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Heavy tailed M=G=1-PS queues with impatience and

admission control in packet networks

Résumé : La �leM=G=1 processor sharing avec un service ayant une queue de distribution
lourde est analysée. Une politique de contrôle d'admission du tra�c best e�ort est introduite
et étudiée.

Mots-clés : Contrôle d'admission. Tra�c élastique. Dépendance longue.
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1 Introduction

In spite of the fact that over the past few years quality of service (QoS) issues have become
less critical for backbone packet networks thanks to over-dimensioning, QoS is still a major
concern for network operators in the design of access networks. Before this dichotomy be-
tween access and backbone networks, the need for QoS to emerging multimedia and business
Internet applications has led the IETF to introduce a series of general tra�c management
tools. This has given rise to the IntServ and Di�Serv models along with the speci�cation
of MPLS. All these tools are aimed at describing, in one way or another, the packet �ows
generated by applications in order to provision su�cient resources in the network so as to
control the QoS level o�ered by the network; QoS is in general expressed in terms of min-
imum bandwidth, transfer delays, information loss, etc. . . For this purpose, packet �ows,
which may correspond to a single application (micro-�ow) or to an aggregate (macro-�ow),
are described by means of tra�c parameters, namely the well-known (�; �; �) triplet, which
is the basic object of network calculus. (The quantities � and � denote the mean and peak
rates, respectively and � is the bucket size.) Tra�c parameters are used in particular by ad-
mission control algorithms implemented in network elements, which are in charge of limiting
the load so as to meet the QoS requirements.

Recognizing that the declaration of tra�c parameters is a di�cult task for users in
general and that a small inaccuracy when assessing tra�c parameters may cause excessive
packet discarding by tra�c policers and then result in a severe degradation of the QoS
perceived by users, some authors have recently advocated the introduction of a �smoother�
admission control. For instance, Bonald and Roberts [3] and Bonald et al. [2] have proposed
to control an Internet bottleneck link by blocking some of the �ows when its load is above
some threshold. For this purpose, they suggest the introduction of an �appli �ow� identi�er
in order to clearly identify �ows on the bottleneck. Filtering �ows can also be performed by
examining port numbers in TCP segments.

One of the major characteristics of the current Internet is in that no �ows are blocked
by the network. The counterpart is that the number of �ows simultaneously active on a
link may be very large. As a consequence, the service rate of each �ow may take very small
values. This may lead some users to interrupt their �ows due to impatience (for instance
when retrieving large �les). This gives rise to reneging, which corresponds to events that
abort service prior completion. A fraction of the link rate is thus used by �ows, which are
eventually not completed, thereby increasing the reneging probability of other �ows.

In this paper the performance of a network link supporting long elastic �ows, which
may reneg, is investigated. A network link crossed by elastic tra�c is considered and the
transmission capacity is assumed to be shared according to processor sharing discipline,
which is the ideal bandwidth sharing achieved by TCP. By assuming that impatience is
proportional to service and that service times are heavy tailed, a simple admission control
of �ows is proposed. The improvement of the global performance of the system is examined
as well as the positive impact on the reneging probability of a given �ow admitted in the
system. Problem of fairness are also discussed: does a very long �ow always reneg even with
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4 J. Boyer, F. Guillemin, Ph. Robert and B. Zwart

admission control ? To address this point, we compute the reneging probability of very large
�les and we investigate how reneging could be avoided for such �ows.

The basic queueing system considered in this analysis is the M=G=1 processor sharing
(PS) queue with or without impatience and with �nite or in�nite capacity. It is generally
quite di�cult to get explicit results concerning queues with impatience. For this reason,
the purpose of this paper is to give qualitative results on the behavior of these queues.
For the M=G=1 PS queue under consideration, a result of independent interest is proved:
under some assumptions, a RSR (Reduced Service Rate) approximation (also called Reduced
Load Equivalence, see Agrawal et al. [1]) is shown to hold when the services are heavy tailed.
This RSR result sheds some light on the fairness issues mentioned above and may be used
to reduce the impatience of very large �ows.

The organization of this paper is as follows: In Section 2, the problem formulation is
presented. In Section 3, a general reduced service rate (RSR) approximation is proved. Since
the quantities of interest are rather di�cult to compute explicitly, an approximating model
is introduced. In Section 4, the reneging probability probability for the global system and
for large �ows is investigated. Simulation results and comparisons between the real system
and the approximating model are also presented in this section. In Section 5, we discuss
some possible extensions of the model. Concluding remarks are presented in Section 6.

2 Problem formulation

2.1 Modeling a bottleneck link

Consider a bottleneck link, which may be for instance the link at the output of a LAN,
connecting the LAN to the Internet, or the link between an access network (e.g., an ADSL
area) and the Internet backbone. On this link, several �ows with various characteristics are
multiplexed. In a �rst approach, let us consider elastic �ows only, that is, �ows which are
able to adapt to the state of the network (for instance to adjust their transmission rate to
the limited transmission capacity at the bottleneck link). In the Internet, such �ows are
regulated by TCP. Other �ows (e.g., UDP �ows) will appear as noise later in the analysis.

