
Mutual Exclusion

CSE 486: Distributed Systems

Ethan Blanton

Department of Computer Science and Engineering

University at Buffalo



Introduction Review Distributed Mutexes Token Passing Logical Clocks Summary References

Mutual Exclusion

Mutual Exclusion is another consensus problem.

What process has exclusive access to a resource at time t?

Locally, this is typically handled by hardware or the OS.

In a distributed system, this becomes more difficult.

©2024 Ethan Blanton / CSE 486: Distributed Systems 2



Introduction Review Distributed Mutexes Token Passing Logical Clocks Summary References

Races

Races, or race conditions, are situations where:

Two or more events are dependent upon each other

Some of the events may happen in more than one order, or

even simultaneously

There exists some ordering of the events that is incorrect

For example:

Some state will be updated multiple times

Output will be produced based on the state

If some order of updates results in invalid output, this is a race.

©2024 Ethan Blanton / CSE 486: Distributed Systems 3



Introduction Review Distributed Mutexes Token Passing Logical Clocks Summary References

Critical Sections

A critical section is a region of code that must be accessed by at

most one concurrent process at a time.

Typically, the region of code mutates state in some fashion.

Multiple concurrent mutations may result in inconsistent state.

For example, storing to a Go map is a critical section.

Multiple concurrent stores can cause a panic.

©2024 Ethan Blanton / CSE 486: Distributed Systems 4



Introduction Review Distributed Mutexes Token Passing Logical Clocks Summary References

Mutual Exclusion

Mutual exclusion is a tool for ensuring that only one concurrent

process accesses some resource.

It is one of the most basic synchronization methods.

Mutual exclusion maps almost directly to critical sections:

The code of the critical section is the resource

©2024 Ethan Blanton / CSE 486: Distributed Systems 5



Introduction Review Distributed Mutexes Token Passing Logical Clocks Summary References

The Mutex

A software tool for providing mutual exclusion is the mutex.

It provides two operations:

Lock

Unlock

Operation Mutex State Action

Lock Unlocked Lock mutex immediately1

Lock Locked Block until unlocked, then lock

Unlock Locked Unlock mutex immediately

Unlock Unlocked Implementation dependent

1If a flow locks a mutex it has already locked, behavior is

implementation-dependent.

©2024 Ethan Blanton / CSE 486: Distributed Systems 6



Introduction Review Distributed Mutexes Token Passing Logical Clocks Summary References

Properties of Mutexes

We want our mutexes to exhibit three properties:

Safety:

No two processes enter the critical section at one time

Liveness:

When there are processes that want to enter the critical section,

one of them eventually does

Fairness:

No process waits indefinitely to enter the critical section

©2024 Ethan Blanton / CSE 486: Distributed Systems 7



Introduction Review Distributed Mutexes Token Passing Logical Clocks Summary References

Deadlock

Deadlock is a condition in concurrent programming where two or

more processes are waiting for each other and thus can never

make progress.

Consider:
process A:

lock mutex m0

lock mutex m1

do something

process B:

lock mutex m1

lock mutex m0

do something

If process A is interrupted by process B after locking m0 and

before locking m1, deadlock occurs.

Neither process can proceed, and neither can release the other.

©2024 Ethan Blanton / CSE 486: Distributed Systems 8



Introduction Review Distributed Mutexes Token Passing Logical Clocks Summary References

Avoiding Deadlock

Deadlock is caused by synchronization.

There are various techniques to avoid deadlock.

For deadlock caused by mutual exclusion on multiple locks,

there is a simple solution:

All mutexes in a system are ordered (perhaps artificially)

All flows lock mutexes in order

All flows unlock mutexes in reverse order

©2024 Ethan Blanton / CSE 486: Distributed Systems 9



Introduction Review Distributed Mutexes Token Passing Logical Clocks Summary References

Distributed Mutual Exclusion

In a distributed system, mutual exclusion is by message passing.

There is no shared memory or operating system primitive on

which to implement the mutex!

