
The Raft Consensus Protocol

CSE 486/586: Distributed Systems

Ethan Blanton

Department of Computer Science and Engineering

University at Buffalo



Introduction Overview Quorum State Machines Terms The Log Membership FLP Summary References

The Raft Consensus Protocol

Raft [5, 4] is a relatively new consensus protocol.

It uses a suite of inter-related protocols to provide:

Membership

Leader election

Consensus on a sequence of values

Raft was designed specifically to be understandable.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 2



Introduction Overview Quorum State Machines Terms The Log Membership FLP Summary References

Paxos

Prior to Raft, the most-used consensus algorithm was Paxos [2].

Paxos is notoriously hard to understand.

It was often implemented partially, or incorrectly, or just badly.

This is partly due to complexity, and partly due to presentation.

(It’s a Lamport story paper.)

Raft was a specific reaction to this problem!

We’ll probably see Paxos later.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 3



Introduction Overview Quorum State Machines Terms The Log Membership FLP Summary References

Decomposition

Raft simplifies consensus by decomposing it into smaller

problems.

Proving the safety of each part individually is sufficient.

Raft elects a leader to handle consensus at any given time.

If the leader is correctly elected, its decisions will be final.

The leader coordinates many of the details of consensus.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 4



Introduction Overview Quorum State Machines Terms The Log Membership FLP Summary References

Goals

Raft provides:

A log of values agreed upon by all processes

Availability in the face of failures

Robustness to asynchronous message delays and losses

Raft does not handle Byzantine failures!

All Raft participants must operate in good faith.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 5



Introduction Overview Quorum State Machines Terms The Log Membership FLP Summary References

Servers

Raft participants are called servers.

Every server has the same capabilities.

Not all servers perform all actions at all times.

Servers occupy three states:

Follower: Followers replicate and store the agreed-upon

log.

Candidate: Candidates emerge to replace failed leaders.

Leader: The (unique at any given time!) leader appends

new entries to the log.

Leaders are elected for a term, typically after failure.

Term numbers form a logical clock.
©2023 Ethan Blanton / CSE 486/586: Distributed Systems 6



Introduction Overview Quorum State Machines Terms The Log Membership FLP Summary References

Server States

Term 1

Election

Operation

2 3 4

Follower Candidate Leader

start TimeoutTimeoutElected

Not Elected
Discovers new term

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 7



Introduction Overview Quorum State Machines Terms The Log Membership FLP Summary References

Quorum

Raft is based on quorum.

Quorum is a legal term; from Merriam-Webster:

the number (such as a majority) of officers or members of a body that

when duly assembled is legally competent to transact business

Quorum systems appeared in the late 1970s [1].

Quorum provides consensus with failures.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 8



Introduction Overview Quorum State Machines Terms The Log Membership FLP Summary References

The Quorum Model

Quorum ensures that no two incompatible changes can be

made.

It does this by requiring that some subset of processes agree.

Unlike other consensus we’ve seen, not all processes must

agree.

A change that hasn’t reached enough processes is provisional.

Any change that has reached enough processes is committed.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 9



Introduction Overview Quorum State Machines Terms The Log Membership FLP Summary References

Achieving Quorum in Raft

Quorum is required in three places in Raft:

Election

Commitment

Membership changes

For each of these actions, a quorum of servers must approve.

A quorum in Raft is 50% of servers + 1 server.

Servers can refuse only elections; others may be delayed.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 10



Introduction Overview Quorum State Machines Terms The Log Membership FLP Summary References

Safety

50% + 1 server ensures that a change is permanent if:

No server “forgets” what it has done

No more than half of the servers fail

By contradiction:

Assume that 50% + 1 servers agree on X

Assume that 50% + 1 servers agree on ¬X
Contradiction: At least one server agreed on X ∪ ¬X !

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 11



Introduction Overview Quorum State Machines Terms The Log Membership FLP Summary References

The Raft State Machine

Raft emulates a state machine.

