
An Overview of Go

CSE 486/586: Distributed Systems

Ethan Blanton

Department of Computer Science and Engineering

University at Buffalo



Introduction Modules and Packages Slices and Maps Types Pointers Polymorphism Summary References

Writing Go

Go looks a lot like other languages (C, Java, etc.).

Go is not those languages.

If you pretend Go is Java (or C, or …), it will be difficult.

(This is true of other languages, as well)

Meet Go on its own terms and you will find it easier.

Ask questions about the topics in this lecture!

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 2



Introduction Modules and Packages Slices and Maps Types Pointers Polymorphism Summary References

Go is Unforgiving

Unused variable? Won’t compile.

Sloppy typing? Won’t compile.

Duplicate declaration? Won’t compile.

Wrong letter case? Won’t compile.

Read error messages carefully and follow the rules.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 3



Introduction Modules and Packages Slices and Maps Types Pointers Polymorphism Summary References

Idiomatic Go

Go has many idioms.

Idiomatic language is how something is normally expressed.

Natural language has idioms:

If you see eye to eye with Go, it will be a piece of cake.

Programming idioms are commonly-used “phrases”.

if err := mp.Send(buf); err != nil {

// handle error

}

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 4



Introduction Modules and Packages Slices and Maps Types Pointers Polymorphism Summary References

Go Modules

A Go module is an installable unit.

It might be a program or a library.

Each of our projects is a module.

The go.mod file gives the module name and its dependencies:

module cse586.messageservice

go 1.19

require google.golang.org/protobuf v1.28.1

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 5



Introduction Modules and Packages Slices and Maps Types Pointers Polymorphism Summary References

Packages

Each module contains packages.

All packages in a module start with the module name.

E.g., cse586.messageservice/api:

Module cse586.messageservice

Package api

Every .go file must have a package statement.

Packages correspond to directory names.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 6



Introduction Modules and Packages Slices and Maps Types Pointers Polymorphism Summary References

Arrays and Slices

Go has arrays much like arrays in Java.

var a [32]int //Array of 32 ints

Arrays are fixed in size and bounds checked.

Go also has slices, which are views into an array.

The array has a fixed size, but the slice length can change.

Slices are also bounds checked.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 7



Introduction Modules and Packages Slices and Maps Types Pointers Polymorphism Summary References

Making Slices

A slice can be taken from an array:

a := [32] int

s := a[:]

A slice can be allocated directly:

s := make ([]int , 32)

A slice can be taken from a slice:

s1 := make ([]int , 32)

s2 := s1 [0:16]

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 8



Introduction Modules and Packages Slices and Maps Types Pointers Polymorphism Summary References

Slice Length

Many Go functions and methods operate on slices.

Often the slice length is meaningful.

For example, Read():

accepts a byte slice

attempts to read the slice length in bytes

Read 4 bytes into a 1024 byte buffer:

var buf [1024] byte

os.Stdin.Read(buf [:4])

Read the docs!

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 9



Introduction Modules and Packages Slices and Maps Types Pointers Polymorphism Summary References

Maps

Go maps are like Python dictionaries.

Maps can only be created with make:

m := make(map[string]string)

Maps are unordered.

A map will resize itself as necessary.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 10



Introduction Modules and Packages Slices and Maps Types Pointers Polymorphism Summary References

Ranges

A range expression iterates maps, arrays, slices, strings, and

channels.

for index , value := range variableName {

// index is:

// key for maps

// array index for arrays

// slice index for slices

// unicode character position for strings

}

for value := range channel {

// No index for channels!

}

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 11



Introduction Modules and Packages Slices and Maps Types Pointers Polymorphism Summary References

Strong Typing

Go is strongly typed.

New types can be created with type:

type IntAlias int

Even structurally identical types are distinct:

var i int = 0

var ia IntAlias = i

cannot use i (type int) as type IntAlias in assignment

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 12



Introduction Modules and Packages Slices and Maps Types Pointers Polymorphism Summary References

Structures

Go structures are sort of like C structures.

They can have both public and private members.

They can embed other structs.

type AStruct struct {

privateField int

PublicField string

}

type AnotherStruct struct {

AStruct

AnotherField []byte

}

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 13



Introduction Modules and Packages Slices and Maps Types Pointers Polymorphism Summary References

Methods and Interfaces

We will cover these in detail later.

Methods provide object-like semantics to any non-interface type.

Interfaces provide polymorphism and encapsulation.

The empty interface (interface{}) is like C void * or

Java Object.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 14



Introduction Modules and Packages Slices and Maps Types Pointers Polymorphism Summary References

Go Pointers

Pointers in Go are much like C pointers.

Go tries to make them safer, but they can still be abused.

You can create a pointer with &.

You can dereference a pointer with * or ..

There is no -> operator in Go.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 15



Introduction Modules and Packages Slices and Maps Types Pointers Polymorphism Summary References

Allocation and Reference Safety

Go is garbage collected, there is no free().

Objects can be allocated with new().

Local variables can be returned as pointers with &:

var i int = 42

return &i

Static initializers can have their address taken:

type Query struct { question string , answer int }

pq := &Query{"life , the universe , and everything",

42}

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 16



Introduction Modules and Packages Slices and Maps Types Pointers Polymorphism Summary References

Method Polymorphism

Go methods are polymorphic over receiver type.

More than one receiver can implement the same method name.

A method may accept different arguments on different receivers.

Only one method of a given name can be defined for a given

receiver type.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 17



Introduction Modules and Packages Slices and Maps Types Pointers Polymorphism Summary References

Argument Polymorphism

Interfaces provide polymorphism for arguments.

If an argument requires an interface type, any implementation of

that interface satisfies the argument.

Functions and methods are not polymorphic by signature.

This is used heavily in the Go standard libraries.

Reader, Writer, etc. are common.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 18



Introduction Modules and Packages Slices and Maps Types Pointers Polymorphism Summary References

Summary

Go is unique, meet it on its own terms

Go is a picky language

Idioms are worth learning

Go uses structural (“duck”) typing

Go provides polymorphism through

Methods

Interfaces

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 19



Introduction Modules and Packages Slices and Maps Types Pointers Polymorphism Summary References

Next Time …

Our model of distributed systems

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 20



Introduction Modules and Packages Slices and Maps Types Pointers Polymorphism Summary References

References I

Required Readings

[1] Effective Go. URL: https://go.dev/doc/effective_go.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 21

https://go.dev/doc/effective_go


Introduction Modules and Packages Slices and Maps Types Pointers Polymorphism Summary References

Copyright 2021, 2023 Ethan Blanton, All Rights Reserved.

Reproduction of this material without written consent of the

author is prohibited.

To retrieve a copy of this material, or related materials, see

https://www.cse.buffalo.edu/~eblanton/.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 22

https://www.cse.buffalo.edu/~eblanton/

	Introduction
	Modules and Packages
	Slices and Maps
	Types
	Pointers
	Polymorphism
	Summary
	References