In an asynchronous system, this has the complications we’ve

discussed:

Messages are delayed

Messages arrive out of order

Processes fail to respond

etc.

©2024 Ethan Blanton / CSE 486: Distributed Systems 10



Introduction Review Distributed Mutexes Token Passing Logical Clocks Summary References

Properties of Distributed Mutexes

Distributed mutexes have several more properties that interest

us:

Synchronization Delay:

The duration of time between some process releasing the

mutex and the next process acquiring it

Throughput:

The number of lock/unlock pairs per unit time; this is typically

measured with “empty” critical sections

Message Complexity:

The number of messages required to obtain (or obtain and

release) a lock

©2024 Ethan Blanton / CSE 486: Distributed Systems 11



Introduction Review Distributed Mutexes Token Passing Logical Clocks Summary References

Centralized Mutual Exclusion

Centralization is an obvious solution to this problem.

The simplest case:

A server maintains the current lock holder

Processes send lock/unlock requests

This reduces distributed mutual exclusion to a local mutex.

Let’s look at its properties.

©2024 Ethan Blanton / CSE 486: Distributed Systems 12



Introduction Review Distributed Mutexes Token Passing Logical Clocks Summary References

Properties of Centralized Mutexes

Safety: as safe as the central mutex

Liveness: Vulnerable to single point of failure

Fairness: as fair as the central mutex (or server algorithm)

Synchronization Delay: Twice the message one-way delay d

Throughput: 1/2d

Message Complexity: Minimum 3: lock request, lock grant,

unlock request

©2024 Ethan Blanton / CSE 486: Distributed Systems 13



Introduction Review Distributed Mutexes Token Passing Logical Clocks Summary References

Single Point of Failure

If the server fails, deadlock occurs:

If the mutex is locked, it cannot be unlocked.

If the mutex is unlocked, it cannot be locked.

Elections can be used to solve this.

Some technique must be used to recover the mutex state.

©2024 Ethan Blanton / CSE 486: Distributed Systems 14



Introduction Review Distributed Mutexes Token Passing Logical Clocks Summary References

Tokens

Access to resources can be tied to a token.

The holder of a token may use a resources.

With ownership semantics, this can provide mutual exclusion:

There is exactly one token

The token must be passed between processes

The process in possession of the token may enter the

critical section

©2024 Ethan Blanton / CSE 486: Distributed Systems 15



Introduction Review Distributed Mutexes Token Passing Logical Clocks Summary References

Token Rings

Le Lann [4] proposed a ring structure for token passing.

(This is the same paper that introduced ring elections!)

Some process creates the (unique) token, and:

1. Executes the critical section if it desires

2. Hands the token to the next process on the ring

The token is only passed when a process is not in the critical

section.

Only the process with the token may enter the critical section.

©2024 Ethan Blanton / CSE 486: Distributed Systems 16



Introduction Review Distributed Mutexes Token Passing Logical Clocks Summary References

Maintaining the Token

Correct operation requires exactly one token:

More than one token violates mutual exclusion

No token causes deadlock

Therefore:

Failure of the process with the token is a problem.

Generation of the initial token is a problem.

©2024 Ethan Blanton / CSE 486: Distributed Systems 17



Introduction Review Distributed Mutexes Token Passing Logical Clocks Summary References

Elections

The ring election protocol was oringinally proposed for

generating the token!

Exactly one process generates exactly one token.

If the token is lost, an election occurs.

This is where FLP comes in:

How do you know that the token was lost?

The answer is timeouts.

In an asynchronous system, no timeout is guaranteed to be long

enough.

©2024 Ethan Blanton / CSE 486: Distributed Systems 18



Introduction Review Distributed Mutexes Token Passing Logical Clocks Summary References

Observations

If you expect high contention, this is very fair (round robin).

If you expect low contention, the throughput is poor.

Token rings have been popular for other network protocols.

(Token ring was a competitor to (broadcast-based) Ethernet.)

CSP-style concurrency control can be thought of as token

passing but without (necessarily) a ring structure.

