command-line arguments to gcc:

-Wall: Turn on all warnings

-Werror: Treat all warnings as errors

-O2: Turn on moderate optimization

-g: Include debugging information

-std=c99: Use the 1999 ISO C Standard

-o helloworld: Call the output helloworld

helloworld.c: Compile the file helloworld.c

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 5

Introduction The Compiler Driver Preprocessor Compiler Assembler Linker Summary References

Compiling Hello World, part II

The C compiler driver ran all of the steps necessary to build an

executable for us.

The C preprocessor handled including a header

The compiler produced assembly

The assembler produced object code

The linker produced helloworld, an executable file

$./helloworld

Hello, world!

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 6

Introduction The Compiler Driver Preprocessor Compiler Assembler Linker Summary References

Compiling in Steps

The compiler driver can be used to invoke each step of the

compilation individually.

It can also be used to invoke up to a step.

The starting step is determined by the input filename.

The ending step is determined by compiler options.

We will explore each step in some detail.

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 7

Introduction The Compiler Driver Preprocessor Compiler Assembler Linker Summary References

The C Preprocessor

The C preprocessor applies preprocessor directives and macros

to a source file, and removes comments. The output of the

preprocessor is valid C code, and is the input to the actual C

compiler.

Preprocessor directives begin with #.

#include: (Preprocess and) insert another file

#define: Define a symbol or macro

#ifdef/#endif: Include the enclosed block only if a symbol

is defined

#if/#endif: Include only if a condition is true

…

Preprocessor directives end at a newline, not a semicolon.©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 8

Introduction The Compiler Driver Preprocessor Compiler Assembler Linker Summary References

Including headers

The #include directive is primarily used to incorporate headers.

There are two syntaxes for inclusion:

#include <file>

Include a file from the system include path (defined by the

toolchain)

#include "file"

Include a file from the current directory

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 9

Introduction The Compiler Driver Preprocessor Compiler Assembler Linker Summary References

Using the Preprocessor

The preprocessor can be invoked as gcc -E.

Using the preprocessor correctly and safely is tricky.

In the make lab we showed you how to use it for debugging.

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 10

Introduction The Compiler Driver Preprocessor Compiler Assembler Linker Summary References

The C Compiler

The compiler transforms C code into assembly code.

The compiler is the only part of the toolchain that understands C.

It understands:

The semantics of C

The capabilities of the machine

It uses these things to transform C into assembly language.

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 11

Introduction The Compiler Driver Preprocessor Compiler Assembler Linker Summary References

Assembly Language

Assembly language is machine-specific, but human-readable.

Assembly language contains:

Descriptions of machine instructions

Descriptions of data

Address labels marking variables and functions (symbols)

Metadata about the code and compiler transformations

The semantics of C code are preserved in the translation to

assembly code.

The structure of the assembly code may be vastly different from

that of the original C code!

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 12

Introduction The Compiler Driver Preprocessor Compiler Assembler Linker Summary References

Compiling to Assembly

Let’s compile to assembly using -S:

$ gcc -fno-asynchronous-unwind-tables -std=c99 -S helloworld.c

The -fno-asynchronous-unwind-tables option excludes some

meta information from the output.

Excluding this information makes the assembly code easier to

read.

On the next slides, we’ll examine the output written to

helloworld.s.

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 13

Introduction The Compiler Driver Preprocessor Compiler Assembler Linker Summary References

helloworld.s I

.file "helloworld.c"

.text

.section .rodata

.LC0:

.string "Hello, world!"

.text

.globl main

.type main, @function

We’ll get to the details later, but for now notice:

.LC0: is a local label

.string declares a string constant

The .globl and .type directives declare that we’re defining

a global function named main

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 14

Introduction The Compiler Driver Preprocessor Compiler Assembler Linker Summary References

helloworld.s II
main:

endbr64

pushq %rbp

movq %rsp, %rbp

subq $16, %rsp

movl %edi, -4(%rbp)

movq %rsi, -16(%rbp)

leaq .LC0(%rip), %rdi

call puts@PLT

movl $0, %eax

leave

ret

We’ll skip the postamble, for now.

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 15

Introduction The Compiler Driver Preprocessor Compiler Assembler Linker Summary References

The Generated Code

First of all, you aren’t expected to understand the assembly.

leaq .LC0(%rip), %rdi

This code loads the string constant’s address (from .LC0).

Then, later:

call puts@PLT

…it calls puts() to output the string.

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 16

Introduction The Compiler Driver Preprocessor Compiler Assembler Linker Summary References

The Assembler

The assembler transforms assembly language into machine

code.

Machine code is binary instructions understood by the

processor.

The output of the assembler is object files.

An object file contains:

Machine code

Data

Metadata about the structure of the code and data

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 17

Introduction The Compiler Driver Preprocessor Compiler Assembler Linker Summary References

Compiling to an Object File

You may wish to compile to an object file.

This is used when multiple source files will be linked.

In this case, use -c, as in:

$ gcc -Wall -Werror -std=c99 -c helloworld.c

This will produce helloworld.o.

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 18

Introduction The Compiler Driver Preprocessor Compiler Assembler Linker Summary References

The Linker

The linker turns one or more object files into an executable.

An executable is:

The machine code and data from object files

Metadata used by the OS to run a complete program

An executable’s metadata includes:

The platform on which it runs

The entry point (where it should start execution)

Anything it requires from libraries, etc.

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 19

Introduction The Compiler Driver Preprocessor Compiler Assembler Linker Summary References

Linking

Compiling any input files without an explicit output stage will

invoke the linker.

$ gcc -Wall -Werror -std=c99 -o helloworld helloworld.o

This command will link helloworld.o with the system libraries to

produce helloworld.

You can view the linkage with ldd:

$ ldd helloworld

linux-vdso.so.1 (0x00007ffe34d1a000)

libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f24dacbb000)

/lib64/ld-linux-x86-64.so.2 (0x00007f24db25c000)
©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 20

Introduction The Compiler Driver Preprocessor Compiler Assembler Linker Summary References

Summary

The “C compiler” is actually a chain of tools

We invoke the compiler driver

The preprocessor transforms the source code

The compiler turns C into assembly language

The assembler turns assembly language into machine code

in object files

The linker links object files into an executable

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 21

Introduction The Compiler Driver Preprocessor Compiler Assembler Linker Summary References

References I

Required Readings

[1] Randal E. Bryant and David R. O’Hallaron. Computer Science: A Programmer’s

Perspective. Third Edition. Chapter 1: Intro, 1.1-1.4. Pearson, 2016.

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 22

Introduction The Compiler Driver Preprocessor Compiler Assembler Linker Summary References

License

Copyright 2019, 2020, 2021, 2023 Ethan Blanton, All Rights

Reserved.

Copyright 2022, 2023 Carl Alphonce, All Rights Reserved.

Copyright 2019 Karthik Dantu, All Rights Reserved.

Reproduction of this material without written consent of the

author is prohibited.

To retrieve a copy of this material, or related materials, see

https://www.cse.buffalo.edu/~eblanton/.

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 23

https://www.cse.buffalo.edu/~eblanton/

	Introduction
	The Compiler Driver
	Preprocessor
	Compiler
	Assembler
	Linker
	Summary
	References

