1. (40 points) Chapter 6, Exercise 1:

Let $G = (V, E)$ be an undirected graph with n nodes. Recall that a subset of the nodes is called an independent set if no two of them are joined by an edge. Finding large independent sets is difficult in general; but here we'll see that it can be done efficiently if the graph is “simple” enough.

Call a graph $G = (V, E)$ a path if its nodes can be written as v_1, v_2, \ldots, v_n, with an edge between v_i and v_j if and only if the numbers i and j differ by exactly 1. With each node v_i, we associate a positive integer weight w_i.

The goal in this question is to solve the following problem:

Find an independent set in a path G whose total weight is as large as possible.

(a) Give an example to show that the following algorithm does not always find an independent set of maximum total weight.

The “heaviest-first” greedy algorithm

Start with S equal to the empty set

while some node remains in G do
 Pick a node v_i of maximum weight
 Add v_i to S
 Delete v_i and its neighbors from G
end while

Return S

(b) Give an example to show that the following algorithm also does not always find an independent set of maximum total weight.

Let S_1 be the set of all v_i where i is an odd number
Let S_2 be the set of all v_i where i is an even number
(Note that S_1 and S_2 are both independent sets)
Between S_1 and S_2, return the one with larger weight

(c) Give an algorithm that takes an n-node path G with weights and returns an independent set of maximum total weight. The running time should be polynomial in n, independent of the values of the weights.
2. (45 points) Chapter 6, Exercise 2:

Suppose you’re managing a consulting team of expert computer hackers, and each week you have to choose a job for them to undertake. Now, as you can well imagine, the set of possible jobs is divided into those that are **low-stress** and those that are **high-stress**. The basic question, each week, is whether to take on a low-stress job or a high-stress job.

If you select a low-stress job for your team in week \(i\), then you get a revenue of \(l_i > 0\) dollars; if you select a high-stress job, you get a revenue of \(h_i > 0\) dollars. The catch, however, is that in order for your team to take on a high-stress job in week \(i\), it’s required that they do no job (of either type) in week \(i - 1\); they need a full week of prep time to get ready for the crushing stress level. On the other hand, it’s okay for them to take a low-stress job in week \(i\) even if they have done a job (of either type) in week \(i - 1\).

So, given a sequence of \(n\) weeks, a **plan** is specified by a choice of “low-stress,” “high-stress,” or “none” for each of the \(n\) weeks, with the property that it “high-stress” is chosen for week \(i > 1\), then “none” has to be chosen for week \(i - 1\). (It’s okay to choose a high-stress job in week 1.) The **value** of the plan is determined in the natural way: for each \(i\), you add \(l_i\) to the value if you choose “low-stress” in week \(i\), and you add \(h_i\) to the value if you choose “high-stress” in week \(i\). (You add 0 if you choose “none” in week \(i\).)

The problem. Given sets of values \(l_1, l_2, \ldots, l_n\) and \(h_1, h_2, \ldots, h_n\), find a plan of maximum value.

(a) Show that the following algorithm does not correctly solve this problem, by giving an instance on which it does not return the correct answer.

```plaintext
for iterations \(i = 1\) to \(n\) do
    if \(h_{i+1} > l_i + l_{i+1}\) then
        Output “Choose no job in week \(i\)”
        Output “Choose a high-stress job in week \(i + 1\)”
        Continue with iteration \(i + 2\)
    else
        Output “Choose a low-stress job in week \(i\)”
        Continue with iteration \(i + 1\)
    end if
end for
```

To avoid problems with overflowing array bounds, we define \(h_i = l_i = 0\) when \(i > n\)

In your example, say what the correct answer is and also what the above algorithm finds.

(b) Give an efficient algorithm that takes values for \(l_1, l_2, \ldots, l_n\) and \(h_1, h_2, \ldots, h_n\) and finds a plan of maximum value.
3. (15 points) Given a directed graph $G = (V, E)$, a vertex $s \in V$ is called a \textit{sink} if there are incoming edges from every other vertex to s but no outgoing edge from s, i.e. $|\{(u, s) \in E\}| = |V| - 1$ and $|\{(s, u) \in E\}| = 0$.

Present an $O(n)$ time algorithm to find out if G has a sink and if so, to output it. (Recall that $n = |V|$). Your algorithm is given G in its adjacency matrix format.

(Note: The solution we have in mind is something like a divide and conquer algorithm. However, you do not have to present an algorithm based on the divide and conquer paradigm: as long as your algorithm is correct and runs in time $O(n)$, you’re good.)