
Races and Synchronization

CSE 220: Systems Programming

Ethan Blanton & Carl Alphonce

Department of Computer Science and Engineering

University at Buffalo



Introduction Races Synchronization Deadlock Summary References

Races

Races, or race conditions, are situations where:

Two or more events are dependent upon each other

Some of the events may happen in more than one order, or

even simultaneously

There exists some ordering of the events that is incorrect

For example:

Some state will be updated multiple times

Output will be produced based on the state

If some order of updates results in invalid output, this is a race.

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 2



Introduction Races Synchronization Deadlock Summary References

Synchronization

Synchronization, in the context of a computer program, is the

deliberate ordering of events via some mechanism.

There are many synchronization mechanisms, working in

different ways.

Synchronization mechanisms may:

Directly order events

Simply ensure that events do not happen simultaneously

Ensure that two events begin at the same time

…

Synchronization is how we avoid races.

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 3



Introduction Races Synchronization Deadlock Summary References

Race Conditions

CS:APP [2] defines a race as:

[…] when the correctness of a program depends on one thread

reaching point x in its control flow before another thread reaches

point y.

Note that there may be many points x and y in a program!

The relationship between x and y may change over time, as well.

For example, “once thread T1 has reached point p, it must reach

point x before any other thread reaches point y.”

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 4



Introduction Races Synchronization Deadlock Summary References

Data Races

While data races, or races involving modification of data, are not

the only kind of race, they are very common.

A data race occurs when:

Two or more concurrent flows access shared state

One or more of these flows modifies the state

The order of the accesses/modifications is important

The synchronization in use is insufficient to preserve the

necessary order

Races among any number of concurrent flows for the same data

may be reduced to a set of pairwise races.

At least one access in each pair must be a modifying operation.
©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 5



Introduction Races Synchronization Deadlock Summary References

Example Race

Consider two threads running the following code:

char *strings [4];

int nstrings;

void setstring(char *str) {

int index = nstrings;

strings[index] = str;

nstrings ++;

}

T1 index:
T2 index:

nstrings:

strings:
NULL
NULL
NULL

0

←NULL

0T1 →
0

← T2

← T2

T2

T1 →

T1

T1 → 1

←

← T2 2

←

This is probably not what was intended!

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 6



Introduction Races Synchronization Deadlock Summary References

Example Race

Consider two threads running the following code:

char *strings [4];

int nstrings;

void setstring(char *str) {

int index = nstrings;

strings[index] = str;

nstrings ++;

}

T1 index:
T2 index:

nstrings:

strings:
NULL
NULL
NULL

0

←NULL

0

T1 →

0

← T2

← T2

T2
T1 →

T1

T1 →

1

←

← T2

2

←

This is probably not what was intended!

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 7



Introduction Races Synchronization Deadlock Summary References

Example Race

Consider two threads running the following code:

char *strings [4];

int nstrings;

void setstring(char *str) {

int index = nstrings;

strings[index] = str;

nstrings ++;

}

T1 index:
T2 index:

nstrings:

strings:
NULL
NULL
NULL

0

←NULL

0

T1 →

0

← T2

← T2

T2
T1 →

T1

T1 →

1

←

← T2

2

←

This is probably not what was intended!

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 8



Introduction Races Synchronization Deadlock Summary References

Example Race

Consider two threads running the following code:

char *strings [4];

int nstrings;

void setstring(char *str) {

int index = nstrings;

strings[index] = str;

nstrings ++;

}

T1 index:
T2 index:

nstrings:

strings:
NULL
NULL
NULL

0

←

NULL

0

T1 →

0

← T2

← T2

T2

T1 →

T1

T1 →

1

←

← T2

2

←

This is probably not what was intended!

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 9



Introduction Races Synchronization Deadlock Summary References

Example Race

Consider two threads running the following code:

char *strings [4];

int nstrings;

void setstring(char *str) {

int index = nstrings;

strings[index] = str;

nstrings ++;

}

T1 index:
T2 index:

nstrings:

strings:
NULL
NULL
NULL

0

←

NULL

0

T1 →

0

← T2

← T2

T2

T1 →

T1

T1 →

1

←

← T2

2

←

This is probably not what was intended!

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 10



Introduction Races Synchronization Deadlock Summary References

Example Race

Consider two threads running the following code:

char *strings [4];

int nstrings;

void setstring(char *str) {

int index = nstrings;

strings[index] = str;

nstrings ++;

}

T1 index:
T2 index:

nstrings:

strings:
NULL
NULL
NULL

0

←NULL

0

T1 →

0

← T2

← T2

T2
T1 →

T1

T1 →

1

←

← T2

2

←

This is probably not what was intended!