(This is common; recall Lamport Clocks [3].)

Every server replicates the state machine.

Raft is indifferent to the properties of the state machine.

It merely assumes that:

There is some starting state

Deterministic changes are made to that state as log entries

are committed

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 12



Introduction Overview Quorum State Machines Terms The Log Membership FLP Summary References

State Transitions

Notionally, every log entry is a state change.

Any server can replay its log to arrive at the current state.

If every server has the same log, every server has the same

state.

We often think of state changes as assignments.

They can, however, be arbitrarily complex commands!

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 13



Introduction Overview Quorum State Machines Terms The Log Membership FLP Summary References

Commitment

A log entry is committed once a quorum of servers records it.

A committed entry will always persist, even with failure.

If no more than 50% of servers fail, some server will record it.

The rules of raft ensure that that server will propagate it.

The set of committed states defines the consensus state.

Uncommitted states may be different between servers.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 14



Introduction Overview Quorum State Machines Terms The Log Membership FLP Summary References

Leaders and Terms

Time is divided into terms in Raft.

Each term is the tenure of a leader.

It begins with election of the leader

It ends with (perceived) failure of the leader

Only one server can be leader at a time.

Only the leader can append to the log.

If a leader sees a term higher than its own, it becomes a follower.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 15



Introduction Overview Quorum State Machines Terms The Log Membership FLP Summary References

The Logical Clock

Terms form a logical clock.

Each term is numbered.

Higher numbers replace lower numbers, with restrictions.

Any decisions made by the leader of term T following S:

Preserve every log entry committed as of the end of S

Are superseded by any decisions made in U following T

subject to the same rules

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 16



Introduction Overview Quorum State Machines Terms The Log Membership FLP Summary References

Elections

After leader failure, one or more servers become candidates.

Servers may vote for only one server per term.

This means that no more than one server can win an election.

It is possible that no server wins an election!

In this case, the term will conclude with a new election.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 17



Introduction Overview Quorum State Machines Terms The Log Membership FLP Summary References

Heartbeats

The current leader sends a heartbeat to all servers.

It contains:

The current term

The first log entry the leader believes this server needs

The previous log entry’s index and term

If a follower does not hear a heartbeat within a timeout interval, it

starts an election.

The election is for the next term.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 18



Introduction Overview Quorum State Machines Terms The Log Membership FLP Summary References

Starting an Election

A server that starts an election:

Immediately votes for itself

Sends a message to every other server asking for votes

Starts an election timer

The election ends when either:

The server receives a quorum of votes

The timer expires

In the first case, it starts sending heartbeats.

In the second, it starts another election.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 19



Introduction Overview Quorum State Machines Terms The Log Membership FLP Summary References

Voting

A server A will only vote for a server B if:

A has not voted during this term

B’s log is at least as up-to-date as A’s

A log is more up-to-date if:

It contains a later term

It ends with the same term but is longer

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 20



Introduction Overview Quorum State Machines Terms The Log Membership FLP Summary References

Election Safety

These rules guarantee that the elected leader:

Knows about every committed log entry

More than half of the servers voted for it

It was at least as up-to-date as the servers that voted for it

Is unique in a given term

More than half the servers voted for it

Servers vote only once per term

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 21



Introduction Overview Quorum State Machines Terms The Log Membership FLP Summary References

Log Management

Only the elected leader can append to the log.

Requests for state change are submitted by clients.

The leader confirms the request only once the entry commits.

An entry may not be on all servers when the leader confirms.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 22



Introduction Overview Quorum State Machines Terms The Log Membership FLP Summary References

Appending an Entry

To append an entry:

1. A client request arrives at the leader

2. The leader sends the entry to every up-to-date server

3. When the entry commits, the leader confirms to the client

4. Updates are retried until every server eventually commits

The highest committed index is on every heartbeat.

Servers apply committed entries to their state machine.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 23



Introduction Overview Quorum State Machines Terms The Log Membership FLP Summary References

Commitment

An entry commits when either:

It propagates to a quorum within the term it is proposed

It is in a leader’s log when a later entry is committed

If an entry fails to commit during its term, it may be lost.