©2024 Ethan Blanton / CSE 486: Distributed Systems 19



Introduction Review Distributed Mutexes Token Passing Logical Clocks Summary References

Properties

Safety: As long as there is one token

Liveness: Vulnerable to token loss

Fairness: Very good (at least 1/n)

Synchronization Delay: O(n) times message delay

Throughput: 1 over message delay or worse

Message Complexity: Minimum 1, Maximum n

©2024 Ethan Blanton / CSE 486: Distributed Systems 20



Introduction Review Distributed Mutexes Token Passing Logical Clocks Summary References

Lamport Distributed Mutexes

Lamport Clocks [3] propose a distributed mutex.

Individual processes reserve a place in a queue.

Logical clocks total order the queue and grant the lock in

cooperation with other processes.

It is loosely based on another Lamport story-paper [2].

©2024 Ethan Blanton / CSE 486: Distributed Systems 21



Introduction Review Distributed Mutexes Token Passing Logical Clocks Summary References

Ricart and Agrawala

Ricart and Agrawala proposed an improved algorithm [5].

Its operation is simple:

A process wishing to enter the critical section sends a

REQUEST message to every other process.

A process which does not object sends a REPLY message.

A process which objects delays its reply.

Once all processes reply, the process can enter.

Whether or not a process should object depends on:

Whether it is currently in the critical section

Whether it thinks it should be allowed to enter first

©2024 Ethan Blanton / CSE 486: Distributed Systems 22



Introduction Review Distributed Mutexes Token Passing Logical Clocks Summary References

Logical Clocks

The ordering of entries is maintained by a logical clock.

Every REQUEST has a clock timestamp which is its priority.

The clock is incremented before stamping the REQUEST.

Numerically lower priorities are serviced before numerically

higher priorities.

Incoming requests advance the local clock.

©2024 Ethan Blanton / CSE 486: Distributed Systems 23



Introduction Review Distributed Mutexes Token Passing Logical Clocks Summary References

Entering the Critical Section

To enter the critical section, the process does the following:

1. Increment the logical clock Time

2. Set Requesting = true

3. Set Sequence = Time

4. Timestamp a REQUEST message

5. Send the request to all processes

6. Wait for a REPLY message from all processes

©2024 Ethan Blanton / CSE 486: Distributed Systems 24



Introduction Review Distributed Mutexes Token Passing Logical Clocks Summary References

Processing a Request

When a REQUEST with timestamp k is received, the process

will:

1. Set the local timestamp to MAX(k, Time)

2. If Requesting == false or k < Time, send a REPLY

immediately

3. Otherwise, enqueue the request on RequestQueue

To leave the critical section, the process will:

1. Set Requesting = false

2. Send a REPLY for all messages in RequestQueue

©2024 Ethan Blanton / CSE 486: Distributed Systems 25



Introduction Review Distributed Mutexes Token Passing Logical Clocks Summary References

Observations

The set of participating nodes must be known.

Messages must be reliable.

Transmission delay must be bounded.

Note that it does not require a synchronous system, however:

Messages can arrive out of order

The bound on transmission delay can be arbitrarily long

©2024 Ethan Blanton / CSE 486: Distributed Systems 26



Introduction Review Distributed Mutexes Token Passing Logical Clocks Summary References

Properties

Safety:

Every process must REPLY to allow a critical section

No process will REPLY if its own critical section is active or

pending at a higher priority

Liveness: Deadlock if any process fails, but not otherwise

Fairness: Perfectly fair

Synchronization Delay: One-way message delay

Throughput: ... complicated?

Message Complexity: 2n – 2

©2024 Ethan Blanton / CSE 486: Distributed Systems 27



Introduction Review Distributed Mutexes Token Passing Logical Clocks Summary References

Failures and FLP

This process deadlocks on node failure.

The paper suggests a timeout-based failure detector.

This is the out for FLP!

If messages can be arbitrarily delayed, then no timeout is

sufficient.

