
Structures and Allocation

CSE 220: Systems Programming

Ethan Blanton & Carl Alphonce

Department of Computer Science and Engineering

University at Buffalo

Introduction Structures Sizeof and void * Memory Allocation Allocation Errors Summary References

Effective Questions

For programming questions, ask:

What did I do?

What did I expect to happen?

What actually happened?

How are they different?

You must know what you expected to identify the problem!

When asking us questions, tell us what you did, what you

expected, and what you got.

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 2

Introduction Structures Sizeof and void * Memory Allocation Allocation Errors Summary References

Building Complex Applications

Building more complex applications frequently requires:

Data structures, including self-referential structures

Allocation of memory at program run time

Structures are provided by the C language.

Memory allocation is provided by the C library.

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 3

Introduction Structures Sizeof and void * Memory Allocation Allocation Errors Summary References

Structures

C structures aggregate multiple data items into one type.

These items are called members.

The members of a structure are stored together.

Self-referential structures can form linked lists, etc.

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 4

Introduction Structures Sizeof and void * Memory Allocation Allocation Errors Summary References

Memory Allocation

The amount of memory used by complex data may not be

known at compile time.

Solving this requires memory allocation.

Self-referential structures like lists are normally allocated.

Allocation and release of memory in C is manual.

This makes C memory efficient, but also prone to leaks.

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 5

Introduction Structures Sizeof and void * Memory Allocation Allocation Errors Summary References

The C Struct

A struct is a compound data type consisting of one or more

other types.

struct IntList {

int value;

struct IntList *next;

};

This struct contains an integer and a pointer.

value and next are called members of the structure.

Any variable of type struct IntList contains both of these

members.

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 6

Introduction Structures Sizeof and void * Memory Allocation Allocation Errors Summary References

Declaring and Using Structures

The syntax for structure declaration is

struct StructureTypeName {

// Members in structure

// Each member has a type and a name

} varname; // semicolon required!

An instance of the structure may be created where the structure

is declared, or using the type name later:

struct StructureTypeName varname;

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 7

Introduction Structures Sizeof and void * Memory Allocation Allocation Errors Summary References

Accessing Structure Members

The . operator is used to access the members of a structure.

struct IntList node = { 7, NULL };

node.value = 3;

Any member of a structure can be accessed with .:

struct Complex {

double real , im;

};

struct ComplexList {

struct Complex complex;

struct ComplexList *next;

} complexlist;

complexlist.complex.real = 0.0;

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 8

Introduction Structures Sizeof and void * Memory Allocation Allocation Errors Summary References

Structure Pointers

The . operator is cumbersome for structure pointers:

struct IntList *list = get_list_pointer ();

(*list).next = NULL;

The -> operator is syntactic sugar for (*).:

list ->next = NULL;

The -> operator can be used to access any member of a

structure via a pointer to the structure type.

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 9

Introduction Structures Sizeof and void * Memory Allocation Allocation Errors Summary References

Operations on Structures

A structure value:

Can have its address taken with &

Can be copied with =

Can be used to access a member with .

A structure pointer:

Can do all the things any pointer can do

Can be used to access a member with ->

No other operations on structures are legal!

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 10

Introduction Structures Sizeof and void * Memory Allocation Allocation Errors Summary References

Aside: The sizeof operator

There are several operators used to help with reflection in C.

One of these is the sizeof operator.

It returns the size in bytes of its operand, which can be:

A variable

An expression that is “like” a variable

A type

(Expressions “like” a variable include, e.g., members of structures.)

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 11

Introduction Structures Sizeof and void * Memory Allocation Allocation Errors Summary References

Looking at sizeof

Examples:

void func(int matrix [2][3]) {

double dist;

sizeof(int); // yields 4

sizeof(dist); // yields 8

sizeof(matrix); // yields ... 8?

}

Note that sizeof arrays is not reliable.

Only arrays declared within the current scope will be correct.¶

We will discuss the sizes of things in more detail, later.

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 12

Introduction Structures Sizeof and void * Memory Allocation Allocation Errors Summary References

The void * type

The type void * is used to indicate a pointer of unknown type.

You may recall that void indicates a meaningless return value.

void * is treated specially by the C compiler and runtime:

A void * variable can store any pointer type

Type checks are mostly bypassed assigning to/from void *

Any attempt to dereference a void * pointer is an error

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 13

Introduction Structures Sizeof and void * Memory Allocation Allocation Errors Summary References

Pointer Assignments

Consider the following:

int i;

double d;

int *pi = &i;

double *pd = &d;

Each of these pointers is typed. These are errors:

pi = pd;

pd = pi;

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 14

Introduction Structures Sizeof and void * Memory Allocation Allocation Errors Summary References

Pointer Assignments

Consider the following:

int i;

double d;

int *pi = &i;

double *pd = &d;

This is where it gets dangerous:

void *p = pi;

pd = p;

This is perfectly legal.

