
Byzantine Agreement

CSE 486/586: Distributed Systems

Ethan Blanton

Department of Computer Science and Engineering

University at Buffalo



Introduction Byzantine Failures The Problem Four Generals Three Generals Summary References

Byzantine Failures

We previously mentioned Byzantine failures1 briefly.

This is when a process displays different behavior to different

observers.

E.g., perhaps process p1:

Says “my value is 0” to process p2

Says “my value is 1” to process p3

Fails to respond entirely to process p4

This is often harder to account for than simpler failures.
1Sometimes “Byzantine faults”

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 2



Introduction Byzantine Failures The Problem Four Generals Three Generals Summary References

Etymology

The term “Byzantine” was coined by Lamport et al. [1, 2].

I have long felt that, because it was posed as a cute problem about

philosophers seated around a table, Dijkstra’s dining philosopher’s

problem received much more attention than it deserves. [I believed

that … Reaching Agreement in the Presence of Faults [3]] was very

important and deserved the attention of computer scientists. The

popularity of the dining philosophers problem taught me that the best

way to attract attention to a problem is to present it in terms of a

story.

He has used this tactic several times since.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 3



Introduction Byzantine Failures The Problem Four Generals Three Generals Summary References

Failures

All failures we have previously considered were consistent.

A process is either failed, or it is not.

A failed process may give the wrong value, but it does so

consistently.

Most of our failures have been fail-stop.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 4



Introduction Byzantine Failures The Problem Four Generals Three Generals Summary References

Byzantine Failure

With Byzantine failure, a process may appear differently:

To different processes

At different times

It cannot (necessarily) be detected by a failure detector.

It could be caused by (for example):

A bad bit in memory that reads inconsistently

A program bug

A malicious process

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 5



Introduction Byzantine Failures The Problem Four Generals Three Generals Summary References

Byzantine Adversaries

A Byzantine failure may be a malicious adversary.

In this case, the adversary can give any answer to any process.

It could send the worst possible response in every case!

A Byzantine attacker can be very hard to defeat.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 6



Introduction Byzantine Failures The Problem Four Generals Three Generals Summary References

Byzantine Generals

The Byzantine Generals problem is set up as follows:

Several armies are besieging a city, each led by a general.

If enough of them attack at once, they will be victorious.

If too few of them attack, they will fail.

They can send reliable and timely messages to each other.

Some of the generals might be traitors.

How, and under what circumstances, can they agree to attack?

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 7



Introduction Byzantine Failures The Problem Four Generals Three Generals Summary References

The Problem

This is a consensus problem.

Assume that one general is the commander.

The other generals are lieutenants.

We want these properties:

All loyal lieutenants execute the same order.

If the commander is loyal,

all loyal lieutenants follow the commander’s orders.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 8



Introduction Byzantine Failures The Problem Four Generals Three Generals Summary References

The Model

The messaging model is synchronous.

Messages cannot be forged:

Generals know if a message does not arrive

Generals know who sent a message

The message is received as sent

Loyal generals always behave correctly.

Traitorous generals can lie, and can collude.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 9



Introduction Byzantine Failures The Problem Four Generals Three Generals Summary References

Four Generals

Assume there are four generals, with one traitor.

There is a simple solution to this problem.

It is closely related to synchronous consensus with f = 1.

It proceeds in two rounds.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 10



Introduction Byzantine Failures The Problem Four Generals Three Generals Summary References

The Rounds

Round 1:

The commander tells every lieutenant their orders.

Round 2:

Every lieutenant tells every other lieutenant their orders.

After round 2, every lieutenant takes the plurality of orders.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 11



Introduction Byzantine Failures The Problem Four Generals Three Generals Summary References

Example

Commander

Lieutenant A Lieutenant B

Lieutenant C

Attack! Attack!

Attack!

Attack!

Attack!

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 12



Introduction Byzantine Failures The Problem Four Generals Three Generals Summary References

Example

Commander

Lieutenant A Lieutenant B

Lieutenant C

Attack! Attack!

Attack!

Attack!

Attack!

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 13



Introduction Byzantine Failures The Problem Four Generals Three Generals Summary References

Introducing …a Traitor

What if one general is a traitor?

There are two cases:

One lieutenant is a traitor

The commander is a traitor

Let’s look at each case.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 14



Introduction Byzantine Failures The Problem Four Generals Three Generals Summary References

Traitorous Lieutenant

Commander

Lieutenant A Lieutenant B

Lieutenant C

Attack! Attack!

Attack!

Wait!

Attack!

The general sends messages as in the first example.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 15



Introduction Byzantine Failures The Problem Four Generals Three Generals Summary References

Traitorous Lieutenant

Commander

Lieutenant A Lieutenant B

Lieutenant C

Attack! Attack!

Attack!

Wait!

Attack!

Lieutenant B is a traitor, and changes the message.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 16



Introduction Byzantine Failures The Problem Four Generals Three Generals Summary References

Traitorous Lieutenant

Commander

Lieutenant A Lieutenant B

Lieutenant C

Attack! Attack!

Attack!Wait!

Attack!

Lieutenant A received: { Attack, Attack, Wait }

Lieutenant A attacks!

(It is super effective!)

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 17



Introduction Byzantine Failures The Problem Four Generals Three Generals Summary References

Traitorous Commander

Commander

Lieutenant A Lieutenant B

Lieutenant C

Wait! Attack!

Attack!

Attack!

Attack!

The general sends mixed messages.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 18



Introduction Byzantine Failures The Problem Four Generals Three Generals Summary References

Traitorous Commander

Commander

Lieutenant A Lieutenant B

Lieutenant C

Wait! Attack!

Attack!

Attack!

Attack!

