
Virtual Memory

CSE 220: Systems Programming

Ethan Blanton & Carl Alphonce

Department of Computer Science and Engineering

University at Buffalo



Introduction Address Spaces Paging Summary References

Virtual Memory

Virtual memory is a mechanism by which a system divorces the

address space in programs from the physical layout of memory.

Virtual addresses are locations in program address space.

Physical addresses are locations in actual hardware RAM.

With virtual memory, the two need not be equal.

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 2



Introduction Address Spaces Paging Summary References

Process Layout

As previously discussed:

Every process has unmapped memory near NULL

Processes may have access to the entire address space

Each process is denied access to the memory used by

other processes

Some of these statements seem contradictory.

Virtual memory is the mechanism by which this is accomplished.

Every address in a process’s address space is a virtual address.

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 3



Introduction Address Spaces Paging Summary References

Physical Layout

The physical layout of hardware RAM may vary significantly

from machine to machine or platform to platform.

Sometimes certain locations are restricted

Devices may appear in the memory address space

Different amounts of RAM may be present

Historically, programs were aware of these restrictions.

Today, virtual memory hides these details.

The kernel must still be aware of physical layout.

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 4



Introduction Address Spaces Paging Summary References

The Memory Management Unit

The Memory Management Unit (MMU) translates addresses.

It uses a per-process mapping structure to transform virtual

addresses into physical addresses.

The MMU is physical hardware between the CPU and the

memory bus.

This translation must typically be very fast, but occasionally has

a large performance penalty.

Managing the translation mappings requires tight integration

between the kernel and hardware.

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 5



Introduction Address Spaces Paging Summary References

Address Spaces

Both virtual and physical addresses are in address spaces.

An address space is a range of potentially valid locations.

These spaces need not be the same!

For example, on x86-64, the virtual address space is all

locations from 0 to 264 – 1.

Current x86-64 processors only allow 48 of those bits.1

A given piece of hardware may support much less memory.

1…in a somewhat strange fashion

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 6



Introduction Address Spaces Paging Summary References

Linear Address Spaces

Many modern machines use a linear address space.

Linear addresses map to a small number of (sometimes one)

contiguous blocks of memory in the same address space that

are address-disjoint.

In other words:

A particular address represents a unique location in the

address space.

Every location in the address space can be named with a

single address.

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 7



Introduction Address Spaces Paging Summary References

Segmented Address Spaces

Many older systems, and some modern systems, use

segmented address spaces.

In a segmented address space, an address is divided into two

(or more) parts:

A segment identifier

An offset within the segment

Each segment is often a linear address space.

The segment identifier may be implicit or provided separately

from the address within the segment.

We will not consider segmented addresses further.

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 8



Introduction Address Spaces Paging Summary References

Address Locations

The addresses we have used are byte addresses.

This is not necessary, however!

Some machines use word addresses, in particular.2

On a word addressed machine, every address is a word.

E.g., address 0x1 would be the second word, or the fifth byte, on

a 32-bit word machine!

We will not consider word addressing further.

2Early Unix was developed on a word-addressed machine (the PDP-7).

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 9



Introduction Address Spaces Paging Summary References

The MMU

Every time the CPU accesses an address:

The MMU intercepts that address

It converts the virtual address from the virtual address

space into a physical address space

The converted address is used to access physical RAM

We call this address translation.

These address spaces may not use the same addressing model.

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 10



Introduction Address Spaces Paging Summary References

Paging

There are many possible virtual memory models.

The x86-64 architecture offers several!

Linux on x86-64 uses paging.

In paged virtual memory, the MMU breaks memory into

fixed-sized pages.

There may be several page sizes in a system

Page sizes are typically powers of two

x86-64 small pages are 4 kB

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 11



Introduction Address Spaces Paging Summary References

Page Mapping

All addresses on a single page share a translation.

For example:

Suppose that pages are 4 kB (0x1000 bytes hex).

Suppose that a page has virtual address 0x8000.

Suppose that that page is at physical address 0x1000.

All virtual addresses between 0x8000 and 0x8fff will be

mapped to physical addresses between 0x1000 and 0x1fff.

Different pages may be mapped entirely differently.

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 12



Introduction Address Spaces Paging Summary References

Paging Example

Virtual Addresses Physical Addresses

Unmapped

0x0000
0x1000

0x9000

4 kB

4 kB
4 kB
4 kB

4 kB

4 kB
4 kB
4 kB

4 kB

4 kB
4 kB
4 kB

Unmapped

0x0000
0x1000

0x9000

4 kB

4 kB
4 kB
4 kB

4 kB

4 kB
4 kB
4 kB

4 kB

4 kB
4 kB
4 kB

Unmapped

0x0000
0x1000

0x9000

4 kB

4 kB
4 kB
4 kB

4 kB

4 kB
4 kB
4 kB

4 kB

4 kB
4 kB
4 kB

Unmapped

0x0000
0x1000

0x9000

4 kB

4 kB
4 kB
4 kB

4 kB

4 kB
4 kB
4 kB

4 kB

4 kB
4 kB
4 kB

0x6000

0x1000
0x0000

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 13



Introduction Address Spaces Paging Summary References

Page Tables

The MMU uses some data structure to perform address

mapping.

On x86-64 (and many machines), it uses page tables.

Page tables are a tree of arrays containing pointers and

metadata.

The pointers are to physical addresses.

The metadata describes what the pointers point to.

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 14



Introduction Address Spaces Paging Summary References

Page Translation Example

Consider a system with a 14 bit pointer and 256 byte pages.

Each pointer on this system consists of:

a 6 bit page identifier

an 8 bit page offset

10101110110110
13 : 8 7 : 0

The MMU translates the page identifier to a physical page.

This translation may be performed in multiple steps.

