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Time Synchronization

As we have seen, time synchronization is hard.

Often, what we actually care about is causality, not time.

Could some event have caused another event?

If we can establish this, we may not need physical time!
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Logical Clocks

Logical clocks were first introduced by Lamport in 1978 [2].

They address ordering without requiring time synchronization.

Not all problems can be solved with logical clocks!
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Required Readings

This lecture has another required reading [1].

You are expected to keep up with required readings.

You should have already read all previous required readings!

They may show up on the Midterm/Final, such as:

A centralized failure detector model reduces communication

overhead, but violates the end-to-end-principle. Explain why it does

not preserve the end-to-end principle, and discuss the trade-offs that

it makes in terms of communication complexity and robustness

versus end-to-end failure detection.

This is an upper level course, read and think! Ask questions!
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Event Ordering

Logical clocks directly encode the happens before relationship.

This establishes three possible conditions for events e1 and e2:

e1 happens before e2

e2 happens before e1

Neither event happens before the other, they are concurrent

This is a partial ordering.
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Notation

If e1 happens before e2, we say e1 → e2.

If e1 does not happen before e2, we say e1 ↛ e2.

Note that this does not mean that e2 happens before e1!

If e1 ↛ e2 and e2 ↛ e1, then e1 and e2 are concurrent.
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Events in a Process

The events within a single process form a total ordering.

Every event in the process happens before the next,

sequentially.

For every event within a process, either p1 → p2 or p2 → p1.

This implies that processes have a single thread of control.

We conventionally number these events in numeric order.

(That is, p1 → p2.)
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Messages

Sending and receipt of messages are events.

Sending a message happens before the message is recieved.

Suppose that:

Message m is sent from process P as event pi
Process Q receives m as event qj

Therefore pi → qj .

P

Q

m

pi

qjTime →
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Transitivity

Happens before is transitive.

If ei → ej and ej → ek , then ei → ek .

This allows messages to order events between processes.

P

Q

p1 p2

m

q1 q2

p1 → q2
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Transitivity

Happens before is transitive.

If ei → ej and ej → ek , then ei → ek .

This allows messages to order events between processes.

P

Q

p1 p2

m

q1 q2

p1 → q2
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Concurrent Events

Concurrent events can only occur between processes.

P

Q

R
r1

p1

q1

r2

q2

p2

q3

p3
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Concurrent Events

Concurrent events can only occur between processes.

P

Q

R
r1

p1

q1

r2

q2

p2

q3

p3

r1 and p1 are concurrent.
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Concurrent Events

Concurrent events can only occur between processes.

P

Q
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r1

p1

q1

r2

q2

p2

q3

p3

r1 and p2 are concurrent.
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Concurrent Events

Concurrent events can only occur between processes.

P

Q

R
r1

p1

q1

r2

q2

p2

q3

p3

r1 → p3.
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Lamport Clocks

Lamport clocks number events with a logical timestamp.

The rules are simple:

Every process starts with a timestamp of 1.

Every time a process takes an action, it increments its

timestamp.

Sending a message is an action.

Messages include the timestamp of their action.

Receiving a message is an action.

After reception, processes set their timestamp to the

maximum of their local timestamp and the message

timestamp plus 1.
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Timestamp Example

These timestamps follow the Lamport clock rules.

P

Q

R
1

1

2

2

3

2

4

5

e1 e2

e3

e4

e2

If e1 → e2, the timestamp of e1 is numerically less than the times-

tamp of e2.
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Timestamp Example

Note that concurrency is ambiguous in the timestamps.

P

Q

R
1

1

2

2

3

2

4

5

e1 e2

e3

e4

e2

These points are concurrent.
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Timestamp Example

Note that concurrency is ambiguous in the timestamps.

P

Q

R
1

1

2

2

3

2

4

5

e1 e2

e3

e4

e2

So are these!
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Timestamp Example

Note that concurrency is ambiguous in the timestamps.

P

Q

R
1

1

2

2

3

2

4

5

e1 e2

e3

e4

e2

e1 and e2 are both concurrent with e3, but e1 → e2!
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Timestamp Example

Note that concurrency is ambiguous in the timestamps.

P

Q

R
1

1

2

2

3

2

4

5

e1 e2

e3

e4

e2

…and e4 and e2 are concurrent, too!
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Causality

Lamport clocks approximate causality:

If the timestamp of e1 < the timestamp of e2, then e1 could have

caused e2.

If e1 > e2, then e1 could not have caused e2.

The mapping is not perfect, with false positives.

There are no false negatives.
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Vector Clocks

Vector clocks associate more than one timestamp with an

event [3].

Each process has its own timestamp.

Each event is timestamped with the causality of every process.

This provides a tighter mapping with fewer false positives.

There are still no false negatives.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 22



Introduction Happens Before Lamport Clocks Vector Clocks Summary References

Vector Clock Rules

Every process Pi keeps a vector of clock values.

There is one vector entry for each process.

Pi can increment only the ith entry.

Each process takes the max of every vector position on

message receipt.
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Vector Clock Ordering

For vector v = ⟨p0, . . . ,pn⟩ and another u:

u = v iff ∀n
i=0

u[i] = v[i]

u ≤ v iff ∀n
i=0

u[i] ≤ v[i]

u < v iff u ≤ v and u ̸= v

u ∥ v iff ¬(u < v) and ¬(v < u)
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Vector Clock Example

P1

P2

P3

P4

⟨1,0,0,0⟩

⟨0,0,0,1⟩

⟨0,0,1,1⟩

⟨0,1,0,0⟩

⟨0,1,2,1⟩ ⟨0,1,3,1⟩

⟨2,1,3,1⟩

e1

e2

e1 is unambiguously concurrent with e2
because ⟨1,0,0,0⟩ ∥ ⟨0,1,3,1⟩
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Vector Clock Example

P1

P2

P3

P4

⟨1,0,0,0⟩

⟨0,0,0,1⟩

⟨0,0,1,1⟩

⟨0,1,0,0⟩

⟨0,1,2,1⟩ ⟨0,1,3,1⟩

⟨2,1,3,1⟩

e1

e2

e1 is unambiguously concurrent with e2
because ⟨1,0,0,0⟩ ∥ ⟨0,1,3,1⟩
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Disadvantages of Vector Clocks

Vector clocks have better precision than Lamport clocks.

They identify concurrent events more precisely.

However, they require more state.

For large numbers of processes they may be impractical.
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Total Ordering

Both Lamport and vector clocks can provide a total ordering.

This requires breaking ties between concurrent events.

Some arbitrary mechanism can be used; e.g.:

process IDs for Lamport clocks

numerical order for vector clocks

(For example: ⟨1,2,3,4⟩ comes before ⟨1,2,3,5⟩)
Supplementary physical timestamps

This total ordering is not physical time ordering!
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Summary

Logical clocks track causality of events

Lamport clocks use a single integer to define causality

Vector clocks provide greater precision than Lamport

clocks, but require more state

Logical clock orderings can be partial or total
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Next Time …

…
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