
A Model of Distributed Systems

CSE 486/586: Distributed Systems

Ethan Blanton

Department of Computer Science and Engineering

University at Buffalo



Introduction Synchronicity Communication Concurrency CSP Summary References

Distributed Systems

Early on, we defined a distributed system as:

... multiple computer programs, possibly spread out over different

networked components, communicating by passing messages

What are:

computer programs?

communication?

messages?

What is our model of distributed systems?

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 2



Introduction Synchronicity Communication Concurrency CSP Summary References

Computer Programs

What is a computer program? is a hard question.

We will take an abstract view:

A sequence of instructions

Performing some task

For our purposes, these multiple programs could be:

Built from the same source code

Built from different source code

Threads in a single process

Separate processes possibly on different computers

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 3



Introduction Synchronicity Communication Concurrency CSP Summary References

Message Passing

There are many avenues for message passing:

Shared memory

Files

Sockets

Pipes

Go channels

This is distinct from general shared state, however.

Many programming models can be implemented through

message passing.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 4



Introduction Synchronicity Communication Concurrency CSP Summary References

Concurrency

In this model, many programs run concurrently.

This means that multiple programs may appear to make

progress simultaneously.

From the perspective of a program P:

Between time t and t + ϵ, a program Q may take some action.

Whether P and Q actually run simultaneously is irrelevant! [4]

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 5



Introduction Synchronicity Communication Concurrency CSP Summary References

Synchronous Systems

In a synchronous system, all actions take predictable time:

A message sent from P to Q always arrives within some

bounded time.

The relative rate of progress in P and Q is known.

Examples of synchronous systems are:

Symmetric multiprocessor computers

Some circuit-switched networks

Some tasks are substantially easier in synchronous systems.

We usually will not examine synchronous systems.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 6



Introduction Synchronicity Communication Concurrency CSP Summary References

Asynchronous Systems

In an asynchronous system, actions take unpredictable time:

Messages may be arbitrarily delayed

The difference in rate of progress in different processes is

unbounded

All Internet protocols are asynchronous.

Asynchronous systems have special challenges.

We will focus on asynchronous systems.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 7



Introduction Synchronicity Communication Concurrency CSP Summary References

Implications of Asynchrony

Asynchronous systems present challenges.

Suppose that:

P sends a message to Q and expects a response.

No message arrives for longer than expected.

What happened?

Did Q fail?

Is Q much slower than P expects, and still working?

Was the request message delayed in the network?

Was the request message lost?

Was the response delayed or lost?

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 8



Introduction Synchronicity Communication Concurrency CSP Summary References

Loss and Delay

Loss and delay are indistinguishable in an async system.

You cannot tell whether a message is:

late, or

never going to arrive.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 9



Introduction Synchronicity Communication Concurrency CSP Summary References

TCP and Loss

Recall that TCP used heuristics to detect loss!

1. A relatively long time without positive acknowledgment

2. Acknowledgment of some data but not all

There is no reliable loss indicator.

The missing segment might just be stuck in a queue somewhere!

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 10



Introduction Synchronicity Communication Concurrency CSP Summary References

Loss as Delay

In the end, sometimes loss looks like delay.

Consider what happens if TCP loses a segment:

The next data cannot be delivered at the receiver

Eventually the sender retransmits

The data is delivered at the receiver later than expected

In particular:

Loss at a lower layer may look like delay at a higher layer.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 11



Introduction Synchronicity Communication Concurrency CSP Summary References

Loss and Failure

Loss and failure may also be indistinguishable.

This is a consequence of the system relying on message

passing.

Consider:

Process P sends a message to Q and expects a reply

P never receives a reply

Did Q fail (crash, shut down, etc.)?

Was P’s message lost, or Q’s reply lost?

P can’t tell.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 12



Introduction Synchronicity Communication Concurrency CSP Summary References

Correctness and Safety

The introduction of concurrency has implications on correctness.

Operations that are safe without concurrency may become

unsafe.

Example:

Suppose we have a variable x = 0 visible to both P and Q.
P : x = x + 1

Q : x = x - 1

If these execute concurrently, what is x?

We don’t have enough information.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 13



Introduction Synchronicity Communication Concurrency CSP Summary References

Race Conditions

This is a race, or race condition:

Two or more events are dependent upon each other

Some of the events may happen in more than one order, or

even simultaneously

There exists some ordering of the events that is incorrect

For example:

Some state will be updated multiple times

Output will be produced based on the state

If some order of updates results in invalid output, this is a race.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 14



Introduction Synchronicity Communication Concurrency CSP Summary References

Example Race

P : x = x + 1

Q : x = x - 1

There are at least three possible outcomes here:

x = -1

x = 0

x = 1

Why?