Some �ows may be very short and correspond to short �le transfers (typically, Web page
retrieval). Such �ows do not leave the slow start phase and are not very sensitive to the rate
sharing performed by TCP; those �ows are referred to as mice. (See Floyd [16].) From a
modeling point of view, the aggregate corresponding to the superposition of a large number
of short �ows is in fact a noise tra�c, which reduces the transmission capacity of longer
data transfer.

At the other extreme, long �le transfers (referred to as elephants) are more sensitive to
rate sharing achieved by TCP. ( Typically, a large �ow corresponds to a data transfer of
several Mbytes.) In a �rst approximation it is assumed that TCP achieves a fair sharing of
the transmission capacity described by the processor sharing (PS) discipline. See Kelly [11]
and Massoulié and Roberts [14] for fairness issues in TCP and Thompson et al. [18] for the
mice/elephants dichotomy. The performance of the system and the e�ciency of admission
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Heavy tailed M=G=1-PS queues with impatience 5

control algorithms depend on the distribution of the volume (in Mbytes) of �ows. Measure-
ments on Internet links tend to show that the volume of long �ows are heavy tailed (namely
with a Pareto tail distribution). For this reason, an M=G=1 PS queue with heavy tailed
service distributions shall be considered.

The time needed to transmit a �le with the PS discipline is very sensitive to the load of
the link. At equilibrium, the mean transmission time of a �ow of size x is given by x=c(1��),
where � is the average load of the �ows and c the capacity of the link. When � is close to
1, the transmission time of a �ow can be very large, which may cause a user to interrupt its
session. A key property to account for when analyzing the quality of service perceived by
users is their impatience.

In this context, since some �ows have to be rejected, the purpose of admission control
is to reject �ows in a minimal way so that very few of the accepted �ows shall experience
impatience during their transmission. When properly done, admission control has several
advantages:

� To reject �ows before any processing, thereby reducing the overhead of the impatience.

� To increase the proportion of successful transmissions.

Since we are considering ordinary elastic tra�c, contrary with usual situations in telecom-
munications, admission control cannot be performed by using an explicit characterisation of
�ows (like the (�; �; �) triplet). In this setting, Bonald et al. [2] proposed admission control
based on an estimation of the load of the link. The admission control considered in this
paper is based on the number of accepted �ows.

As mentioned earlier, we focus in a �rst step on tra�c o�ered by elephants. The per-
turbation due to streaming �ows and shorter �ows (typically mice) will be be accounted for
later on (see Section 5). The primary objective of this paper is to qualitatively study the
performance of admission control for long elastic �ows.

2.2 De�nitions and notations

Throughout this paper, we consider a single-server queue with server working at unit speed.
Customers (namely long elastic �ows) arrive at rate � and require heavy-tailed service times
with generic service times B and with impatience time C. Customers are served according
to the PS discipline and a customer leaves the system if it has completed its service or if its
sojourn time in the system exceeds C.

Impatience. Customers, who retrieve large �les, are ready to wait more than customers
retrieving smaller �les. The impatience C of a customer may be any non-decreasing concave
function of its service time B, if we consider that customers are more and more impatient as
time to complete a �le transfer becomes large. For admission control we shall assume that
impatience is proportional to service, namely C = �B for some real number � > 1.
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6 J. Boyer, F. Guillemin, Ph. Robert and B. Zwart

Admission control. It simply consists in �xing some value N such that any connection is
rejected, whenN connections are already accepted. This is equivalent to say that the waiting
room of the queue is of size N .

Loss probability. When the number of �ows which can be simultaneously active is limited to
N (the bu�er capacity), PN denotes the rejection probability (i.e., the fraction of customers,
who cannot enter the system because of the bu�er limitation) and �N denotes the fraction
of customers, who leave the system because of impatience. The global loss probability �N
in the system is de�ned by

�N = �N + PN : (1)

1� �N is the fraction of arriving customers, who complete their service (i.e., who can enter
the system and who do not leave because of impatience). When the bu�er capacity is in�nite,
the rejection probability is clearly equal to 0 (i.e., P1 = 0).

E�ciency of admission control. Admission control is said to be e�cient when N can be
chosen so that �N � PN while �N � �1, i.e., when impatience has signi�cantly less
impact than rejection on the global loss probability, which is itself less than the global loss
probability without admission control. Thus, we may expect that the QoS perceived by
users, who are admitted in the system, is better that the QoS when there is no control: less
customers enter the system but once they are in, they do not leave because of impatience.
Finally, one may expect an improvement of the utilization of the link (i.e., the fraction of
time the server is transmitting bits, which belong to customers, who eventually complete
their service).

3 A reduced service rate approximation

3.1 Properties of the amount of service received by a customer

Assuming that a tagged customer stays permanently in the queue, the function (L(u);u � 0)
denotes the number of (non-tagged) customers in the system at time u. The amount of
service received by the tagged customer up to time x is thus given by

R(x) =

Z x

0

1

1 + L(u)
du: (2)

If B is some random variable independent of (L(u)) and

V = inffy � 0;R(y) � Bg;

then V is the time necessary to complete the service of a customer arrived at time 0. If this
customer is not impatient, V is its sojourn time in the queue.

