
Logical Time

CSE 486/586: Distributed Systems

Ethan Blanton

Department of Computer Science and Engineering

University at Buffalo



Introduction Happens Before Lamport Clocks Vector Clocks Summary References

Time Synchronization

As we have seen, time synchronization is hard.

Often, what we actually care about is causality, not time.

Could some event have caused another event?

If we can establish this, we may not need physical time!

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 2



Introduction Happens Before Lamport Clocks Vector Clocks Summary References

Logical Clocks

Logical clocks were first introduced by Lamport in 1978 [2].

They address ordering without requiring time synchronization.

Not all problems can be solved with logical clocks!

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 3



Introduction Happens Before Lamport Clocks Vector Clocks Summary References

Required Readings

This lecture has another required reading [1].

You are expected to keep up with required readings.

You should have already read all previous required readings!

They may show up on the Midterm/Final, such as:

A centralized failure detector model reduces communication

overhead, but violates the end-to-end-principle. Explain why it does

not preserve the end-to-end principle, and discuss the trade-offs that

it makes in terms of communication complexity and robustness

versus end-to-end failure detection.

This is an upper level course, read and think! Ask questions!

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 4



Introduction Happens Before Lamport Clocks Vector Clocks Summary References

Event Ordering

Logical clocks directly encode the happens before relationship.

This establishes three possible conditions for events e1 and e2:

e1 happens before e2

e2 happens before e1

Neither event happens before the other, they are concurrent

This is a partial ordering.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 5



Introduction Happens Before Lamport Clocks Vector Clocks Summary References

Notation

If e1 happens before e2, we say e1 → e2.

If e1 does not happen before e2, we say e1 ↛ e2.

Note that this does not mean that e2 happens before e1!

If e1 ↛ e2 and e2 ↛ e1, then e1 and e2 are concurrent.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 6



Introduction Happens Before Lamport Clocks Vector Clocks Summary References

Events in a Process

The events within a single process form a total ordering.

Every event in the process happens before the next,

sequentially.

For every event within a process, either p1 → p2 or p2 → p1.

This implies that processes have a single thread of control.

We conventionally number these events in numeric order.

(That is, p1 → p2.)

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 7



Introduction Happens Before Lamport Clocks Vector Clocks Summary References

Messages

Sending and receipt of messages are events.

Sending a message happens before the message is recieved.

Suppose that:

Message m is sent from process P as event pi
Process Q receives m as event qj

Therefore pi → qj .

P

Q

m

pi

qjTime →
©2023 Ethan Blanton / CSE 486/586: Distributed Systems 8



Introduction Happens Before Lamport Clocks Vector Clocks Summary References

Transitivity

Happens before is transitive.

If ei → ej and ej → ek , then ei → ek .

This allows messages to order events between processes.

P

Q

p1 p2

m

q1 q2

p1 → q2

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 9



Introduction Happens Before Lamport Clocks Vector Clocks Summary References

Transitivity

Happens before is transitive.

If ei → ej and ej → ek , then ei → ek .

This allows messages to order events between processes.

P

Q

p1 p2

m

q1 q2

p1 → q2

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 10



Introduction Happens Before Lamport Clocks Vector Clocks Summary References

Concurrent Events

Concurrent events can only occur between processes.

P

Q

R
r1

p1

q1

r2

q2

p2

q3

p3

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 11



Introduction Happens Before Lamport Clocks Vector Clocks Summary References

Concurrent Events

Concurrent events can only occur between processes.

P

Q

R
r1

p1

q1

r2

q2

p2

q3

p3

r1 and p1 are concurrent.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 12



Introduction Happens Before Lamport Clocks Vector Clocks Summary References

Concurrent Events

Concurrent events can only occur between processes.

P

Q

R
r1

p1

q1

r2

q2

p2

q3

p3

r1 and p2 are concurrent.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 13



Introduction Happens Before Lamport Clocks Vector Clocks Summary References

Concurrent Events

Concurrent events can only occur between processes.

P

Q

R
r1

p1

q1

r2

q2

p2

q3

p3

r1 → p3.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 14



Introduction Happens Before Lamport Clocks Vector Clocks Summary References

Lamport Clocks

Lamport clocks number events with a logical timestamp.

The rules are simple:

Every process starts with a timestamp of 1.

Every time a process takes an action, it increments its

timestamp.

Sending a message is an action.

Messages include the timestamp of their action.

Receiving a message is an action.

After reception, processes set their timestamp to the

maximum of their local timestamp and the message

timestamp plus 1.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 15



Introduction Happens Before Lamport Clocks Vector Clocks Summary References

Timestamp Example

These timestamps follow the Lamport clock rules.

P

Q

R
1

1

2

2

3

2

4

5

e1 e2

e3

e4

e2

If e1 → e2, the timestamp of e1 is numerically less than the times-

tamp of e2.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 16



Introduction Happens Before Lamport Clocks Vector Clocks Summary References

Timestamp Example

Note that concurrency is ambiguous in the timestamps.

P

Q

R
1

1

2

2

3

2

4

5

e1 e2

e3

e4

e2

These points are concurrent.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 17



Introduction Happens Before Lamport Clocks Vector Clocks Summary References

Timestamp Example

Note that concurrency is ambiguous in the timestamps.

P

Q

R
1

1

2

2

3

2

4

5

e1 e2

e3

e4

e2

So are these!

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 18



Introduction Happens Before Lamport Clocks Vector Clocks Summary References

Timestamp Example

Note that concurrency is ambiguous in the timestamps.

P

Q

R
1

1

2

2

3

2

4

5

e1 e2

e3

e4

e2

e1 and e2 are both concurrent with e3, but e1 → e2!

