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Byzantine Failures

We previously mentioned Byzantine failures1 briefly.

This is when a process displays different behavior to different

observers.

E.g., perhaps process p1:

Says “my value is 0” to process p2

Says “my value is 1” to process p3

Fails to respond entirely to process p4

This is often harder to account for than simpler failures.
1Sometimes “Byzantine faults”
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Etymology

The term “Byzantine” was coined by Lamport et al. [1, 2].

I have long felt that, because it was posed as a cute problem about

philosophers seated around a table, Dijkstra’s dining philosopher’s

problem received much more attention than it deserves. [I believed

that … Reaching Agreement in the Presence of Faults [3]] was very

important and deserved the attention of computer scientists. The

popularity of the dining philosophers problem taught me that the best

way to attract attention to a problem is to present it in terms of a

story.

He has used this tactic several times since.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 3



Introduction Byzantine Failures The Problem Four Generals Three Generals Summary References

Failures

All failures we have previously considered were consistent.

A process is either failed, or it is not.

A failed process may give the wrong value, but it does so

consistently.

Most of our failures have been fail-stop.
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Byzantine Failure

With Byzantine failure, a process may appear differently:

To different processes

At different times

It cannot (necessarily) be detected by a failure detector.

It could be caused by (for example):

A bad bit in memory that reads inconsistently

A program bug

A malicious process
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Byzantine Adversaries

A Byzantine failure may be a malicious adversary.

In this case, the adversary can give any answer to any process.

It could send the worst possible response in every case!

A Byzantine attacker can be very hard to defeat.
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Byzantine Generals

The Byzantine Generals problem is set up as follows:

Several armies are besieging a city, each led by a general.

If enough of them attack at once, they will be victorious.

If too few of them attack, they will fail.

They can send reliable and timely messages to each other.

Some of the generals might be traitors.

How, and under what circumstances, can they agree to attack?
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The Problem

This is a consensus problem.

Assume that one general is the commander.

The other generals are lieutenants.

We want these properties:

All loyal lieutenants execute the same order.

If the commander is loyal,

all loyal lieutenants follow the commander’s orders.
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The Model

The messaging model is synchronous.

Messages cannot be forged:

Generals know if a message does not arrive

Generals know who sent a message

The message is received as sent

Loyal generals always behave correctly.

Traitorous generals can lie, and can collude.
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Four Generals

Assume there are four generals, with one traitor.

There is a simple solution to this problem.

It is closely related to synchronous consensus with f = 1.

It proceeds in two rounds.
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The Rounds

Round 1:

The commander tells every lieutenant their orders.

Round 2:

Every lieutenant tells every other lieutenant their orders.

After round 2, every lieutenant takes the plurality of orders.
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Example

Commander

Lieutenant A Lieutenant B

Lieutenant C

Attack! Attack!

Attack!

Attack!

Attack!
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Example

Commander

Lieutenant A Lieutenant B

Lieutenant C

Attack! Attack!

Attack!

Attack!

Attack!
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Introducing …a Traitor

What if one general is a traitor?

There are two cases:

One lieutenant is a traitor

The commander is a traitor

Let’s look at each case.
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Traitorous Lieutenant

Commander

Lieutenant A Lieutenant B

Lieutenant C

Attack! Attack!

Attack!

Wait!

Attack!

The general sends messages as in the first example.
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Traitorous Lieutenant

Commander

Lieutenant A Lieutenant B

Lieutenant C

Attack! Attack!

Attack!

Wait!

Attack!

Lieutenant B is a traitor, and changes the message.
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Traitorous Lieutenant

Commander

Lieutenant A Lieutenant B

Lieutenant C

Attack! Attack!

Attack!Wait!

Attack!

Lieutenant A received: { Attack, Attack, Wait }

Lieutenant A attacks!

(It is super effective!)
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Traitorous Commander

Commander

Lieutenant A Lieutenant B

Lieutenant C

Wait! Attack!

Attack!

Attack!

Attack!

The general sends mixed messages.
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Traitorous Commander

Commander

Lieutenant A Lieutenant B

Lieutenant C

Wait! Attack!

Attack!

Attack!

Attack!

Lieutenants B and C repeat what they heard faithfully.
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Traitorous Commander

Commander

Lieutenant A Lieutenant B

Lieutenant C

Wait! Attack!

Attack!Attack!

Attack!

Lieutenant A received: { Wait, Attack, Attack }

Lieutenant A attacks along with Lieutenants B and C.
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N Generals

To extend this to n generals with no more than m traitors:

Round 1 remains the same.

There are m additional rounds with particular rules.

Again, this is like synchronous consensus with f failures!
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The Magic of 1/3

Assume that there are n generals, and m are traitors.

Under this model, 2m + 1 generals must be loyal.

If fewer than 2m + 1 generals are loyal, loyal generals may not

all take the same action.

Thus, strictly more than 1/3 of the generals must be loyal!

Interestingly, the loyalty of the commander doesn’t matter.
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Three Generals

Consider three generals with one traitor.

It is easy to show that agreement is impossible.

We have the same two cases to consider:

One of the lieutenants is a traitor

The commanding general is a traitor
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A Loyal Group

Commander

Lieutenant A Lieutenant B

Attack! Attack!

Attack!
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A Loyal Group

Commander

Lieutenant A Lieutenant B

Attack! Attack!

Attack!
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A Traitorous Lieutenant

Commander

Lieutenant A Lieutenant B

Attack! Attack!

Wait!

Again, the general proceeds as before.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 26



Introduction Byzantine Failures The Problem Four Generals Three Generals Summary References

A Traitorous Lieutenant

Commander

Lieutenant A Lieutenant B

Attack! Attack!

Wait!

Lieutenant B changes the orders.
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A Traitorous Lieutenant

Commander

Lieutenant A Lieutenant B

Attack! Attack!

Wait!

Lieutenant A received: { Attack, Wait }

Now what?

Why can’t Lieutenant A simply believe the commander?
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A Traitorous Commander

Commander

Lieutenant A Lieutenant B

Attack! Wait!

Wait!

The general sends a different message to Lieutenant B.
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A Traitorous Commander

Commander

Lieutenant A Lieutenant B

Attack! Wait!

Wait!

Lieutenant B repeats in good faith.
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A Traitorous Commander

Commander

Lieutenant A Lieutenant B

Attack! Wait!

Wait!

Lieutenant A received: { Attack, Wait }

This is exactly the same as the traitorous Lieutenant B!
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Generalizing to 3m + 1

This can be generalized2 to 3m generals.

By contradiction:

1. Assume a solution for 3m or fewer generals

2. Divide the loyal generals into two groups, roughly equally

2. Cause the traitorous generals to work in concert

2. Now you have three simulated generals

3. ???

4. Profit by solving the three generals problem!

2See what I did there?
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Summary

Byzantine failures present differently in different

circumstances

Storytelling gets you published

Consensus can be reached even with Byzantine failure

(in a synchronous system)

More than 2/3 of processes must be honest to achieve this
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