Proposition 1. When there is no impatience and provided that the queue is stable, we have

R(x)=x
def
! 
N = 1� (1� bN)�; (3)

INRIA



Heavy tailed M=G=1-PS queues with impatience 7

a.s. as x ! 1, where bN is the rejection probability in the processor sharing queue with a
permanent customer and capacity N .

Proof. Let us consider a time interval [0; t]. Over this time interval, nt customers enter the
system and bring a total amount of work equal to

Pnt
k=1Bk where Bk is the service time

required by the kth customer. The total amount of work received by these customers isZ t

0

L(u)

1 + L(u)
du:

Let Dt be the backlog of work remaining at time t. We have

Dt =

ntX
k=1

Bk �

Z t

0

L(u)

1 + L(u)
du:

Since the system is stable Dt=t! 0 when t!1. It follows that

(1� bN)� = lim
t!1

1

t

Z t

0

L(u)

1 + L(u)
du;

since nt=t! (1� bN )� as t!1. This completes the proof.

In the case of an M=M=1 PS queue with a permanent customer, the process describing
the number of customers in the system over time is a birth and death process with birth
rates equal to the arrival rate � and death rates equal to n�=(n + 1), n � 1, where 1=� is
the mean service time. When the queue size is N < 1, the stationary distribution for the
queue length is given by

P (L = n) =
(n+ 1)�nPN�1
k=0 (k + 1)�k

(4)

for 0 � n � N � 1, with � = �=�. The rejection probability bN is given by

bN =
(1� �)2N�N�1

N�N+1 � (N + 1)�N + 1
: (5)

Now, by using insensitivity results for the M=G=1 PS queue (See Burman [6] for an account
on insensitivity results in queueing systems), the above expression for bN holds for any
service distribution. As a consequence, for an M=G=1=N PS queue without impatience, we
have


N = (1� �)
1

1�N�N (1� �)=(1� �N )
:

When the impatience time of a customer is C = �B, along the same lines it is not di�cult
to show that there is some non-negative constant 
�;N such that almost surely

R(x)=x! 
�;N (6)
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8 J. Boyer, F. Guillemin, Ph. Robert and B. Zwart

as x! +1. The quantity 
�;N is such that


�;N = E

�
1

1 + L

�
;

where L is the number of customers in theM=G=1=N PS queue with a permanent customer.
It turns out that this quantity is in general very di�cult to compute explicitly. This is why
we shall study in the following an approximating model.

3.2 Su�cient conditions for RSR

If B is su�ciently heavy-tailed, then the law of large number will pertain and lead to a
result of the form of a RSR approximation (also called Reduced Load Equivalence), namely

P (V > x) � P (B > 
x) (7)

when x ! 1, where 
 = 
�;N is de�ned by relation (6). So far, this result has been
only proven for the M=G=1 queue with in�nite bu�er size and without impatience. (See
Jelenkovi¢ and Mom£ilovi¢ [10].) Our goal in this section is to show that equation (7) holds
for other systems as well.

For convenience, we assume that the distribution function of B has a regularly varying
tail, i.e.,

P (B > x) = `(x)x�� ; (8)

with � > 1 and ` a slowly varying function. The following result is crucial.

Proposition 2. The RSR relation (7) holds when, for g(x) = � logP (B > x),

1. B is regularly varying of index � > 1;

2. R(x)=x! 
 a.s. as x!1 with 0 < 
 < 1;

3. There exists a positive and �nite constantK such that P (R(x) � x=K) = o(P (B > x)).

Proof. Since B is regularly varying, g (which is non-decreasing) satis�es

lim
"#0

lim sup
x!1

g(x(1 + "))� g(x) = 0:

Thus, for every Æ > 0 there exist an " > 0 and x0 such that for all x � x0, we have

g(x+ "x) � g(x) + Æ:

Iterating this inequality we get, for y � x0,

g(y + k"y) � g(y) + kÆ

INRIA



Heavy tailed M=G=1-PS queues with impatience 9

if x = y + k"x; this leads to the inequality

g(x)� g(y) � Æ

�
x� y

"y

�
� C0

�
x� y

y
+ 1

�
; (9)

for C0 = Æ=" and x � y � max(x0; x=K).

Since P (B > R(x)) = I + II + III , where

I = P (B > R(x);R(x) � (
 + ")x) ;

II = P (B > R(x); (
 � ")x < R(x) < (
 + ")x) ;

III = P (B > R(x);R(x) � (
 � ")x) ;

the three terms I , II and III are treated separately. Note that term I is less than

P (B > (
 + ")x)P (R(x) > (
 + ")x) ;

which is o(P (B > 
x)) by Condition 2). Term II can be lower bounded by

P (
x� "x < R(x) < 
x+ "x)P (B > 
x+ "x)

� P (B > 
x+ "x) ;

and upper bounded by P (B > 
x� "x), hence, after letting " go to 0 and using the regular
variation property of the distribution of B, one gets that the quantity II is equivalent to
P (B > 
x).