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 15



Introduction Address Spaces Paging Summary References

Page Tables Example (14 b pointer, 256 B page)

Page Directory Page Table

000

101

111

Page

Address

10101110110110
13:1110:8 7 : 0

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 16



Introduction Address Spaces Paging Summary References

Paging Advantages

Paging allows very high memory usage efficiency.

By mapping only the needed pages from a process, its occupied

memory can be much smaller than its virtual address space.

Processes can be interleaved in physical memory.

Even page table structures can be left out if unneeded.

(I.e., if a range of pages is empty, a page directory entry can be

empty.)

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 17



Introduction Address Spaces Paging Summary References

Page Metadata

The metadata stored in page tables defines features like:

Whether a virtual page is readable/writable

If executing code from a virtual page is allowable

Whether a virtual page is currently present in memory

…

If a memory access violates this metadata, this is a page fault

(e.g., a write to a page that is not writeable):

the MMU notifies the processor

the processor jumps to a particular kernel routine

the kernel:

fixes the problem, or

notifies the offending process

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 18



Introduction Address Spaces Paging Summary References

Page Backing

Virtual pages can be backed by files, physical pages, or both.

A backed page is based on the contents of its backing.

Backed pages may not need to be stored in memory at all times.

If it is:

clean: it is identical to its backing

dirty: it is different from its backing

Clean pages can be recreated from the backing at any time.

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 19



Introduction Address Spaces Paging Summary References

Demand Paging

In some cases, a virtual page may be backed but not present.

Such a page will be marked as not present in the page tables.

Attempts to access this page will notify the kernel.

(This is a type of page fault.)

The kernel will page in the page by:

finding an unused physical page

locating the virtual page’s backing

reading the backing data into the physical page

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 20



Introduction Address Spaces Paging Summary References

Demand Paging Benefits

Demand paging allows physical memory to be allocated quickly

by simply updating page tables.

It also speeds loading of executable files as programs:

pages are marked as not present but backed by the file

access to pages causes the file to be read into memory

unused pages are never loaded

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 21



Introduction Address Spaces Paging Summary References

The Program Break

Calling brk() or sbrk() modifies a process memory map.

Additional pages adjacent to the old break will be marked as:

Not present

Readable and writable

However, this affects only the page table metadata, the pages

are not actually allocated!

When the process tries to use a new page:

The MMU will notify the processor

The kernel will find an unused page

The kernel will clear the unused page

The kernel will insert the page into the process’s page

tables ©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 22



Introduction Address Spaces Paging Summary References

Moving the Program Break (Page Fault)

Page Table

Pages

…
…

Unmapped

brk

brk
not present

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 23



Introduction Address Spaces Paging Summary References

Moving the Program Break (Page Fault)

Page Table

Pages

…
…

Unmapped

sbrk(PAGE_SIZE) is called by the program.

brk

brk
not present

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 24



Introduction Address Spaces Paging Summary References

Moving the Program Break (Page Fault)

Page Table

Pages

…
…

Unmapped

The break is moved, the new page is marked not present.

brk

brk
not present

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 25



Introduction Address Spaces Paging Summary References

Moving the Program Break (Page Fault)

Page Table

Pages

…
…

Unmapped

Some time later, the process attempts to access the page.

The MMU notifies the kernel, which allocates a page.

brk

brk

not present

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 26



Introduction Address Spaces Paging Summary References

Moving the Program Break (Page Fault)

Page Table

Pages

…
…

Unmapped

The process’s access to the page continues as normal.

brk

brk

not present

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 27



Introduction Address Spaces Paging Summary References

The C Stack

We previously said that the kernel manages the program stack:

It grows as necessary (to some point)

The program need not explicitly size it (cf. the break)

More correctly, the kernel configures the MMU to manage the

program stack.

Similar to newly-allocated memory at the page break, at process

creation the kernel will:

Determine how large the program’s stack should be

Mark stack pages as not present but readable and writeable

As the program stack grows, page faults will allocate new pages.

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 28



Introduction Address Spaces Paging Summary References

Page Eviction

If the system is low on memory, it can evict a page.

A page is evicted by:

clean: simply remove it from the map

dirty: write it to its backing and remove it

A special backing, swap, can back un-backed dirty pages.

Coupled with demand paging, page eviction can simulate extra

memory.

1. A page is needed

2. No page is free

3. A page is evicted (maybe written to swap)

4. The evicted page is remapped
©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 29



Introduction Address Spaces Paging Summary References

Summary

Virtual memory:

uses a memory management unit

allows the CPU to operate in a virtual address space that

may be different from the physical address space

the MMU translates virtual addresses to physical addresses

Paging is a common model for virtual memory.

Paged systems break both address spaces into pages.

Pages can be mapped individually between virtual and

physical addresses.

Page tables allow the MMU to translate addresses.

Page faults bring mapped but unallocated pages into

memory.

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 30



Introduction Address Spaces Paging Summary References

References I

Required Readings

[1] Randal E. Bryant and David R. O’Hallaron. Computer Science: A Programmer’s

Perspective. Third Edition. Chapter 1: 1.7.3; Chapter 9: Intro, 9.1-9.4. Pearson, 2016.

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 31



Introduction Address Spaces Paging Summary References

License

Copyright 2018–2023 Ethan Blanton, All Rights Reserved.

Copyright 2022, 2023 Carl Alphonce, All Rights Reserved.

Copyright 2019 Karthik Dantu, All Rights Reserved.

Reproduction of this material without written consent of the

author is prohibited.

To retrieve a copy of this material, or related materials, see

https://www.cse.buffalo.edu/~eblanton/.

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 32

https://www.cse.buffalo.edu/~eblanton/

	Introduction
	Address Spaces
	Paging
	Summary
	References