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 15



Introduction Synchronicity Communication Concurrency CSP Summary References

Atomicity

These statements are not atomic: they can be interrupted.

x = x + 1 is at least three operations:

Read the value of x

Add one to that value

Write the new value to x

P reads x

Q reads x

P computes x + 1 Q computes x - 1

P stores x = x + 1

Q stores x = x - 1

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 16



Introduction Synchronicity Communication Concurrency CSP Summary References

Happens Before

The happens before relationship ensures a particular outcome.

If x = x + 1 happens before x = x - 1, then x = 0.

By judicious use of happens before, we can prevent races.

Many languages define happens before relationships.

The Go Memory Model [5] defines this for Go.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 17



Introduction Synchronicity Communication Concurrency CSP Summary References

Mutexes

Mutexes can be expressed as happens before relationships.

From the Go memory model:

For any sync.Mutex or sync.RWMutex variable l and n < m, call n of

l.Unlock() happens before call m of l.Lock() returns.

These guarantees must be made explicit in a language!

You cannot assume happens before relationships.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 18



Introduction Synchronicity Communication Concurrency CSP Summary References

Messages

A message send happens before its corresponding receive.

This is trivially true for a network transmission.

This is guaranteed by Go channels.

In shared memory, use mutexes or other synchronization.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 19



Introduction Synchronicity Communication Concurrency CSP Summary References

Communicating Sequential Processes

Tony Hoare proposed communicating sequential processes in

1978 [1].

CSP is a programming model built on message passing.

Hoare showed that it can:

Model other constructions (such as subroutines)

Enable parallel computation

Naturally express concurrent problems

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 20



Introduction Synchronicity Communication Concurrency CSP Summary References

CSP in Distributed Systems

CSP maps naturally to distributed systems:

Distributed systems communicate by message passing

Message exchanges create happens before relationships

Many distributed systems languages and libraries emulate CSP.

Go channels implement CSP input and output operations.

Socket communications can also provide CSP input and output.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 21



Introduction Synchronicity Communication Concurrency CSP Summary References

Fixing x

With CSP, we can ask a single process to manipulate x:

func handleX () {

for cmd := range c

{

switch cmd {

case INCREMENT:

x = x + 1

case DECREMENT:

x = x - 1

}

}

}

func P() {

c <- INCREMENT

}

func Q() {

c <- DECREMENT

}

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 22



Introduction Synchronicity Communication Concurrency CSP Summary References

Summary

Distributed systems communicate by message passing

We will work with asynchronous systems

Delay is indistinguishable from loss

Concurrent execution can lead to races

Happens before is the cure for races

CSP is a programming model for message passing

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 23



Introduction Synchronicity Communication Concurrency CSP Summary References

Next Time …

Failures and failure detection

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 24



Introduction Synchronicity Communication Concurrency CSP Summary References

References I

Required Readings

[3] Ajay D. Kshemkalyani and Mukesh Singhal. Distributed

Computing: Principles, Algorithms, and Systems. Chapter 1:

1.1–1.3, 1.5–1.8. Cambridge University Press, 2008. ISBN:

978-0-521-18984-2.

Optional Readings

[1] C. A. R. Hoare. “Communicating Sequential Processes”. In:

Communications of the ACM 21.8 (Aug. 1978), pp. 666–677.

URL: https://search.lib.buffalo.edu/permalink/01SUNY_BUF/

12pkqkt/cdi_crossref_primary_10_1145_359576_359585.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 25

https://search.lib.buffalo.edu/permalink/01SUNY_BUF/12pkqkt/cdi_crossref_primary_10_1145_359576_359585
https://search.lib.buffalo.edu/permalink/01SUNY_BUF/12pkqkt/cdi_crossref_primary_10_1145_359576_359585


Introduction Synchronicity Communication Concurrency CSP Summary References

References II
[2] C. A. R. Hoare. Communicating Sequential Processes. Prentice

Hall International, 1985. URL: http://www.usingcsp.com/.

[4] Rob Pike. Concurrency is not Parallelism. Jan. 2012. URL:

https://go.dev/blog/waza-talk.

[5] The Go Memory Model. May 2014. URL:

https://go.dev/ref/mem.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 26

http://www.usingcsp.com/
https://go.dev/blog/waza-talk
https://go.dev/ref/mem


Introduction Synchronicity Communication Concurrency CSP Summary References

Copyright 2019, 2023 Ethan Blanton, All Rights Reserved.

Reproduction of this material without written consent of the

author is prohibited.

To retrieve a copy of this material, or related materials, see

https://www.cse.buffalo.edu/~eblanton/.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 27

https://www.cse.buffalo.edu/~eblanton/

	Introduction
	Synchronicity
	Communication
	Concurrency
	CSP
	Summary
	References