We now turn to Term III . Write III = IIIa + IIIb distinguishing between the two
respective cases R(x) < x=K and R(x) � x=K. Condition 3) implies that IIIa can be
neglected. To deal with IIIb, note that

IIIb = E

�
e�g(R(x));x=K < R(x) < (
 � ")x

�
and then

IIIb = P (B > 
x)

� E

�
eg(
x)�g(R(x));x=K < R(x) < (
 � ")x

�
:

We must show that the second factor converges to 0 as x ! 1. Inequality (9) combined
with the relation x=K < R(x) < 
x gives

g(
x)� g(R(x)) � C0

�
(
x�R(x))=R(x) + 1

�
� C0

�
K(
x�R(x))=x + 1

�
� C0(K
 + 1);
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10 J. Boyer, F. Guillemin, Ph. Robert and B. Zwart

hence IIIb is upper bounded by

P (B > 
x) eC0(K
+1)
P (R(x) < (
 � �)x) :

This last quantity is o(P (B > 
x)) by Condition 2). This completes the proof.

The above result is analogous to Theorem 5.1.1 in Núñez-Queija [15]. The main strength
of Proposition 2 is the weakness of the third condition. In Núñez-Queija [15] a related
condition needs to be satis�ed for every K > 1=
. As indicated in [15], this condition
can only be checked if detailed information of the sojourn-time distribution is known. In
a di�erent context, similar arguments as in the above proof can be found in Foss and
Korshunov [9].

It is easy to see that the conditions of Proposition 2 are satis�ed if the bu�er capacity
is �nite (just choose K in the third condition of Proposition 2 as the bu�er size). In the
next section we show that under some weak condition, the RSR approximation applies in
the case of an M=G=1=1-PS with impatience.

3.3 In�nite bu�er with impatience

In this section, we consider an in�nite processor sharing queue with heavy tailed service and
Poisson arrivals with rate �. We assume that the impatience time C of a customer has a
�nite pth moment.

Proposition 3. If the impatience C of the M=G=1-PS queue has a �nite pth moment for
some p > 1 and if the service time B is regularly varying of index � > 1 then the RSR
approximation (7) holds.

Proof. It is su�cient to show that Condition 3) of Proposition 2 holds. The variable L(u) is
stochastically upper bounded by the number of customers L1(u) in an M=G=1 queue with
service time I and arrival rate �. We obtain that

R(x) �

Z x

0

1

1 + L1(u)
du:

For � > 0, a customer is said to be �small� if its service time is smaller than �x, otherwise,
the customer is �large�.

Let H1(�; x) be the number of large customers in the system at time 0, clearly enough
H1(�x) has a Poisson distribution with rate �E (I; I > �x). Now let H2(�; x) be the number
of large customers arrived between time 0 and x, H2(�; x) has a Poisson distribution with
rate �xP (I > �x).

Finally, set H(�; x) = H1(�x) + H2(�x). Note that H(�; x) has a Poisson distribution
with rate

�1(�x)
def
= �E

�
I1fI>�xg

�
+ �xP (I > �x) ;

INRIA



Heavy tailed M=G=1-PS queues with impatience 11

Thus, there exists some C = C� such that the inequality �1(�x) � Cx1�p holds. This implies
that for each k and each � > 0,

P (H(�; x) > k) = O
�
x�k(p�1)

�
= o(P (B > x));

the latter inequality being valid if k is chosen big enough such that k(p� 1) > �. From now
on k is chosen so that this is satis�ed.

The right hand side of the above inequality

P

�
R(x) <

x

K

�
� P

�Z x

0

1

1 + L1(u)
du <

x

K

�
can be split as I + II according to the possibilities H(�; x) � k or H(�; x) > k. Note that
II is upper bounded by

P (H(�; x) > k) = O
�
x�k(p�1)

�
= o(P (B > x)):

It has to be shown that I is also o(P (B > x)). For k � 0, if H(�; x) � k then

L1(u) � k + L1;<�x(u);

with L1;<�x(u) denoting the number of small customers at time u in the queue, �(�; x)
denotes the number of busy periods of (L1;<�x(u)) completed at time x. Note that, during
each busy period 1 � i � �(�; x), the permanent customer gets at least Ei=(k + 1) units of
service, with Ei exponentially distributed with rate �. (A busy period always starts with
one customer for an exponential amount of time.)

If for n � 0, Sn
def
= E1 + � � � + En, we can conclude that, if H(�; x) � k then R(x) �

S�(�;x)=(k + 1). Thus it is enough to show that there exists a �nite constant K such that

P
�
S�(�;x) � x=K

�
= o(P (B > x)). For a > 0,

P
�
S�(�;x) � x=K

�
� P (�(�; x) < ax)

+ P (Sax < x=K) ;

clearly the second term decreases exponentially fast in x, provided that K is such that
a�K > 1. Thus, it remains to show that

P (�(�; x) < ax) = o(P (B > x)):

for some � and a.
For i � 1, Pi(�x) denotes the length of the ith busy cycle of the M=G=1 queue when

only small customers are considered, P0(�x) the remaining busy cycle at time 0. The density
function of P0(�x) is given by P (P1(�x) � y) dy=E (P1(�x)) for y � 0.
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12 J. Boyer, F. Guillemin, Ph. Robert and B. Zwart

