
Final Review

CSE 220: Systems Programming

Ethan Blanton & Carl Alphonce

Department of Computer Science and Engineering

University at Buffalo



Logistics Heap VM Concurrency Races PThreads Kernel I/O Caching

Logistics

Your final will be Tuesday, May 14 at 7:15 PM.

It will be held in NSC 201. Watch HUB for changes.

You will need:

Yourself

A writing instrument

Nothing else

If you are late, you will not be admitted to the room.

The exam is closed book, closed notes.

©2024 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 2



Logistics Heap VM Concurrency Races PThreads Kernel I/O Caching

Dynamic Memory Allocation

The OS notion of the heap is very simplistic.

The dynamic allocator has to manage the heap.

Metadata is required for management.

The heap can become fragmented:

Internal fragmentation is inside heap blocks.

External fragmentation is between heap blocks.

©2024 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 3



Logistics Heap VM Concurrency Races PThreads Kernel I/O Caching

Virtual Memory

Virtual memory:

uses a memory management unit

allows the CPU to operate in a virtual address space that

may be different from the physical address space

the MMU translates virtual addresses to physical addresses

Paging is a common model for virtual memory.

Paged systems break both address spaces into pages.

Pages can be mapped individually between virtual and

physical addresses.

Page tables allow the MMU to translate addresses.

Page faults bring mapped but unallocated pages into

memory.

©2024 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 4



Logistics Heap VM Concurrency Races PThreads Kernel I/O Caching

Processes, Threads, and Concurrency

Logical control flows are execution steps through programs.

Concurrency is multiple logical control flows at one time.

Multiprocessing versus Multitasking

Processes versus Threads

©2024 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 5



Logistics Heap VM Concurrency Races PThreads Kernel I/O Caching

Races and Synchronization

A race is a situation where program correctness depends

on the order of operations in concurrent flows.

Data races are races involving modification of data.

Synchronization is the deliberate ordering of events.

A critical section is a region of code that must be accessed

by at most one concurrent flow at a time.

Synchronization primitives:

Atomic operations

Mutexes

Semaphores

Condition variables

Deadlock is a program error caused by synchronization.

©2024 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 6



Logistics Heap VM Concurrency Races PThreads Kernel I/O Caching

POSIX Threads and Synchronization

The POSIX threads (pthreads) API provides a thread

abstraction on Unix

POSIX provides many synchronization primitives:

Mutexes

Semaphores

Condition variables

Thread joining

CS:APP covers semaphores in detail

©2024 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 7



Logistics Heap VM Concurrency Races PThreads Kernel I/O Caching

The Kernel and User Mode

Exceptions are special control flow

Protection domains control access to hardware resources

Exception handlers run in supervisor mode in the kernel

Special trap exceptions can be used to implement system

calls

System calls allow user mode programs to request access

to the kernel

©2024 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 8



Logistics Heap VM Concurrency Races PThreads Kernel I/O Caching

Input and Output

Unix I/O is defined by the POSIX Standard

Standard I/O is defined by the C Standard

The kernel tracks open files with file descriptors

All file I/O goes through the kernel

The standard I/O library is buffered

©2024 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 9



Logistics Heap VM Concurrency Races PThreads Kernel I/O Caching

Caching and Locality

The CPU is much faster than memory or disks.

The difference in speeds is growing.

Programs exhibit locality:

Spatial

Temporal

Caching depends on locality to improve performance.

Writing good programs requires understanding locality.

©2024 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 10



Logistics Heap VM Concurrency Races PThreads Kernel I/O Caching

License

Copyright 2018–2024 Ethan Blanton, All Rights Reserved.

Copyright 2022–2024 Carl Alphonce, All Rights Reserved.

Copyright 2019 Karthik Dantu, All Rights Reserved.

Reproduction of this material without written consent of the

author is prohibited.

To retrieve a copy of this material, or related materials, see

https://www.cse.buffalo.edu/~eblanton/.

©2024 Ethan Blanton & Carl Alphonce / CSE 220: Systems Programming 11

https://www.cse.buffalo.edu/~eblanton/

	Logistics
	Heap
	VM
	Concurrency
	Races
	PThreads
	Kernel
	I/O
	Caching

