(©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 12, 2004

We’ve done

e Fast Fourier Transform

— Polynomial Multiplication

Now

e Introduction to the greedy method
— Activity selection problem
— How to prove that a greedy algorithm works

— Huffman coding

Next

e Matroid theory

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 1

(©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 12, 2004

Greedy Algorithms

e The second algorithm design technique we learn
e Used to deal with optimization problems
e Optimization problems: find an optimal solution among a

large set of candidate solutions

— 0-1 knapsack problem: A robber found n items in a
store, the sth item 1s worth v; dollars and weighs w;
pounds (v;, w; € Z™), he can only carry W pounds.
Which items should he take?

— Traveling Salesman Problem (TSP): find the shortest
route for a salesman to visit each of the n given cities
once, and return to the starting city.

e Different than brute-force

e Characterized by
— Greedy-choice property

— Optimal substructure

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 2

(©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 12, 2004

The Activity-Selection Problem

e Has to do with scheduling of resources (class room, CPU)

e Input:
— aset of activities A = {a1, ..., a,} to be scheduled
— activity a; spends the time interval [s;, f;)

e Output: a set of as many activities as possible with no
time conflict

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 3

(©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 12, 2004

A Greedy Algorithm

Arrays S and F’ store start and finish times:

Activity-Selection(S, F', n)
Sort F' in increasing order
Simultaneously rearrange .S correspondingly
C' «— {1} // pick the first activity
g <1 // record the last chosen activity
for: — 2tondo
if s; > f; then
C' «— C' Ui} // add i to the output set
g —1 // record the last chosen activity
end if
end for
: Output C

A S S A L~ A e

p—
_ O

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 4

(©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 12, 2004

Why does it work?

e Remember the objective: maximize the number of
scheduled activities

e Want: show that the algorithm’s output is optimal

e Greedy-choice property: At every step there exists an
optimal solution which contains the greedy choice (the
first interval)

— This shows that we are on the right track to get to an

optimal solution

e Optimal substructure: Are we still on the right track at
the next step?

— At the next step: we try to solve the same problem with
the set A’ of activities compatible with the first choice

— If O is an optimal solution to the original problem
containing {1}, then O’ = O — {1} is an optimal
solution to A’

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 5

(©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 12, 2004

Elements of the Greedy Strategy

Question: in the Activity Selection Problem, might there
be an optimal solution which does not contain the greedy
choice?

At every step, the choice we made narrows down the
search

Make sure we do not narrow 1t down to zero

Greedy-choice property: There exists an optimal solution
which contains the greedy choice

Optimal substructure:

— An optimal solution to the problem contains within it
an optimal solution to the subproblem

— After each greedy choice 1s made, we are left with an
optimization problem of the same form as the original
problem

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 6

(©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 12, 2004

Knapsack Problems

0-1 knapsack problem

e Input: n items, the +th item has value v; dollars and
weighs w;. A maximum weight W. v;, w;, W € Z.

e Output: a set of items as valuable as possible with total
weight at most W'.

Fractional knapsack problem

e Input: n items, the zth item has value v; dollars and
weighs w;. A maximum weight W. v;, w;, W € Z7.

e Output: a set of items as valuable as possible with total
weight at most W',

e Relaxation: can take any fraction of an item.

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 7

(©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 12, 2004

Huffman Codes

e 7-bit ASCII code for “abbccc’ uses 42 bits

e Suppose we use '0’ to code ’c’, 10’ to code °b’, and "11°
to code 'c’: “111010000” - 9 bits
e To code effectively:
— Variable codes

— No code of a character is a prefix of a code for another:

prefix code
— The characters with higher frequencies should get

shorter codes

e Prefix codes can be represented by binary trees with
characters at leaves

e The binary trees have to be full if we want the code to be
optimal (why?)

e The problem: given the frequencies, find an optimal full
binary tree

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 8

(©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 12, 2004

Huffman’s Greedy Algorithm

e Input:
— (': the set of characters

— Frequency f(c) foreachc € C

e Output: an optimal coding tree 7'.
Let dr(c) be the depth of a leaf c of T

The total number of bits required is

B(T) =) f(c)dr(c)

We want to find 7" with the least B(T)

Huffman’s Idea

1: while there are two or more leaves in C' do

2: Pick two leaves x, y with least frequency

3: Create a node z with two children z, y, and frequency
f(z) = f(z) + f(y)

4. C=(C—A{z,yh)u{z}

5: end while

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 9

(©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 12, 2004

Correctness of Huffman Coding

Greedy-Choice Property

Lemma 1. Let C' be a character set, where each c € C' has
frequency f(c). Let x and y be two characters with least
frequencies. Then, there exists an optimal prefix code for C in
which the codewords for x and y have the same length and
differ only in the last bit

Optimal Substructure

Lemma 2. Let T be a full binary tree representing an optimal
prefix code for C. Let x and y be any leaves of T' which share
the same parent z. Let C' = (C — {x,y}) U {z}, with

f(z) = f(x)+ f(y). Then, T' =T — {x,y} is an optimal tree
for C'.

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 10

(©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 12, 2004

Things to remember

e To prove greedy choice property:

— Show that there exists an optimal solution which
“contains” the greedy choice

— A common method: take any optimal solution O, try
modifying O to O’, so that O’ is still optimal, and O’
contains the greedy choice

e To prove optimal substructure:

— Let O1 be an optimal solution which contains the
greedy choice. Show that O minus the greedy choice
(resulting in O, say) is an optimal solution to the
subproblem.

— A common method: assume O is not optimal for the
subproblem, then there is some optimal solution O, of
the subproblem. Then, construct a solution O5 of the
original problem from O and the greedy choice, such
that Os is a better solution than O4. Contradiction!

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 11