Since E (P1(�x)) � E (P1(1)), one can choose a > 0 and Æ > 0 small enough such
that aE (P1(�x)) < (1 � Æ) for all � > 0 and x > 0. If for n � 0, Tn denotes the sum
P1(�x) + � � �+ Pn(�x), then

P (�(�; x) < ax) � P
�
P0(�x) + Tbaxc > x

�
� P (P0(�x) > Æx) + P

�
Tbaxc > (1� Æ)x

�
:

This last expression is written as III + IV .
A bound on the tail distribution of P1(�x). Proposition 1 of Resnick and Samorodnit-

sky [17] implies that for each � > 0 there exists some � > 0 such that P (P1(�x) > x) =
o(x��): Consequently, this implies that P (P0(�x) > x) = o(x1��):

From this result, it follows that, given Æ, one can choose � large enough and � small
enough such that

III = P (P0(�x) > Æx) = o(P (B > x)):

One has to show that IV = P
�
Tbaxc > (1� Æ)x

�
is also o(P (B > x)). Take q > 0, IV is

certainly smaller than

baxcP (P1(�x) > qx)+

P
�
P1(�x) ^ qx+ � � �+ Pbaxc(�x) ^ qx > (1� Æ)x

�
:

For given q, the �rst term is of o(P (B > x)) if � is chosen suitably small (w.r.t. q). The
second term is smaller than

P
�
P1(1)^qx+ � � �+Pbaxc(1)^qx > (1�Æ)x

�
: (10)

Since I has �nite pth moment, the same holds for Pi(1), see e.g. Proposition 1 of Daley [8].
If p1 = E (P1(1)), for � > 0 de�ne

eTn(qx) = P1(1) ^ qx+ � � �+ Pn(1) ^ qx� n(p1 + �):

Then, the quantity (10) is given by

P

�eTbaxc(qx) > (1� Æ)x� (p1 + �)baxc
�
� P

�
sup
n�0

eTbaxc(qx) > (1� Æ)x� (p1 + �)baxc

�
:

If � is chosen small so that (1� Æ)� (p1 + �)a > 0, then Lemma 3.2 (i) of the extension of
Jelenkovi¢ and Mom£ilovi¢ [10] gives that for any � > 0 there exists a q > 0 such that

P

�
sup
n

eTn(qx)>(1� Æ)x� (p1 + �)baxc

�
=o

�
x��

�
:

This completes the proof.
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To estimate the reneging probability, we are led to compute the quantities 
�;N when the
bu�er capacity is �nite and the corresponding limiting value 
�, when the bu�er capacity is
in�nite. 
�;N is equal to

E

�
1

1 + L

�
where L is the number of customers in the stationary regime in the M=G=1=N PS queue
with a permanent customer. 
� is the corresponding quantity, when N =1. As mentioned
earlier, these two quantities are very di�cult to compute explicitly. This is why we study
an approximating model in the next section.

3.4 Approximating model

Let us �rst consider an in�nite capacity system and assume that service times are exponen-
tially distributed. Given that in the system considered so far, impatience is proportional to
service, when the number of customers in the system is greater than b�c, it is very likely
that customers leave the system due to impatience. On the contrary, when the number of
customers is less than b�c, the next departure is certainly due to service completion. We
are thus led to consider a model based on the M=M=1 PS sharing queue, where customers
arrive at the system according to a Poisson process with rate � and leave the system

� due to service completion when the number of customers is less than or equal to b�c
(with rate �),

� due to impatience when there are more than b�c customers in the system (with rate
n�=�).

The above system is slightly di�erent from that analyzed by Co�man et al [7], where impa-
tience is independent of service.

The process describing the number of customers in the above system is a birth and death
process with birth rates �n = � for all n � 0 and death rates �n = �max(n=�; 1) for n � 1.
The stationary distribution of the queue size ~L is then

P

�
~L = n

�
=

1

G1

�
�n n � b�c;

�n�n�b�cb�c!=n! n > b�c;
(11)

where G1 is the normalizing constant, given by

G1 =
1� �b�c+1

1� �
+

1X
n=b�c+1

�n�n�b�cb�c!

n!
:

Now, when the bu�er capacity is �nite (equal to N > b�c), the stationary distribution
of the queue size ~LN is given by

P

�
~LN = n

�
=

1

GN

(
�n n � b�c;
�n�n�b�cb�c!

n! b�c < n � N:

RR n° 4536



14 J. Boyer, F. Guillemin, Ph. Robert and B. Zwart

with the normalizing constant GN given by

GN =
1� �b�c+1

1� �
+

NX
n=b�c+1

�n�n�b�cb�c!

n!
:

The rejection probability ~PN is

~PN = P

�
~LN = n

�
=

1

GN

�n�n�b�cb�c!

n!
;

and the fraction of reneging customers (among all arriving customers) is

~�N =
1

��GN

NX
n=b�c+1

n
�n�n�b�cb�c!

n!
: (12)

It is worth noting that in this model, the fraction of reneging customers is null when N � b�c
and the rejection probability is then equal to the rejection probability in an M=M=1=N
queue.

