
Gossip Protocols

CSE 486/586: Distributed Systems

Ethan Blanton

Department of Computer Science and Engineering

University at Buffalo

Introduction Gossip LPB Using Gossip Summary References

Gossip

The multicast protocols we have looked at have common

properties:

Processes must know all other processes

Message count of O(|G|) for unreliable or for O(|G|2)

reliable transmission

Messages are either unreliable or always received

Gossip protocols can provide:

Processes must know a small fraction of other processes

Typically O(|G| log |G|) messages per multicast

Messages are probabilistically received by all correct

processes

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 2

Introduction Gossip LPB Using Gossip Summary References

Origins

Gossip protocols have their origins in epidemiology.

An epidemiology book [1] was noticed by computer scientists [2].

It describes epidemics as proceeding in rounds of infection.

In gossip protocols, as in epidemiology, a process is either:

Susceptible to infection by a new message

Infected by a new message and capable of retransmitting it

Removed from the set of infected processes (and now

“immune” to the message)

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 3

Introduction Gossip LPB Using Gossip Summary References

Simple Multicast

|G| processes, |G| messages.

If a message is lost or the sender fails, messages are lost.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 4

Introduction Gossip LPB Using Gossip Summary References

Reliable Multicast

|G| processes, |G|2 messages.

If any correct process receives the message, all correct

processes receive the message.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 5

Introduction Gossip LPB Using Gossip Summary References

Simple Gossip

Gossip proceeds in rounds.

A process decides that it wants to multicast a message m.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 6

Introduction Gossip LPB Using Gossip Summary References

Simple Gossip

It multicasts it to k randomly selected processes.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 7

Introduction Gossip LPB Using Gossip Summary References

Simple Gossip

If a process hears m for the first time, it re-multicasts.

Each such process chooses k randomly selected processes.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 8

Introduction Gossip LPB Using Gossip Summary References

Simple Gossip

This repeats until no new process hears the message.

Some nodes may never hear the message!

The probability of this is exponentially decreasing in k [2].

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 9

Introduction Gossip LPB Using Gossip Summary References

Benefits of Gossip

Far fewer than O(|G|2) messages even with k ≫ 1.

(Bounded above by k · |G|.)

Only one process must hear the message to start an epidemic.

Every process receives every message with high probability.

Message loss and process failure are tolerated by raising k.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 10

Introduction Gossip LPB Using Gossip Summary References

Disadvantages of Gossip

Some processes may not receive a message even without

failure.

Small groups require k ≈ |G| anyway.

Delay between first transmission and final infection can be large.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 11

Introduction Gossip LPB Using Gossip Summary References

Lightweight Probabilistic Broadcast

Lightweight Probabilistic Broadcast [3] (lpbcast) uses gossip for:

Message distribution

Group membership

This allows:

Large groups

Dynamic membership

Configurable reliability

Low message traffic

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 12

Introduction Gossip LPB Using Gossip Summary References

LPBCast Actions

LPBCast uses publish-subscribe terminology.

In lpbcast, processes can:

Subscribe to a topic (join a group)

Unsubscribe from a topic (leave a group)

Send notifications (messages) to a topic (group)

All of these actions are communicated via one message type.

Unlike simple gossip, messages are sent on a heartbeat.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 13

Introduction Gossip LPB Using Gossip Summary References

Notifications

A notification in lpbcast is a message to be sent.

Every notification has an associated unique ID.

Processes keep track of two notification lists per topic:

Recently-seen notifications in the variable events

The identifiers of recently-seen notifications in eventIds

The rules for keeping track of these are different.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 14

Introduction Gossip LPB Using Gossip Summary References

Subscriptions

Processes subscribed to the lpbcast topic are group members.

Processes keep track of three subscriber lists per topic:

Recently subscribed processes in subs

Recently unsubscribed processes in unSubs

Exactly l processes believed to be subscribed in view

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 15

Introduction Gossip LPB Using Gossip Summary References

Messages in lpbcast

Each lpbcast process sends a message to F processes every

T ms.

Every lpbcast message contains:

A list of all new notifications since the last message.

A list of event IDs for some recent notifications

A list of some recent subscriptions

A list of some recent unsubscriptions

The total number of messages sent per T ms is exactly F · |G|.

Note that F is like the k from our previous gossip example!