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 19



Introduction Happens Before Lamport Clocks Vector Clocks Summary References

Timestamp Example

Note that concurrency is ambiguous in the timestamps.

P

Q

R
1

1

2

2

3

2

4

5

e1 e2

e3

e4

e2

…and e4 and e2 are concurrent, too!

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 20



Introduction Happens Before Lamport Clocks Vector Clocks Summary References

Causality

Lamport clocks approximate causality:

If the timestamp of e1 < the timestamp of e2, then e1 could have

caused e2.

If e1 > e2, then e1 could not have caused e2.

The mapping is not perfect, with false positives.

There are no false negatives.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 21



Introduction Happens Before Lamport Clocks Vector Clocks Summary References

Vector Clocks

Vector clocks associate more than one timestamp with an

event [3].

Each process has its own timestamp.

Each event is timestamped with the causality of every process.

This provides a tighter mapping with fewer false positives.

There are still no false negatives.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 22



Introduction Happens Before Lamport Clocks Vector Clocks Summary References

Vector Clock Rules

Every process Pi keeps a vector of clock values.

There is one vector entry for each process.

Pi can increment only the ith entry.

Each process takes the max of every vector position on

message receipt.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 23



Introduction Happens Before Lamport Clocks Vector Clocks Summary References

Vector Clock Ordering

For vector v = ⟨p0, . . . ,pn⟩ and another u:

u = v iff ∀n
i=0

u[i] = v[i]

u ≤ v iff ∀n
i=0

u[i] ≤ v[i]

u < v iff u ≤ v and u ̸= v

u ∥ v iff ¬(u < v) and ¬(v < u)

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 24



Introduction Happens Before Lamport Clocks Vector Clocks Summary References

Vector Clock Example

P1

P2

P3

P4

⟨1,0,0,0⟩

⟨0,0,0,1⟩

⟨0,0,1,1⟩

⟨0,1,0,0⟩

⟨0,1,2,1⟩ ⟨0,1,3,1⟩

⟨2,1,3,1⟩

e1

e2

e1 is unambiguously concurrent with e2
because ⟨1,0,0,0⟩ ∥ ⟨0,1,3,1⟩

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 25



Introduction Happens Before Lamport Clocks Vector Clocks Summary References

Vector Clock Example

P1

P2

P3

P4

⟨1,0,0,0⟩

⟨0,0,0,1⟩

⟨0,0,1,1⟩

⟨0,1,0,0⟩

⟨0,1,2,1⟩ ⟨0,1,3,1⟩

⟨2,1,3,1⟩

e1

e2

e1 is unambiguously concurrent with e2
because ⟨1,0,0,0⟩ ∥ ⟨0,1,3,1⟩

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 26



Introduction Happens Before Lamport Clocks Vector Clocks Summary References

Disadvantages of Vector Clocks

Vector clocks have better precision than Lamport clocks.

They identify concurrent events more precisely.

However, they require more state.

For large numbers of processes they may be impractical.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 27



Introduction Happens Before Lamport Clocks Vector Clocks Summary References

Total Ordering

Both Lamport and vector clocks can provide a total ordering.

This requires breaking ties between concurrent events.

Some arbitrary mechanism can be used; e.g.:

process IDs for Lamport clocks

numerical order for vector clocks

(For example: ⟨1,2,3,4⟩ comes before ⟨1,2,3,5⟩)
Supplementary physical timestamps

This total ordering is not physical time ordering!

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 28



Introduction Happens Before Lamport Clocks Vector Clocks Summary References

Summary

Logical clocks track causality of events

Lamport clocks use a single integer to define causality

Vector clocks provide greater precision than Lamport

clocks, but require more state

Logical clock orderings can be partial or total

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 29



Introduction Happens Before Lamport Clocks Vector Clocks Summary References

Next Time …

…

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 30



Introduction Happens Before Lamport Clocks Vector Clocks Summary References

References I

Required Readings

[1] Ajay D. Kshemkalyani and Mukesh Singhal. Distributed

Computing: Principles, Algorithms, and Systems. Chapter 2:

2.1–2.3, 2.6; Chapter 3: 3.1–3.4. Cambridge University Press,

2008. ISBN: 978-0-521-18984-2.

Optional Readings

[2] Leslie Lamport. “Time, Clocks, and the Ordering of Events in a

Distributed System”. In: 21.7 (July 1978). Ed. by

R. Stockton Gaines, pp. 558–565. URL: https://dl-acm-

org.gate.lib.buffalo.edu/doi/pdf/10.1145/359545.359563.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 31

https://dl-acm-org.gate.lib.buffalo.edu/doi/pdf/10.1145/359545.359563
https://dl-acm-org.gate.lib.buffalo.edu/doi/pdf/10.1145/359545.359563


Introduction Happens Before Lamport Clocks Vector Clocks Summary References

References II
[3] Friedemann Mattern. “Virtual Time and Global States of

Distributed Systems”. In: Proceedings of the Workshop on

Parallel and Distributed Algorithms. Elsevier Science Publishers

B.V., Oct. 1988, pp. 215–226. URL: http://citeseerx.ist.psu.

edu/viewdoc/summary?doi=10.1.1.1068.1331.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 32

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1068.1331
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1068.1331


Introduction Happens Before Lamport Clocks Vector Clocks Summary References

Copyright 2023 Ethan Blanton, All Rights Reserved.

Reproduction of this material without written consent of the

author is prohibited.

To retrieve a copy of this material, or related materials, see

https://www.cse.buffalo.edu/~eblanton/.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 33

https://www.cse.buffalo.edu/~eblanton/

	Introduction
	Happens Before
	Lamport Clocks
	Vector Clocks
	Summary
	References