When the leader learns that an entry commits, it updates its

heartbeat.

Safety does not depend on any server hearing that heartbeat!

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 24



Introduction Overview Quorum State Machines Terms The Log Membership FLP Summary References

Primacy of the Leader

When a leader is elected, it starts appending to its own log.

Other servers may:

Have newer log entries

Be missing log entries

Have both newer and missing log entries

All newer log entries on other servers must be:

Uncommitted

From earlier terms

The new leader’s log becomes the canonical log.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 25



Introduction Overview Quorum State Machines Terms The Log Membership FLP Summary References

Processing Heartbeats

Recall that heartbeats contain:

The current term

The newest entry the leader believes a server needs

The previous entry’s term and index

A server applies the update if:

Its current term is no larger than the heartbeat

It has a log entry with the index and term of the heartbeat’s

predecessor

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 26



Introduction Overview Quorum State Machines Terms The Log Membership FLP Summary References

Newer Entries

If a server has newer entries than an accepted heartbeat

They must not have achieved quorum

They are not committed

Therefore they can be discarded.

The server will replace all later entries with the new entry.

Received: Index 2 Term 3 PrevTerm 1

Old: 1 1 2 2

New: 1 1 3

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 27



Introduction Overview Quorum State Machines Terms The Log Membership FLP Summary References

Missing Entries

If a server does not know the predecessor of a heartbeat:

It rejects the heartbeat

The leader backs up one entry

Received: Index 2 Term 3 PrevTerm 1

Old: 1

New: 1

Received: Index 1 Term 1 PrevTerm 1

Old: 1

New: 1 1

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 28



Introduction Overview Quorum State Machines Terms The Log Membership FLP Summary References

Safety

Election rules ensure that the leader knows every committed

entry.

The leader always sends the term of the previous entry.

The leader only proposes one entry at any index.

The leader’s history replaces any conflicting entries.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 29



Introduction Overview Quorum State Machines Terms The Log Membership FLP Summary References

Configuration Changes

Raft maintains membership as a configuration of servers.

Changing configurations requires:

A quorum of the old configuration

A quorum of the new configuration

Configuration changes are special log entries.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 30



Introduction Overview Quorum State Machines Terms The Log Membership FLP Summary References

Transition

The configuration change requires two phases:

A quorum of old servers acknowledge the new configuration

A quorum of old + new servers adopt the new configuration

This ensures that there is never a time with two leaders.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 31



Introduction Overview Quorum State Machines Terms The Log Membership FLP Summary References

Phase 1

In the first phase, the leader is either:

In the old configuration

Elected by a majority of the union of the old and new

members

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 32



Introduction Overview Quorum State Machines Terms The Log Membership FLP Summary References

Phase 1

A leader in the old configuration proposes a union configuration.

When it commits, all servers that commit it use it for quorum.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 33



Introduction Overview Quorum State Machines Terms The Log Membership FLP Summary References

Phase 2

After the union configuration commits, the leader proposes the

new configuration

When it commits, a leader from the new configuration must be

elected.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 34



Introduction Overview Quorum State Machines Terms The Log Membership FLP Summary References

Safety

The union configuration provides safety.

A quorum of old servers must adopt the union configuration.

A quorum of both old and new servers must agree to remove

outgoing servers.

This prevents a minority from receiving quorum at any point.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 35



Introduction Overview Quorum State Machines Terms The Log Membership FLP Summary References

Avoiding Impossibility

Raft doesn’t contravene FLP.

It is technically possible to have eternal elections.

In this case, nothing commits.

Raft uses randomized timeouts to reduce the window for this.

If server failures are several orders of magnitude less frequent

than the timeout interval, consensus is likely.

Timeouts are ≪ 1 s, failures are > 1 month!