Similar computations can be carried out in the case when there is one permanent cus-
tomer in the system. The number ~L0N of customers in the system (excluding the permanent
one) evolves as a birth and death process with birth rates �n equal to � for all n � 0 and
with birth rates �n given by

�n =

�
n�=(n+ 1) n � b�c � 1;
n�=� n � b�c:

The stationary distribution of ~L0N is given by

P

�
~L0N = n

�
=

1

G0
N

(
(n+ 1)�n; n < b�c;

b�c�
n�n�b�c+1(b�c�1)!

n! ; b�c � n � N � 1;
(13)

where G0
N is the normalizing constant.

As we shall see in Section 4.2 from simulation results, ~LN (resp. ~L0N) yields a quite fair
approximation of the number of customers in the M=G=1 PS queue with impatience and
without a permanent customer (resp. with a permanent customer). As a consequence, we
shall approximate the constant 
�;N by the mean value

~
�;N = E

"
1

1 + ~L0N

#
:
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4 Admission control considerations

4.1 Minimal value for the choice of the bu�er capacity

The M=G=1 PS model is used to describe the dynamic behavior of �ows multiplexed on
the bottleneck link. The impatience of a user is given by C = �B with � > 1. If �ows are
rejected when the number of accepted �ows is N0 = b�c, then users cannot be impatient
anymore since Z �B

0

1

1 + L(u)
du �

�

N0
B � B:

For this choice of the capacity, as soon as a �ow is accepted, it certainly completes its
transmission. Note that in this case, there is no overhead due to impatience. The blocking
probability bN de�ned by (5) determines the loss rate of this system.

In spite of the fact that this choice of the bu�er size is very conservative, it turns out
to be quite e�cient in practice. The quantity bN has to be compared with the reneging
probability, which is the loss probability in the system when the bu�er size is in�nite.

The exact evaluation of the reneging probability, when the bu�er is in�nite, is very
di�cult. Nevertheless, it turns out that the approximating model described in Section 3.4
proves quite accurate, as shown in the next section, where simulation results are reported.

4.2 Simulation results

Figures 1-3 show the probability distribution of the number of customers in the M=G=1 PS
queue with an impatience coe�cient � = 10 for di�erent values of the load �, when service
times are exponential or Pareto distributed with � = 1 and � = 1:25. In this latter case,
the complementary probability distribution function of service times is given by

P (B � x) =
1

x�
:

for large x.
From these �gures, it turns out that the approximating model is quite accurate for

estimating the number of customers in the queue, when the bu�er capacity is in�nite. The
same simulation experiments have been performed when the impatience coe�cient � is equal
to 3. The results also show that ~L is a fair approximation of the number of customers in
the queue with impatience.

It follows that the reneging probability can be well approximated by ~�N given by equa-
tion (12) when N = 1. Table 1 gives the reneging probability �1 for exponential and
Pareto service times. Once more, we can observe that the approximation ~�1 is quite accu-
rate when the load � is not too large and the impatience coe�cient � is su�ciently large.
Table 1 also reports the rejection probability when the bu�er capacity is limited to b�c. The
salient property of the system is that the global loss probability Pb�c (in the case N = b�c,
there is no reneging as observed in the previous section) is less than the loss probability
when the bu�er capacity is in�nite (i.e., when there is no admission control). We hence
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Pareto service (� = 1:25)
Exponential service

Approximation

n

lo
g
P
f
L
=
n
g

121086420
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0.1

0.01

0.001

Figure 1: Approximation vs. simulation results for exponential and Pareto (� = 1:25) service
times for � = 80%, � = 10.
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Figure 2: Approximation vs. simulation results for exponential and Pareto (� = 1:25) service
times for � = 100%, � = 10.
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Pareto service (� = 1:25)
Exponential service
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Figure 3: Approximation vs. simulation results for exponential and Pareto (� = 1:25) service
times for � = 120%, � = 10.

deduce that there is a real gain in the global performance of the system, when admission
control is performed.

Table 1: Loss probability �1 for Pareto (� = 1:25) and exponential service times.

� = 80% � = 100% � = 120%
� = 3 � = 10 � = 3 � = 10 � = 3 � = 10

Pareto (� = 1:25) 0.3642 7.1014e-2 0.5574 .37630 0.7036 0.7158
Exponential 0.3856 7.7067e-2 0.5681 0.3718 0.7182 0.7279

Approximation 0.3016 7.3926e-2 0.641227 0.3720 0.9164 0.8470
Pb�c 0.1734 2.3493e-2 0.2500 0.0910 0.3219 0.1925

To further investigate the bene�t of admission control, Figure 4 displays the rejection
probability, the reneging probability and the global loss probability as a function of the
bu�er capacity N for a load � = 80% and an impatience coe�cient � = 10. We observe that
for N � b�c, there is always a gain to perform admission control. On the contrary, if the
bu�er capacity is too drastically reduced, the rejection probability may be larger than the
reneging probability in the system with no admission control. There is nevertheless a quite
large range of the bu�er capacity such that the global loss probability can be signi�cantly
reduced.

Figure 5 and Figure 6 show the same quantities as Figure 4 for a load � = 100% and a
load � = 120%; the conclusions remain essentially the same.