Lieutenants B and C repeat what they heard faithfully.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 19



Introduction Byzantine Failures The Problem Four Generals Three Generals Summary References

Traitorous Commander

Commander

Lieutenant A Lieutenant B

Lieutenant C

Wait! Attack!

Attack!Attack!

Attack!

Lieutenant A received: { Wait, Attack, Attack }

Lieutenant A attacks along with Lieutenants B and C.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 20



Introduction Byzantine Failures The Problem Four Generals Three Generals Summary References

N Generals

To extend this to n generals with no more than m traitors:

Round 1 remains the same.

There are m additional rounds with particular rules.

Again, this is like synchronous consensus with f failures!

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 21



Introduction Byzantine Failures The Problem Four Generals Three Generals Summary References

The Magic of 1/3

Assume that there are n generals, and m are traitors.

Under this model, 2m + 1 generals must be loyal.

If fewer than 2m + 1 generals are loyal, loyal generals may not

all take the same action.

Thus, strictly more than 1/3 of the generals must be loyal!

Interestingly, the loyalty of the commander doesn’t matter.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 22



Introduction Byzantine Failures The Problem Four Generals Three Generals Summary References

Three Generals

Consider three generals with one traitor.

It is easy to show that agreement is impossible.

We have the same two cases to consider:

One of the lieutenants is a traitor

The commanding general is a traitor

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 23



Introduction Byzantine Failures The Problem Four Generals Three Generals Summary References

A Loyal Group

Commander

Lieutenant A Lieutenant B

Attack! Attack!

Attack!

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 24



Introduction Byzantine Failures The Problem Four Generals Three Generals Summary References

A Loyal Group

Commander

Lieutenant A Lieutenant B

Attack! Attack!

Attack!

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 25



Introduction Byzantine Failures The Problem Four Generals Three Generals Summary References

A Traitorous Lieutenant

Commander

Lieutenant A Lieutenant B

Attack! Attack!

Wait!

Again, the general proceeds as before.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 26



Introduction Byzantine Failures The Problem Four Generals Three Generals Summary References

A Traitorous Lieutenant

Commander

Lieutenant A Lieutenant B

Attack! Attack!

Wait!

Lieutenant B changes the orders.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 27



Introduction Byzantine Failures The Problem Four Generals Three Generals Summary References

A Traitorous Lieutenant

Commander

Lieutenant A Lieutenant B

Attack! Attack!

Wait!

Lieutenant A received: { Attack, Wait }

Now what?

Why can’t Lieutenant A simply believe the commander?

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 28



Introduction Byzantine Failures The Problem Four Generals Three Generals Summary References

A Traitorous Commander

Commander

Lieutenant A Lieutenant B

Attack! Wait!

Wait!

The general sends a different message to Lieutenant B.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 29



Introduction Byzantine Failures The Problem Four Generals Three Generals Summary References

A Traitorous Commander

Commander

Lieutenant A Lieutenant B

Attack! Wait!

Wait!

Lieutenant B repeats in good faith.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 30



Introduction Byzantine Failures The Problem Four Generals Three Generals Summary References

A Traitorous Commander

Commander

Lieutenant A Lieutenant B

Attack! Wait!

Wait!

Lieutenant A received: { Attack, Wait }

This is exactly the same as the traitorous Lieutenant B!

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 31



Introduction Byzantine Failures The Problem Four Generals Three Generals Summary References

Generalizing to 3m + 1

This can be generalized2 to 3m generals.

By contradiction:

1. Assume a solution for 3m or fewer generals

2. Divide the loyal generals into two groups, roughly equally

2. Cause the traitorous generals to work in concert

2. Now you have three simulated generals

3. ???

4. Profit by solving the three generals problem!

2See what I did there?

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 32



Introduction Byzantine Failures The Problem Four Generals Three Generals Summary References

Summary

Byzantine failures present differently in different

circumstances

Storytelling gets you published

Consensus can be reached even with Byzantine failure

(in a synchronous system)

More than 2/3 of processes must be honest to achieve this

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 33



Introduction Byzantine Failures The Problem Four Generals Three Generals Summary References

References I

Optional Readings

[1] Leslie Lamport. The Writings of Leslie Lamport: The Byzantine

Generals Problem. URL:

http://lamport.azurewebsites.net/pubs/pubs.html#byz.

[2] Leslie Lamport, Robert Shostak, and Marshall Pease. “The

Byzantine Generals Problem”. In: ACM Transactions on

Programming Languages and Systems 4.3 (July 1982),

pp. 382–401. DOI: 10.1145/357172.357176. URL:

http://lamport.azurewebsites.net/pubs/byz.pdf.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 34

http://lamport.azurewebsites.net/pubs/pubs.html#byz
https://doi.org/10.1145/357172.357176
http://lamport.azurewebsites.net/pubs/byz.pdf


Introduction Byzantine Failures The Problem Four Generals Three Generals Summary References

References II
[3] Marshall Pease, Robert Shostak, and Leslie Lamport. “Reaching

Agreement in the Presence of Faults”. In: 27.2 (Apr. 1980),

pp. 228–234. DOI: 10.1145/322186.322188. URL:

http://lamport.azurewebsites.net/pubs/reaching.pdf.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 35

https://doi.org/10.1145/322186.322188
http://lamport.azurewebsites.net/pubs/reaching.pdf


Introduction Byzantine Failures The Problem Four Generals Three Generals Summary References

Copyright 2021, 2023 Ethan Blanton, All Rights Reserved.

Reproduction of this material without written consent of the

author is prohibited.

To retrieve a copy of this material, or related materials, see

https://www.cse.buffalo.edu/~eblanton/.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 36

https://www.cse.buffalo.edu/~eblanton/

	Introduction
	Byzantine Failures
	The Problem
	Four Generals
	Three Generals
	Summary
	References