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 16

Introduction Gossip LPB Using Gossip Summary References

Receiving Messages

Upon receiving a message, a lpbcast process will:

1. Update subscriptions:

Update view and unSubs from the recent unsubscriptions

Update view and subs from the recent subscriptions

Prune subs and unSubs until they reach a configurable size

Prune view until |view| ≤ l

2. Deliver any new notifications

3. Update event information:

Update events and eventIds with the new notifications

Remember event IDs for unknown events from the message

Prune events and eventIds until they reach a configurable

size

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 17

Introduction Gossip LPB Using Gossip Summary References

Probability and Reliability

Items are pruned uniformly at random from each set:

events, eventIds, subs, unSubs, view

The set sizes are configured taking into account:

The expected number of subscribers

The probability of process failures

The probability of message loss

Note that:

notifications are sent only once

eventIds is pruned randomly

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 18

Introduction Gossip LPB Using Gossip Summary References

Subscriptions

To subscribe to the topic, a process must send a request to any

subscribed process.

If it does not start receiving notifications, it tries again.

A subscribed process periodically gossips its subscription.

To unsubscribe from a topic, it gossips its unsubscription.

Failed processes are eventually forgotten.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 19

Introduction Gossip LPB Using Gossip Summary References

Partitions

The group may become partitioned.

This is a condition where:

∃G,G′,G′′ : G′ ⊂ G,G′′ ⊂ G

G′ ∩G′′ = ∅

Once this happens, G′ and G′′ will remain disjoint.

l is selected such that the probability of this is extremely low.

Some privileged processes can be kept by all processes to

prevent partition.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 20

Introduction Gossip LPB Using Gossip Summary References

Benefits of lpbcast

LPBCast adds membership management to simple gossip.

It also adds reliability through events and eventIds.

It uses a relatively constant bandwidth due to T and F.

Each process only has to know l hosts regardless of |G|.

Reliability (l, other set sizes), latency (T), and cost (F) are

configurable.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 21

Introduction Gossip LPB Using Gossip Summary References

Uses of Gossip

The first use of gossip was in distributed database updates.

It was later used for maintaining group membership.

Then, for general multicast as in lpbcast.

It can be used for failure detection.

It has been used in sensor networks (“IoT”).

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 22

Introduction Gossip LPB Using Gossip Summary References

Choosing Gossip

Gossip is appropriate when:

The occasional lost message can be tolerated

Simple multicast is not reliable enough

Reliable multicast is too expensive

Group membership is unstable

Tuning gossip for the application is critical!

What is |G|? What should k (l for lpbcast) be?

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 23

Introduction Gossip LPB Using Gossip Summary References

Gossip for Failure Detection

How might we use gossip for failure detection?

Is it complete?

Is it accurate?

What parameters are configurable?

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 24

Introduction Gossip LPB Using Gossip Summary References

Summary

Gossip protocols provide probabilistic delivery

Cost is usually about c · |G| log |G| per message

Lightweight Probabilistic Broadcast solves:

Changing group membership

Process membership knowledge overhead for very large |G|

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 25

Introduction Gossip LPB Using Gossip Summary References

References I

Optional Readings

[1] Norman T. J. Bailey. The Mathematical Theory of Infections

Diseases. Second. Hafner Press, 1975. ISBN: 9780852642313.

[2] Alan Demers et al. “Epidemic Algorithms for Replicated Database

Maintenance”. In: Proceedings of the ACM Symposium on

Principles of Distributed Computing. ACM, Dec. 1987, pp. 1–12.

DOI: 10.1145/41840.41841. URL: https://citeseerx.ist.psu.

edu/viewdoc/download?doi=10.1.1.449.8317&rep=rep1&type=pdf.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 26

https://doi.org/10.1145/41840.41841
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.449.8317&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.449.8317&rep=rep1&type=pdf

Introduction Gossip LPB Using Gossip Summary References

References II
[3] Patrick T. Eugster et al. “Lightweight Probabilistic Broadcast”. In:

Proceedings of the IEEE International Conference on

Dependable Systems and Networks. IEEE, July 2001,

pp. 443–452. DOI: 10.1109/dsn.2001.941428. URL:

http://se.inf.ethz.ch/people/eugster/papers/lpbcast.pdf.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 27

https://doi.org/10.1109/dsn.2001.941428
http://se.inf.ethz.ch/people/eugster/papers/lpbcast.pdf

Introduction Gossip LPB Using Gossip Summary References

Copyright 2023 Ethan Blanton, All Rights Reserved.

Reproduction of this material without written consent of the

author is prohibited.

To retrieve a copy of this material, or related materials, see

https://www.cse.buffalo.edu/~eblanton/.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 28

https://www.cse.buffalo.edu/~eblanton/

	Introduction
	Gossip
	LPB
	Using Gossip
	Summary
	References