In spite of the fact that admission control improves the global performance of the system,
one may wonder whether the bu�er capacity can be increased while ensuring that very large
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limiting value
Global loss

Loss due to impatience
Rejection probability

N
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Figure 4: Loss due impatience and to rejection for � = 80% and � = 10.

limiting value
Global loss

Loss due to impatience
Rejection probability

N
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Figure 5: Loss due impatience and to rejection for � = 100% and � = 10.
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limiting value
Global loss

Loss due to impatience
Rejection probability

N
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1

0.1
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0.001

Figure 6: Loss due impatience and to rejection for � = 120% and � = 10.

elephants have a good chance of completing their transmission. This point, which is more
or less related to the fairness of the system (any customer should have a good chance of
completing its service) is addressed in the next section.

4.3 Transmission of large �les: fairness issues

The value of N0 = b�c of Section 4.1 is quite conservative. It indeed achieves complete
fairness between all customers, since impatience is completely eliminated. But, one may
wonder whether the capacity of system could be increased while keeping fairness between
all customers. If the global objective is to reduce as much as possible the overhead due to
impatience, an option is to secure the success of long transmissions when they are accepted.
This option is also meaningful if the impatience of small transfers is supposed to quite large
compared to their sizes. In this case admission control has to be fair for the large transfers.
De�ne

N1 = supfN : �
N;� > 1g;

where 
N;� is de�ned by (6). Note that N1 � N0. The probability of reneging when the
service is x is given by �N;� = P (R(�x)=x � 1).

If �
N;� < 1, this implies that �N;� converges to 1 as x ! +1. In this case, if a large
elephant is accepted it will not complete its transmission with a probability close to 1. On
the other hand if �
N;� > 1, then a large elephant will reneg with a small probability. In
this case the reneging probability can be estimated as follows. (See Boyer et al. [5] for the
proof)

Proposition 4. If B is Pareto with index � > 1 and if �
�;N > 1, then there exists some
l� � 1 such that

P (R(�x) < x) � C0
1

xl�(��1)
:
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This result has the following intuitive explanation, based on large-deviation arguments
for heavy tails. For related arguments we refer to Likhanov and Mazumdar [13] and Zwart
et al. [19].

To let the event R(�x) < x happen, the average service rate should become smaller than
1=� for a long period of time. In Boyer et al. [5], it is shown that the most likely way for
this to happen is that there are a certain number of other jobs in the system which have
size O(x). Suppose that there are l other jobs in the system. together with the large job
under consideration, the system behaves like a processor sharing queue with l+1 permanent
customers. Let 
�;N;l be the average service rate for this system (with 
�;N;0 = 
�;N ). It
is obvious that 
�;N;l is decreasing in l. The l in the proposition is the smallest possible
number of other elephants making the service rate smaller than 1=�, i.e., we have

l� = argminfl : 
�;N;l < 1=�g:

We refer to Boyer et al. [5] for more precise assumptions, a formal proof and some extensions
of this result. Note that, in the case � = N =1, we have 
1;1;l = (1��)=(l+1), so in this
case it is possible to compute l� explicitly. In general, one has to resort to approximations.

Proposition 2 suggests the following approximation for the loss probability of an elephant
of size x if �
�;N > 1:

�N;� � x�l
�(��1):

This approximation is exponentially decreasing in l�, while l� becomes larger if N gets
smaller. This suggests that admission control makes sense even if �
�;N > 1 for all N .

In any case, the bu�er capacity N should be chosen between N0 and N1, a choice close
to N0 shall be conservative and if N is close to N1, then overhead will signi�cantly increase
at the expense of large elephants.

From the above discussion, we see that that a criterion for choosing N is that we should
have �:
�;N > 1. From a numerical point of view, it can happen that 
�;N tends to a limit

�;1, which is such that �:
�;1 > 1. By taking into the approximating model described in
Section 3.4, the limiting value 
�;1 can be approximated by the limit ~
�;1 de�ned by

~
�;1 = E

�
1

1 + ~L01

�
:

For instance, when � = 80% and � = 10, the values of �:
�;N as a function of N are
given by Table 2 for the approximating model. In this case, it turns out that the limiting
value ~
�;1 is such that �:~
�;1 = 2:35 > 1. This means that the capacity of the system can
be increased without penalizing large elephants.

For the di�erent set of values � = 120% and � = 10, the values of �:
�;N are given by
Table 3. In this case, we see that the limiting value ~
�;1 is such that �:~
�;1 = 0:926059 < 1.
In fact, the capacity of the system can be increased up to N = 15 without excessively
penalizing large elephants.
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Table 2: Values of �:
�;N for di�erent values of N when � = 80% and � = 10.

N �:
�;N
Approx. exponential Pareto (� = 1:25)

2 6.923077 6.9213 6.9921
3 5.398230 5.4029 5.4450
4 4.494519 4.4947 4.5566
5 3.901578 3.8990 3.9020
6 3.486347 3.4853 3.5601
7 3.182247 3.1799 3.2421
8 2.952249 2.9466 2.9469
9 2.774097 2.7649 2.9097
10 2.633591 2.6265 2.7229
11 2.530838 2.5085 2.5089
12 2.460334 2.4231 2.519
13 2.414770 2.3656 2.5210
14 2.387035 2.3331 2.3778
15 2.371150 2.3057 2.4185
16 2.362592 2.3096 2.3637
17 2.358255 2.3015 2.3514
18 2.356184 2.2952 2.2913
19 2.355250 2.3044 2.3360
20 2.354851 2.2914 2.3711
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Table 3: Values of �:
�;N for di�erent values of N when � = 120% and � = 10.

