
c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 26, 2004

We’ve done

• Matroid Theory

• Task scheduling problem (another matroid example)

• Dijkstra’s algorithm (another greedy example)

Now

• Dynamic Programming

– Matrix Chain Multiplication

– Longest Common Subsequence

Next

• Dynamic Programming

– Assembly-line scheduling

– Optimal Binary Search Trees

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 1



c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 26, 2004

Matrix Chain Multiplication (MCM) Problem

Given A10×100, B100×25, then calculating AB requires
10 · 100 · 25 = 25, 000 multiplications.

Given A10×100, B100×25, C25×4, then it is true that

(AB)C = A(BC) = ABC.

• AB requires 25, 000 multiplications

• (AB)C requires 10 · 25 · 4 = 1000 more multiplications

• totally 26, 000 multiplications

On the other hand

• BC requires 100 · 25 · 4 = 10, 000 multiplications

• A(BC) requires 10× 100× 4 = 4000 more
multiplications

• totally 14, 000 multiplications

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 2



c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 26, 2004

MCM (cont)

If there are 4 matrices A,B,C,D, there are 5 ways to
parenthesize the product ABCD:

(A(B(CD))), (A((BC)D)), ((AB)(CD)),

((A(BC))D), (((AB)C)D)

In general, given n matrices:

A1 of dimension p0 × p1

A2 of dimension p1 × p2

...
...

...

An of dimension pn−1 × pn

There are totally

1

n+ 1

(
2n

n

)
=

1

n+ 1

(2n)!

n!n!
= Ω

(
4n

n3/2

)

ways to parenthesize the product.

Find a parenthesization with the least number of

multiplications

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 3



c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 26, 2004

Some Observations

• Let’s try to find the optimal cost first

• Suppose we split between Ak and Ak+1, then the
parenthesization of A1 . . . Ak and Ak+1 . . . An have to
also be optimal: optimal substructure.

• Let c[1, k] and c[k + 1, n] be the optimal costs for the
subproblems, then the cost of splitting at k, k + 1 is

c[1, k] + c[k + 1, n] + p0pkpn

because

A1 . . . Ak has dimension p0 × pk
Ak+1 . . . An has dimension pk × pn

• The optimal cost c[1, n] is

c[1, n] = min
1≤k<n

(c[1, k] + c[k + 1, n] + p0pkpn)

• Hence, in general we need c[i, j] for i < j:

c[i, j] = min
i≤k<j

(c[i, k] + c[k + 1, j] + pi−1pkpj)

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 4



c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 26, 2004

A Recursive Solution

We need the base cases also:

c[i, j] =





0 if i = j

mini≤k<j (c[i, k] + c[k + 1, j] + pi−1pkpj) if i < j

Opt-MCM(p, i, j)

1: if i = j then
2: return 0;
3: else
4: min-so-far←∞;
5: for k ← i to j − 1 do
6: c← Opt-MCM(i, k) + Opt-MCM(k + 1, j)

+pi−1pkpj

7: if min-so-far > c then
8: min-so-far← c;
9: end if

10: end for
11: return min-so-far;
12: end if

Running time is exponential for the same reason FibonacciA
was exponential. (What’s the recurrence?)

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 5



c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 26, 2004

A Bottom Up Solution

• We use a table to store c[i, j], i ≤ j.

• For each l = 1 to n− 1, recursively calculate the entries
c[i, i+ l]

MCM-Order(p, n)

1: for i = 1 to n do
2: c[i, i]← 0 // base cases
3: end for
4: for l = 1 to n− 1 do
5: for i← 1 to n− l do
6: j ← i+ l; // not really needed, just to be clearer
7: c[i, j]←∞;
8: for k ← i to j − 1 do
9: t← c[i, k] + c[k + 1, j] + pi−1pkpj ;

10: if c[i, j] > t then
11: c[i, j]← t;
12: end if
13: end for
14: end for
15: end for
16: return c[1, n];

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 6



c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 26, 2004

Also Record the Splitting Points

Use s[i, j] to store the optimal splitting point k:

MCM-Order(p, n)

1: for i = 1 to n do
2: c[i, i]← 0 // base cases
3: end for
4: for l = 1 to n− 1 do
5: for i← 1 to n− l do
6: j ← i+ l; // not really needed, just to be clearer
7: c[i, j]←∞;
8: for k ← i to j − 1 do
9: t← c[i, k] + c[k + 1, j] + pi−1pkpj ;

10: if c[i, j] > t then
11: c[i, j]← t;
12: s[i, j]← k;
13: end if
14: end for
15: end for
16: end for
17: return c;

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 7



c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 26, 2004

The Actual MCM

Knowing the splitting points, it is now easy:

Matrix-Chain-Multiply(A, i, j, s)

1: if j > i then
2: k ← s[i, j];
3: X ←Matrix-Chain-Multiply(A, i, k, s);
4: Y ←Matrix-Chain-Multiply(A, k + 1, j, s);
5: return XY ;
6: else
7: return Ai; // i = j in this case
8: end if

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 8



c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 26, 2004

Analysis of MCM’s Algorithm

• We also are concerned about space, not only time

• Space needed is O(n2) for the tables c and s

• Suppose the inner-most loop takes about 1 time unit, then
the running time is

n−1∑

l=1

n−l∑

i=1

l =
n−1∑

l=1

l(n− l)

= n
n−1∑

l=1

l −
n−1∑

l=1

l2

= n
n(n− 1)