An early timeout leads to violation of safety.

©2024 Ethan Blanton / CSE 486: Distributed Systems 28



Introduction Review Distributed Mutexes Token Passing Logical Clocks Summary References

Summary

We will see mutual exclusion again.

Mutual exclusion is valuable for distributed systems

Races occur when ordering is important and not maintained

Mutexes model mutual exclusion

Deadlocks can arise when mutexes are used

Logical clocks can be used to implement distributed

mutexes

©2024 Ethan Blanton / CSE 486: Distributed Systems 29



Introduction Review Distributed Mutexes Token Passing Logical Clocks Summary References

References I

Required Readings

[1] Ajay D. Kshemkalyani and Mukesh Singhal. Distributed

Computing: Principles, Algorithms, and Systems. Chapter 9:

9.1–9.4. Cambridge University Press, 2008. ISBN:

978-0-521-18984-2.

Optional Readings

[2] Leslie Lamport. “A New Solution of Dijkstra’s Concurrent

Programming Problem”. In: Communications of the ACM 17.8

(Aug. 1974), pp. 453–455. DOI: 10.1145/361082.361093. URL:

http://lamport.azurewebsites.net/pubs/bakery.pdf.

©2024 Ethan Blanton / CSE 486: Distributed Systems 30

https://doi.org/10.1145/361082.361093
http://lamport.azurewebsites.net/pubs/bakery.pdf


Introduction Review Distributed Mutexes Token Passing Logical Clocks Summary References

References II
[3] Leslie Lamport. “Time, Clocks, and the Ordering of Events in a

Distributed System”. In: Communications of the ACM 21.7 (July

1978). Ed. by R. Stockton Gaines, pp. 558–565. URL:

http://lamport.azurewebsites.net/pubs/time-clocks.pdf.

[4] Gérard Le Lann. “Distributed Systems—Towards a Formal

Approach”. In: Information Processing 77. Ed. by Bruce Gilchrest.

North-Holland Publishing Company, 1977, pp. 155–160. URL:

https://www.rocq.inria.fr/novaltis/publications/IFIP%

20Congress%201977.pdf.

©2024 Ethan Blanton / CSE 486: Distributed Systems 31

http://lamport.azurewebsites.net/pubs/time-clocks.pdf
https://www.rocq.inria.fr/novaltis/publications/IFIP%20Congress%201977.pdf
https://www.rocq.inria.fr/novaltis/publications/IFIP%20Congress%201977.pdf


Introduction Review Distributed Mutexes Token Passing Logical Clocks Summary References

References III
[5] Glenn Ricart and Ashok Agrawala. “An optimal algorithm for

mutual exclusion in computer networks”. In: Communications of

the ACM 24.1 (Jan. 1981). Ed. by R. Stockton Gaines, pp. 9–17.

DOI: 10.1145/358527.358537. URL:

https://search.lib.buffalo.edu/permalink/01SUNY_BUF/

12pkqkt/cdi_crossref_primary_10_1145_358527_358537.

©2024 Ethan Blanton / CSE 486: Distributed Systems 32

https://doi.org/10.1145/358527.358537
https://search.lib.buffalo.edu/permalink/01SUNY_BUF/12pkqkt/cdi_crossref_primary_10_1145_358527_358537
https://search.lib.buffalo.edu/permalink/01SUNY_BUF/12pkqkt/cdi_crossref_primary_10_1145_358527_358537


Introduction Review Distributed Mutexes Token Passing Logical Clocks Summary References

Copyright 2021, 2023, 2024 Ethan Blanton, All Rights Reserved.

Reproduction of this material without written consent of the

author is prohibited.

To retrieve a copy of this material, or related materials, see

https://www.cse.buffalo.edu/~eblanton/.

©2024 Ethan Blanton / CSE 486: Distributed Systems 33

https://www.cse.buffalo.edu/~eblanton/

	Introduction
	Review
	Distributed Mutexes
	Token Passing
	Logical Clocks
	Summary
	References