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 36



Introduction Overview Quorum State Machines Terms The Log Membership FLP Summary References

More Information

Some really great resources on Raft are:

The USENIX presentation by Diego Ongaro [4]

The Raft web site at https://raft.github.io/

The Secret Lives of Data at

http://thesecretlivesofdata.com/raft/

The extended version [6] may help clear up details.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 37

https://raft.github.io/
http://thesecretlivesofdata.com/raft/


Introduction Overview Quorum State Machines Terms The Log Membership FLP Summary References

Summary

Raft provides consensus through quorum.

Almost half of the participants can fail without losing

consensus.

Decomposing elections, membership changes, and log

manipulation makes Raft easier to understand.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 38



Introduction Overview Quorum State Machines Terms The Log Membership FLP Summary References

References I

Required Readings

[5] Diego Ongaro and John Ousterhout. “In Search of an

Understandable Consensus Algorithm”. In: Proceedings of

USENIX Annual Technical Conference. USENIX, June 2014,

pp. 305–319. URL:

https://www.usenix.org/system/files/conference/atc14/atc14-

paper-ongaro.pdf.

Optional Readings

[1] David K. Gifford. Weighted Voting for Replicated Data. Tech. rep.

CSL-79-14. Xerox PARC, Sept. 1979. URL:

http://bitsavers.org/pdf/xerox/parc/techReports/CSL-79-

14_Weighted_Voting_for_Replicated_Data.pdf.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 39

https://www.usenix.org/system/files/conference/atc14/atc14-paper-ongaro.pdf
https://www.usenix.org/system/files/conference/atc14/atc14-paper-ongaro.pdf
http://bitsavers.org/pdf/xerox/parc/techReports/CSL-79-14_Weighted_Voting_for_Replicated_Data.pdf
http://bitsavers.org/pdf/xerox/parc/techReports/CSL-79-14_Weighted_Voting_for_Replicated_Data.pdf


Introduction Overview Quorum State Machines Terms The Log Membership FLP Summary References

References II
[2] Leslie Lamport. “The Part-Time Parliament”. In: ACM

Transactions on Computing Systems 16.2 (May 1998),

pp. 133–169. DOI: 10.1145/279227.279229. URL:

https://www.microsoft.com/en-

us/research/uploads/prod/2016/12/The-Part-Time-

Parliament.pdf.

[3] Leslie Lamport. “Time, Clocks, and the Ordering of Events in a

Distributed System”. In: 21.7 (July 1978). Ed. by

R. Stockton Gaines, pp. 558–565. URL:

http://lamport.azurewebsites.net/pubs/time-clocks.pdf.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 40

https://doi.org/10.1145/279227.279229
https://www.microsoft.com/en-us/research/uploads/prod/2016/12/The-Part-Time-Parliament.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2016/12/The-Part-Time-Parliament.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2016/12/The-Part-Time-Parliament.pdf
http://lamport.azurewebsites.net/pubs/time-clocks.pdf


Introduction Overview Quorum State Machines Terms The Log Membership FLP Summary References

References III
[4] Diego Ongaro. In Search of an Understandable Consensus

Algorithm. USENIX ATC ’14 Presentation. 2014. URL:

https://youtube.com/watch?v=no5Im1daS-o.

[6] Diego Ongaro and John Ousterhout. In Search of an

Understandable Consensus Algorithm (Extended Version).

Tech. rep. Stanford University, May 2014.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 41

https://youtube.com/watch?v=no5Im1daS-o


Introduction Overview Quorum State Machines Terms The Log Membership FLP Summary References

Copyright 2021, 2023 Ethan Blanton, All Rights Reserved.

Reproduction of this material without written consent of the

author is prohibited.

To retrieve a copy of this material, or related materials, see

https://www.cse.buffalo.edu/~eblanton/.

©2023 Ethan Blanton / CSE 486/586: Distributed Systems 42

https://www.cse.buffalo.edu/~eblanton/

	Introduction
	Overview
	Quorum
	State Machines
	Terms
	The Log
	Membership
	FLP
	Summary
	References