2
− (n− 1)n(2(n− 1) + 6)

6

= Θ(n3)

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 9



c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 26, 2004

Memoization

Memoized-MCM-Order(p, n)

1: for i← 1 to n do
2: c[i, j]←∞;
3: end for
4: Lookup(p, 1, n);

Lookup(p, i, j)

1: if c[i, j] <∞ then
2: return c[i, j]; // it’s calculated!! Time saved right here
3: end if
4: if i = j then
5: c[i, i]← 0;
6: else
7: for k ← i to j − 1 do
8: t← Lookup(p, i, k)+ Lookup(p, k + 1, n)+

pi−1pkpj ;
9: if t < c[i, j] then

10: c[i, j]← t; s[i, j]← k;
11: end if
12: end for
13: end if
14: return c[i, j];

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 10



c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 26, 2004

Longest Common Subsequence (LCS) Problem

X = t h i s i s c r a z y

Z = h i c a z y

Z is a subsequence of X .

X = t h i s i s c r a z y

Y = b u t i n t e r e s t i n g

So, Z = [t, i, s, i] is a common subsequence of X and Y

Given 2 sequences X and Y of lengths m and n, respectively

Find a common subsequence Z of longest length

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 11



c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 26, 2004

Analyzing the LCS Problem

• Somehow, find a recursive formula for the objective
function

• Suppose X = [x1, . . . , xm], Y = [y1, . . . , yn]

Key observation: optimal substructure

Theorem 1. Let LCS(X,Y ) be the length of a LCS of X and Y

• If xm = yn, then

LCS(X,Y ) = 1 + LCS([x1, . . . , xm−1], [y1, . . . , yn−1])

• If xm 6= yn, then either

LCS(X,Y ) = LCS([x1, . . . , xm], [y1, . . . , yn−1])

or

LCS(X,Y ) = LCS([x1, . . . , xm−1], [y1, . . . , yn])

In other words, LCS(X,Y ) is the max of the two in this
case.

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 12



c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 26, 2004

Conclusions From the Theorem

• For 0 ≤ i ≤ m, 0 ≤ j ≤ n, let

Xi = [x1, . . . , xi]

Yj = [y1, . . . , yj ]

• If xm = yn = z, then a LCS Z of X and Y can be found
by computing a LCS Z ′ of Xm−1 and Yn−1, and append z
at the end, i.e. Z = [Z ′, z].

• If xm 6= yn, then let Z1 be a LCS of Xm−1 and Yn, Z2 be
a LCS of Xm and Yn−1.
Z is then either Z1 or Z2, whichever is longer.

• Let c[i, j] = LCS[Xi, Yj ], then

c[i, j] =





0 if i or j is 0

1 + c[i− 1, j − 1] if xi = yj

max(c[i− 1, j], c[i, j − 1]) if xi 6= yj

Hence, c[i, j] in general depends on one of three entries:
the North entry c[i− 1, j], the West entry c[i, j − 1], and
the NorthWest entry c[i− 1, j − 1].

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 13



c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 26, 2004

Computing LCS length
We maintain a cost table c[0..m, 0..n] of optimal lengths, and a
“direction” table d[1..m, 1..n] of {N,W,NW} recording
where c[i, j] comes from.

LCS-Length(X,Y,m, n)

1: c[i, 0]← 0 for each i = 0, . . . ,m;
2: c[0, j]← 0 for each j = 0, . . . , n;
3: for i← 1 to m do
4: for j ← 1 to n do
5: if xi = yj then
6: c[i, j]← 1 + c[i− 1, j − 1];
7: d[i, j]← NW ;
8: else
9: if c[i− 1, j] > c[i, j − 1] then

10: c[i, j]← c[i− 1, j];
11: d[i, j]← N ;
12: else
13: c[i, j]← c[i, j − 1];
14: d[i, j]←W ;
15: end if
16: end if
17: end for
18: end for

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 14



c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 26, 2004

Constructing an LCS

Suppose Z is a global array.
(The first call is Construct-LCS(Z,m, n).)

Construct-LCS(Z, i, j)

1: if i = 0 or j = 0 then
2: return Z;
3: else
4: k ← c[i, j];
5: if d[i, j] = NW then
6: Z[k]← xi; // which is the same as Y [j]

7: Construct-LCS(Z, i− 1, j − 1);
8: end if
9: if d[i, j] = N then

10: Construct-LCS(Z, i− 1, j);
11: end if
12: if d[i, j] = W then
13: Construct-LCS(Z, i, j − 1);
14: end if
15: end if

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 15



c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 26, 2004

Space and Time Analysis

• Filling out the c and d tables take Θ(mn)-time, which is
also the running time of LCS-Length

• The space requirement is also Θ(mn)-time

• Construct-LCS takes O(m+ n) (why?)

Note:

• We don’t really need the direction table (why?)

• Memoizing this is quite simple too (homework)

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 16



c©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 26, 2004

A General Look at Dynamic Programming

Step 1

• Identify the sub-problems

• The sub-problems of sub-problems are overlapping

• The total number of sub-problems is a polynomial in input
size (why do we need this?)

Step 2

• Write a recurrence for the objective function

• Carefully identify the base cases

Step 3

• Investigate the recurrence to see how to fill out the cost
table in a “bottom-up” fashion

• Design appropriate data structure(s) for constructing an
optimal solution later on

Step 4 Pseudo Code
Step 5 Analysis of time and space

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 17


