
Locking and Commit Protocols

CSE 486: Distributed Systems

Ethan Blanton

Department of Computer Science and Engineering

University at Buffalo



Introduction R/W Locks Two-Version Locks Distributed Transactions Summary References

Locking

So far we have looked at exclusive locks:

One process can lock a lock, all others are blocked.

There are also non-exclusive locks:

Read/Write locks (many readers, one writer)

Two-version locks (many readers/writers, writes wait)

In both cases, many readers can proceed simultaneously.

©2024 Ethan Blanton / CSE 486: Distributed Systems 2



Introduction R/W Locks Two-Version Locks Distributed Transactions Summary References

Committing

Distributed commit has its own challenges.

All parties must either commit, or abort.

Committed transactions must be durable.

This despite the fact that any party can fail!

©2024 Ethan Blanton / CSE 486: Distributed Systems 3



Introduction R/W Locks Two-Version Locks Distributed Transactions Summary References

Read/Write Locks

Recall that read-read is not a conflict.

We can increase concurrency by allowing read-read:

T1 and T2 both wish to read datum S

T1 and T2 both lock S for reading

T1 and T2 proceed concurrently

This restricts concurrency only for write conflicts.

©2024 Ethan Blanton / CSE 486: Distributed Systems 4



Introduction R/W Locks Two-Version Locks Distributed Transactions Summary References

R/W Lock States

Unlike mutexes, Read/Write locks have three states [1]:

Unlocked, Read Locked, and Locked

The allowable state transitions are:

State Read Lock Write Lock

Unlocked Read Locked Write Locked

Read Locked Read Locked Block for Unlock

Write Locked Block for Unlock Block for Unlock

Read Locked moves to unlocked only when all readers unlock.

Write Locked moves to unlocked only when all writers unlock.

©2024 Ethan Blanton / CSE 486: Distributed Systems 5



Introduction R/W Locks Two-Version Locks Distributed Transactions Summary References

Lock Promotions

Additional concurrency can be allowed with lock promotions.

A process holding a read lock can promote it to a write lock.

This does not unlock the data item!

Lock promotions follow write lock rules.

Demotions from write to read must be prohibited for 2PL.

The drawback of promotions is deadlock.

©2024 Ethan Blanton / CSE 486: Distributed Systems 6



Introduction R/W Locks Two-Version Locks Distributed Transactions Summary References

Lock Promotion Deadlock

T1:

Read Lock A

compute

Write Lock A

T2:

Read Lock A

Write Lock A

What if T2 runs while T1 is in “compute”?

©2024 Ethan Blanton / CSE 486: Distributed Systems 7



Introduction R/W Locks Two-Version Locks Distributed Transactions Summary References

Two-Version Locks

Two-Version locks increase concurrency even further.

They allow one writer and many readers to operate concurrently.

They operate like read-write locks, but the first write lock is

immediate.

Consistency is maintained by delaying the write.

©2024 Ethan Blanton / CSE 486: Distributed Systems 8



Introduction R/W Locks Two-Version Locks Distributed Transactions Summary References

Two-Version State

A writing transaction writes to a copy with two-version locking.

When the transaction completes, a fourth lock state is used:

Committing.

The Committing state is like a Read/Write Lock Write state:

it is truly exclusive.

The key is that the write is delayed until all readers finish.

Thus all concurrent reads happen before the write.

©2024 Ethan Blanton / CSE 486: Distributed Systems 9



Introduction R/W Locks Two-Version Locks Distributed Transactions Summary References

Write-Write Conflicts

Write-write conflicts are solved via mutual exclusion.

If two transactions write the same state, one must wait.

If two transactions write different state, but overlap, deadlock

may occur:

T1:

Read Lock A

compute

Write Lock B

T2:

Read Lock A

Write Lock A

(Again, T2 runs during T1 “compute”.)

©2024 Ethan Blanton / CSE 486: Distributed Systems 10



Introduction R/W Locks Two-Version Locks Distributed Transactions Summary References

Aborting on Deadlock

With both R/W promotion and two-version locking, even strict

two-phase locking can lead to deadlock.

There are two solutions:

Acquire all locks immediately

Abort on deadlock

If transactions:

Are expected to be very fast

Rarely conflict

…then abort-and-retry will normally succeed.

©2024 Ethan Blanton / CSE 486: Distributed Systems 11



Introduction R/W Locks Two-Version Locks Distributed Transactions Summary References

Distributed Transactions

A distributed transaction invokes operations on multiple servers.

They can be flat or nested:

Flat: may involve multiple servers, but only one

begin/commit pair.

Nested: involve both multiple servers and additional

transactions with their own begin/commit pairs.

Aborting a nested transaction cascades.

©2024 Ethan Blanton / CSE 486: Distributed Systems 12



Introduction R/W Locks Two-Version Locks Distributed Transactions Summary References

Distributed Transaction Roles

Distributed transactions have:

A coordinator: in charge of the begin, commit, and abort

operations.

One or more participants: processes that handle local

operations on state (or perform calculations).

The coordinator may also be a participant.

©2024 Ethan Blanton / CSE 486: Distributed Systems 13



Introduction R/W Locks Two-Version Locks Distributed Transactions Summary References

Commit Atomicity

Even distributed commit must be atomic!

When the transaction is complete:

The coordinator schedules a commit

All participants must commit, or

The commit fails and the coordinator must abort, so

All participants must abort

When all processes must make a decision, what do we have?

Consensus!