N �:
�;N
Approx. exponential Pareto (� = 1:25)

2 6.470588 6.4716 6.5017
3 4.715026 4.7155 4.7441
4 3.668671 3.6712 3.7112
5 2.976640 2.9790 2.9812
6 2.486837 2.4888 2.4775
7 2.123216 2.1235 2.1472
8 1.843530 1.8469 1.8467
9 1.622435 1.6214 1.6573
10 1.443806 1.4438 1.4608
11 1.306832 1.2914 1.2982
12 1.203413 1.1745 1.1849
13 1.125581 1.0909 1.0647
14 1.067186 1.0315 0.9976
15 1.023732 0.9885 0.9662
16 0.991889 0.9581 0.9411
17 0.969077 0.9357 0.9160
18 0.953214 0.9208 0.9150
19 0.942569 0.9099 0.9023
20 0.935707 0.9048 0.9067
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5 Extensions

Some possible generalizations of the above results are brie�y presented. (See the paper in
preparation by Boyer et al. [5] for details.)

5.1 Fluctuating service rate

To take into account the impact of mice or priority tra�c, one may assume that the service
capacity for long elastic �ows �uctuates according to some process Z(t) , t � 0. The quantity
R(x) becomes

R(x) =

Z x

0

Z(u)

1 + L(u)
du:

To check the RSR approximation, there are again two cases: when the bu�er size is �nite
or when there is impatience. In the �rst case,

R(x) � C0

Z x

0

Z(u) du:

Thus, the validity of Condition 3 of Proposition 2 crucially depends on properties of the
process Z. Some examples in which Condition 3 is satis�ed are:

� (Z(t)) is a Gaussian process with stationary increments and covariance function regu-
larly varying of index 2H < 2. In particular, this includes fractional Brownian motion
(0 < H < 1).

� Z(u) is a semi-Markov process as long as periods during which Z(u) is small are
su�ciently light-tailed.

The case with N = � = 1 has recently been investigated by Borst et al. [4], for the
special case Z(u) > �. Using our methods, it is easy to recover their result: lower bound
R(x) with a standard PS having capacity �+ �, and combine Propositions 2 and 4.

5.2 Discriminatory processor sharing

So far, we considered the case when bandwidth is equally shared among the di�erent elastic
�ows (max-min fairness). One may, nevertheless, introduce some weighing coe�cients, in
order to give more bandwidth to some �ows. This is precisely the task achieved by the
so-called discriminatory processor sharing discipline. Consider the case with K customer
classes, each class is assigned a weight coe�cient �i, i = 1; : : : ;K.

To check whether the RSR approximation still holds, tag a customer of a given class,
say, class 1. In this case R(x) becomes (with obvious notation)

R(x) =

Z x

0

�1

�1 +
PK

i=1 �iNi(u)
du:
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Of course, Assumption 3 is satis�ed if the total amount of customers in the system is
bounded. If one considers the case with impatience and in�nite bu�er, one can prove con-
dition 3 of Proposition 2 following exactly the same approach as in Section 3.

5.3 The M=G=s PS queue

The Processor sharing queue with multiple servers operates as follows. Suppose the number
of customers in the system at a given time u is Q(u). When Q(u) � s, each customer is
being served with rate s=Q(u). Otherwise, a customer receives service rate 1. This model
formulation could be used to incorporate the fact that maximum transmission rates of �les
can be substantially smaller than the total system capacity, see e.g. Kherani and Kumar [12].

For this model, if � =1, one can still compute 
 explicitly, using the fact the model is
insensitive. moreover, it can also be shown that the RSR remains valid for all possible value
of N and �.

6 Conclusion

In this paper we have used the M=G=1 PS processor sharing queue with heavy tailed ser-
vices and with impatience proportional to service to qualitatively study the problematic of
admission control of elastic �ows in packet networks. in particular we have established an
RSR approximation for computing the sojourn time of a �ow in the system. This result has
been proved under quite general assumptions. Finally, we have proposed an approximating
model, which yields quite accurate results for certain values of the parameters (moderate
load and su�ciently large impatience coe�cient).

It turns out that under the speci�c assumption that impatience is proportional to service,
there is a real gain in the global performance of the system, when admission control is
performed. This function simply consists of limiting the number of �ows, which can be
simultaneously active on the link. The capacity of the system can be chosen so as to
eliminate impatience. Moreover, numerical evidence shows that the capacity can be slightly
increased, while ensuring a certain fairness (long �ows still have a good chance of completing
their service), at the expense of globally increasing impatience and the loss probability.

All the results are encouraging to continue investigations on admission control of elastic
�ows in packet networks. In particular, it has to be checked, whether the results obtained
in this paper for impatience proportional to service remain valid, when impatience take a
more general form (for instance an a�ne function of the service time or more generally a
concave function of service). This point will be addressed in a further study.
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