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 11



Introduction Races Synchronization Deadlock Summary References

Example Race

Consider two threads running the following code:

char *strings [4];

int nstrings;

void setstring(char *str) {

int index = nstrings;

strings[index] = str;

nstrings ++;

}

T1 index:
T2 index:

nstrings:

strings:
NULL
NULL
NULL

0

←NULL

0

T1 →

0

← T2

← T2

T2
T1 →

T1

T1 →

1

←

← T2

2

←

This is probably not what was intended!

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 12



Introduction Races Synchronization Deadlock Summary References

Example Race

Consider two threads running the following code:

char *strings [4];

int nstrings;

void setstring(char *str) {

int index = nstrings;

strings[index] = str;

nstrings ++;

}

T1 index:
T2 index:

nstrings:

strings:
NULL
NULL
NULL

0

←NULL

0

T1 →

0

← T2

← T2

T2
T1 →

T1

T1 →

1

←

← T2

2

←

This is probably not what was intended!

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 13



Introduction Races Synchronization Deadlock Summary References

Critical Sections

1 void setstring(char *str) {

2 int index = nstrings;

3 strings[index] = str;

4 nstrings ++;

5 }

Lines 2-4 of setstring() form a critical section.

A critical section is a region of code that must be accessed by at

most one control flow at a time.

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 14



Introduction Races Synchronization Deadlock Summary References

Critical Sections

Critical sections often contain code that accesses shared state.

In most cases, any write to shared state is a critical section.1

Reads from shared state may not be critical sections,

particularly if the state is immutable or changes infrequently.

It is important to define critical sections carefully and completely.

1There exist protocols that allow concurrent writes, however.

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 15



Introduction Races Synchronization Deadlock Summary References

Atomic Operations

Atomic operations are the simplest synchronization mechanism.

An atomic operation:

Cannot be interrupted

Appears as if no other operations run concurrently

Always either fully succeeds or fails with no effects

Every atomic operation requires hardware support.

Not all machine instructions are atomic!

(In fact, often very few are.)

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 16



Introduction Races Synchronization Deadlock Summary References

Atomic Operations in C

C provides no guaranteed atomic operations.2

Atomic operations for synchronization from C require one of:

Inline assembly code

Library functions

Knowledge of the compiler implementation

Kernel assistance

2There is sig_atomic_t, which is atomic with respect to signals.

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 17



Introduction Races Synchronization Deadlock Summary References

Mutual Exclusion

Mutual exclusion is a tool for ensuring that only one logical

control flow accesses some resource.

It is one of the most basic synchronization methods.

Mutual exclusion maps almost directly to critical sections:

The code of the critical section is the resource

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 18



Introduction Races Synchronization Deadlock Summary References

The Mutex

A software tool for providing mutual exclusion is the mutex.

It provides two operations:

Lock

Unlock

Operation Mutex State Action

Lock Unlocked Lock mutex immediately3

Lock Locked Block until unlocked, then lock

Unlock Locked Unlock mutex immediately

Unlock Unlocked Implementation dependent

3If a flow locks a mutex that the same flow has already locked, behavior is

implementation-dependent.

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 19



Introduction Races Synchronization Deadlock Summary References

Synchronization with Mutexes

Mutexes can be used to provided synchronization.

They can:

Ensure that two actions do not happen simultaneously

Ensure that one action follows another

They can be used to create mechanisms to:

Directly order events

Ensure that two events begin at the same time

…

Many other synchronization “primitives” use mutexes.

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 20



Introduction Races Synchronization Deadlock Summary References

Using Mutexes around Critical Sections

The typical use of a mutex is to protect a critical section.

Every concurrent flow will:

1. Lock a mutex

2. Execute the critical section

3. Unlock the mutex

Since only one flow can lock the mutex at a time, this ensures

mutual exclusion in the critical section.

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 21



Introduction Races Synchronization Deadlock Summary References

Semaphores

Semaphores are a generalization of the mutex.

A semaphore is associated with a number.

There are two operations on a semaphore, variously named:

P and V

down and up

wait and post

…

We will use P and V (after the original Dijkstra paper).

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 22



Introduction Races Synchronization Deadlock Summary References

Semaphore Operations

P (for proberen in Dutch, or “to test”)

V (for verhogen, “to increment”)

A semaphore s is initialized with a nonnegative integer.

P(s) attempts to decrement the integer:

If it can be decremented and remain nonnegative

(i.e., it is ≥ 1), P returns immediately

If decrementing it would make it negative

(i.e., it is 0), P blocks until it is > 0

V(s) increments the integer:

If the incremented value is 1, it releases one flow blocked

on P, if such a flow exists
©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 23



Introduction Races Synchronization Deadlock Summary References

Semaphores as Mutexes

A semaphore initialized with the value 1 behaves like a mutex.