(What does it mean?)

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 15

Introduction Structures Sizeof and void * Memory Allocation Allocation Errors Summary References

The Standard Allocator

The C library contains a standard allocator.

With this allocator you can request memory from the system.

Allocated memory is identified by its address.

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 16

Introduction Structures Sizeof and void * Memory Allocation Allocation Errors Summary References

Requesting Memory

Memory is requested using malloc() or calloc():

void *malloc(size_t size);

void *calloc(size_t nmemb , size_t size);

malloc accepts:

A size_t size in bytes

calloc accepts:

A size_t number of members of an array

A size_t size in bytes of each member

Both return a void * pointer to usable memory.

calloc() sets all bytes in the memory to zero.

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 17

Introduction Structures Sizeof and void * Memory Allocation Allocation Errors Summary References

Allocation Sizes

It is impossible to tell how much memory a pointer “points to.”

The allocator returns at least as much as the user requested.

If you need to know how much that was, you need more

information!

Typically:

From a variable or argument (e.g., argc)

From a member in a struct (e.g., nprios in PA2)

Using knowledge of the data (e.g., strlen() on a string)

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 18

Introduction Structures Sizeof and void * Memory Allocation Allocation Errors Summary References

Allocating a Structure

As an example, let’s allocate a structure:

struct IntList *get_list_pointer () {

struct IntList *head = calloc(1, sizeof(struct

IntList));

return head;

}

Note that:

The integer in head is set to 0

The next pointer in head is set to NULL

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 19

Introduction Structures Sizeof and void * Memory Allocation Allocation Errors Summary References

Allocating an Array

We can also allocate arrays.

malloc (10 * sizeof(int)); // Array of 10 ints

calloc (10, sizeof(int)); // Array of 10 ints

In C, an array is just multiple data items adjacent in memory!

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 20

Introduction Structures Sizeof and void * Memory Allocation Allocation Errors Summary References

Freeing Memory

C has no garbage collector.

The programmer is responsible for freeing memory after use.

The function free() does this:

void free(void *ptr);

Free accepts:

A pointer allocated by malloc(), calloc(), or realloc()

Once a pointer is freed, that pointer must not be used again.

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 21

Introduction Structures Sizeof and void * Memory Allocation Allocation Errors Summary References

Failed allocations

Allocations can fail.

A failed allocation will return NULL.

On a modern machine, this usually means an unreasonable

allocation.

E.g., you accidentally allocated 2 GB instead of 2 KB.

On smaller systems, failed allocations are normal.

Often you can’t do much about a failed allocation, of course.

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 22

Introduction Structures Sizeof and void * Memory Allocation Allocation Errors Summary References

Use-after-free

A common class of error is use-after-free.

This is when a freed pointer is used.

This is particularly dangerous, because the allocator may reuse

that pointer.

Therefore, it is:

Pointing to usable memory

Not valid

Likely to corrupt data!

Setting free’d pointer variables to NULL can help prevent this.

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 23

Introduction Structures Sizeof and void * Memory Allocation Allocation Errors Summary References

Out-of-bounds access

Because heap allocations have no obvious size, out-of-bounds

access is easy.

int *array = malloc (2 * sizeof(int)); /* int [2] */

for (int i = 0; i <= 2; i++) { /* 0, 1, 2! */

array[i] = 0; /* Illegal */

}

The compiler will not catch this.

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 24

Introduction Structures Sizeof and void * Memory Allocation Allocation Errors Summary References

Summary

Structs are a collection of values.

Structs can be self-referential.

The C standard library contains a flexible allocator.

Standard allocator allocations are sized by the programmer.

C does not provide a way to query the size of an allocation.

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 25

Introduction Structures Sizeof and void * Memory Allocation Allocation Errors Summary References

References I

Required Readings

[1] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. Second

Edition. Chapter 2: 2.7; Chapter 6: Intro, 6.1–6.7. Prentice Hall, 1988.

[2] Linux man-pages project. man 3 malloc.

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 26

Introduction Structures Sizeof and void * Memory Allocation Allocation Errors Summary References

License

Copyright 2023 Ethan Blanton, All Rights Reserved.

Copyright 2022, 2023 Carl Alphonce, All Rights Reserved.

Copyright 2019 Karthik Dantu, All Rights Reserved.

Reproduction of this material without written consent of the

author is prohibited.

To retrieve a copy of this material, or related materials, see

https://www.cse.buffalo.edu/~eblanton/.

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 27

https://www.cse.buffalo.edu/~eblanton/

	Introduction
	Structures
	Sizeof and void *
	Memory Allocation
	Allocation Errors
	Summary
	References