©2024 Ethan Blanton / CSE 486: Distributed Systems 14



Introduction R/W Locks Two-Version Locks Distributed Transactions Summary References

One-Phase Commit

Assume that the system is asynchronous, not byzantine, and

that we have a crash-recovery model.

Our safety property is atomic commit/abort.

In a one-phase commit protocol, the coordinator simply notifies

all processes to commit or abort.

Does that work?

What if a participant cannot abort the transaction (e.g., due

to deadlock).

What if a participant crashes after the commit decision?

©2024 Ethan Blanton / CSE 486: Distributed Systems 15



Introduction R/W Locks Two-Version Locks Distributed Transactions Summary References

One-Phase Commit

Assume that the system is asynchronous, not byzantine, and

that we have a crash-recovery model.

Our safety property is atomic commit/abort.

In a one-phase commit protocol, the coordinator simply notifies

all processes to commit or abort.

Does that work?

What if a participant cannot abort the transaction (e.g., due

to deadlock).

What if a participant crashes after the commit decision?

©2024 Ethan Blanton / CSE 486: Distributed Systems 16



Introduction R/W Locks Two-Version Locks Distributed Transactions Summary References

Two-Phase Commit

Two-phase commit [2] fixes this with (surprise) two phases:

First Phase:

The coordinator collects a votes for commit or abort.

Each participant stores the transaction state in permanent

storage before voting.

Second Phase:

If any participant has crashed or votes to abort, the

coordinator instructs all participants to abort.

If all participants vote to commit, the coordinator instructs all

participants to commit.

©2024 Ethan Blanton / CSE 486: Distributed Systems 17



Introduction R/W Locks Two-Version Locks Distributed Transactions Summary References

Failure Handling I

Failures can occur at four places:

A participant may crash at any time

Communication may be lost requesting a vote

Communication may be lost sending a vote

Communication may be lost declaring commitment

If a participant crashes:

Before voting: the transaction aborts

After voting: the transaction is in permanent storage

Coordinator crashes are somewhat more complicated.

They can be handled!

©2024 Ethan Blanton / CSE 486: Distributed Systems 18



Introduction R/W Locks Two-Version Locks Distributed Transactions Summary References

Failure Handling II

Lost messages:

Vote requests: the coordinator will time out and abort

Votes: the coordinator will time out and abort

Commit confirmation:

Participants that voted no can abort.

Participants that voted yes must not abort until a resolution

is received!

©2024 Ethan Blanton / CSE 486: Distributed Systems 19



Introduction R/W Locks Two-Version Locks Distributed Transactions Summary References

Problems with Two-Phase Commit

FLP dictates indefinite blocking.

The coordinator is a single point of failure.

(Is that fixable? Why or why not?)

Scalability is poor for many parties.

©2024 Ethan Blanton / CSE 486: Distributed Systems 20



Introduction R/W Locks Two-Version Locks Distributed Transactions Summary References

Summary

Non-exclusive locking can increase concurrency

Deadlock and aborts can be triggered!

Read/Write locks allow multiple readers in parallel

Two-version locks allow multiple readers and one writer

Deadlock detection and abort-and-retry can be effective

Distributed transactions require multi-process atomic

commits

Two-phase commit solves races in a simple commit

©2024 Ethan Blanton / CSE 486: Distributed Systems 21



Introduction R/W Locks Two-Version Locks Distributed Transactions Summary References

References I

Optional Readings

[1] Pierre-Jacques Courtois, Frans Heymans, and

David Lorge Parnas. “Concurrent Control with “Readers” and

“Writers””. In: Communications of the ACM 14.10 (Oct. 1971).

Ed. by Brian Randell. DOI: 10.1145/362759.362813. URL:

https://search.lib.buffalo.edu/permalink/01SUNY_BUF/

12pkqkt/cdi_crossref_primary_10_1145_362759_362813.

©2024 Ethan Blanton / CSE 486: Distributed Systems 22

https://doi.org/10.1145/362759.362813
https://search.lib.buffalo.edu/permalink/01SUNY_BUF/12pkqkt/cdi_crossref_primary_10_1145_362759_362813
https://search.lib.buffalo.edu/permalink/01SUNY_BUF/12pkqkt/cdi_crossref_primary_10_1145_362759_362813


Introduction R/W Locks Two-Version Locks Distributed Transactions Summary References

References II
[2] C. Mohan and Bruce G. Lindsay. “Efficient Commit Protocols for

the Tree of Processes Model of Distributed Transactions”. In:

Proceedings of the ACM Symposium on Principles of Distributed

Computing. ACM, Aug. 1983, pp. 76–88. DOI:

10.1145/800221.806711. URL: http://citeseerx.ist.psu.edu/

viewdoc/download?doi=10.1.1.63.7048&rep=rep1&type=pdf.

©2024 Ethan Blanton / CSE 486: Distributed Systems 23

https://doi.org/10.1145/800221.806711
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.63.7048&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.63.7048&rep=rep1&type=pdf


Introduction R/W Locks Two-Version Locks Distributed Transactions Summary References

Copyright 2021, 2024 Ethan Blanton, All Rights Reserved.

These slides include material Copyright 2018 Steve Ko, with

permission. That material contained the statement “These slides

contain material developed and copyrighted by Indranil Gupta

(UIUC).”

Reproduction of this material without written consent of the

author is prohibited.

To retrieve a copy of this material, or related materials, see

https://www.cse.buffalo.edu/~eblanton/.

©2024 Ethan Blanton / CSE 486: Distributed Systems 24

https://www.cse.buffalo.edu/~eblanton/

	Introduction
	R/W Locks
	Two-Version Locks
	Distributed Transactions
	Summary
	References