P(s) succeeds immediately for the first logical control flow to

attempt it

Any further flows block on P(s) because s is now zero

V(s) releases one flow blocked on s because s is now one

Semaphore value Equivalent mutex state

1 Unlocked

0 Locked

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 24



Introduction Races Synchronization Deadlock Summary References

Condition Variables

Condition variables allow a logical control flow to block until

some condition is met.

They work with mutexes to provide efficient blocking.

The holder of a mutex that is locked can block for a certain

condition by:

Waiting on a condition variable in a loop

Testing the condition when awakened

Breaking the loop if the condition is met

A concurrent flow that may have satisfied the condition can:

Broadcast to all waiting flows

Signal one waiting flow
©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 25



Introduction Races Synchronization Deadlock Summary References

Mutex Interactions

The waiting flow must hold a mutex to wait.

The mutex must protect data used in the condition check.

Upon waiting, the mutex will be unlocked.

Upon awaking, the waiting flow will re-lock the mutex.

This means that the waiting flow cannot assume the protected

data remained unchanged while it waited.

This complicated mutex interaction allows the signaling flow to

modify the protected data.

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 26



Introduction Races Synchronization Deadlock Summary References

Wake and Check

The wake and check procedure allows:

A thread to safely signal the condition even if it is not sure it

has been met

A condition to be signaled in the presence of newcomers

that may falsify it before the waiting thread is scheduled

Threads to be spuriously woken for other reasons (e.g.,

asynchronous notifications)

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 27



Introduction Races Synchronization Deadlock Summary References

Example Condition Control Flow

Mutex m

ConditionVariable cv

Data d

waiter () {

lock m

while condition on d {

wait on cv

}

take action

unlock m

}

signaler () {

lock m

modify d

signal cv

unlock m

}

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 28



Introduction Races Synchronization Deadlock Summary References

Deadlock

Deadlock is a condition in concurrent programming where two or

more concurrent flows are waiting for each other and thus can

never make progress.

Consider:
flow A:

lock mutex m0

lock mutex m1

do something

flow B:

lock mutex m1

lock mutex m0

do something

If flow A is interrupted by flow B after locking m0 and before

locking m1, deadlock occurs.

Neither flow can proceed, and neither can release the other.

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 29



Introduction Races Synchronization Deadlock Summary References

Necessary Conditions

For deadlock to occur, all of the following must be true [3]:

At least one resource is mutually exclusive.

Flows hold locks while waiting for other locks to become

available

Locks cannot be preempted: once a flow holds a lock, it

holds it until it voluntarily releases it.

A circular chain of flows exists, such that each flow holds

some lock required by the next flow

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 30



Introduction Races Synchronization Deadlock Summary References

Avoiding Deadlock

Deadlock is caused by synchronization.

There are various techniques to avoid deadlock.

For deadlock caused by mutual exclusion on multiple locks,

there is a simple solution:

All mutexes in a system are ordered (perhaps artificially)

All flows lock mutexes in order

All flows unlock mutexes in reverse order

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 31



Introduction Races Synchronization Deadlock Summary References

Summary

A race is a situation where program correctness depends

on the order of operations in concurrent flows.

Data races are races involving modification of data.

Synchronization is the deliberate ordering of events.

A critical section is a region of code that must be accessed

by at most one concurrent flow at a time.

Synchronization primitives:

Atomic operations

Mutexes

Semaphores

Condition variables

Deadlock is a program error caused by synchronization.

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 32



Introduction Races Synchronization Deadlock Summary References

Next Time …

POSIX threads

POSIX mutexes

POSIX semaphores

POSIX condition variables

Basically POSIX

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 33



Introduction Races Synchronization Deadlock Summary References

References I

Optional Readings

[1] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau. Operating Systems: Three

Easy Pieces. Chapter 26: 26.2–26.6. Arpaci-Dusseau Books. URL:

https://pages.cs.wisc.edu/~remzi/OSTEP/.

[2] Randal E. Bryant and David R. O’Hallaron. Computer Science: A Programmer’s

Perspective. Third Edition. Chapter 12: 12.4-12.7. Pearson, 2016.

[3] E. G. Coffman Jr., M. J. Elphick, and A. Shoshani. “System Deadlocks”. In: Computing

Surveys 3.2 (June 1971).

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 34

https://pages.cs.wisc.edu/~remzi/OSTEP/


Introduction Races Synchronization Deadlock Summary References

License

Copyright 2018–2023 Ethan Blanton, All Rights Reserved.

Copyright 2022, 2023 Carl Alphonce, All Rights Reserved.

Copyright 2019 Karthik Dantu, All Rights Reserved.

Reproduction of this material without written consent of the

author is prohibited.

To retrieve a copy of this material, or related materials, see

https://www.cse.buffalo.edu/~eblanton/.

©2023 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 35

https://www.cse.buffalo.edu/~eblanton/

	Introduction
	Races
	Synchronization
	Deadlock
	Summary
	References

