(©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 26, 2004

We’ve done

e Matroid Theory
e Task scheduling problem (another matroid example)

e Dijkstra’s algorithm (another greedy example)

Now

e Dynamic Programming
— Matrix Chain Multiplication

— Longest Common Subsequence

Next

e Dynamic Programming
— Assembly-line scheduling
— Optimal Binary Search Trees

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 1

(©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 26, 2004

Matrix Chain Multiplication (MCM) Problem

Given AlOX 1005 BlOOX25a then calculating AB requires
10 - 100 - 25 = 25, 000 multiplications.

Given A10x100, Bioox25, Cosx4, then it is true that
(AB)C = A(BC) = ABC.
e AP requires 25,000 multiplications
e (AB)C requires 10 - 25 - 4 = 1000 more multiplications
e totally 26, 000 multiplications
On the other hand
e B(requires 100 - 25 - 4 = 10, 000 multiplications
e A(BC) requires 10 x 100 x 4 = 4000 more

multiplications

e totally 14, 000 multiplications

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 2

(©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 26, 2004

MCM (cont)

If there are 4 matrices A, B, C, D, there are 5 ways to
parenthesize the product ABC D:

(A(B(C'D))), (A((BC)D)), (AB)(CD)),
((A(BC))D), (((AB)C)D)

In general, given n matrices:

A1 of dimension pg X py

Ao of dimension p; X ps

A, ~of dimension p,_1 X p,

There are totally

1 (2n\ 1 (Qn)!_Q 4"
n+1\n/) n+1nn n3/2

ways to parenthesize the product.

Find a parenthesization with the least number of

multiplications

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 3

(©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 26, 2004

Some Observations

e Let’s try to find the optimal cost first

e Suppose we split between Ax and A 1, then the
parenthesization of Ay ... Ax and Ag.4 ... A, have to
also be optimal: optimal substructure.

e Letc|l, k] and c|k + 1,n] be the optimal costs for the
subproblems, then the cost of splitting at k£, k£ + 1 is

C[lﬂ k] + C[k + 17 n] + PoPEDPn
because

Aqi... A, hasdimension pg X pg

Apyq... A, hasdimension pip X p,

e The optimal cost ¢[1,n] is

cll,n| = 1£nk121n (c[1, k] + clk + 1,n] + poprpn)

e Hence, in general we need c|i, j| for i < j:

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 4

(©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 26, 2004

A Recursive Solution

We need the base cases also:

. 0 ifi =7

cli,jl=19 | . SR
min;<k<; (clé, k] +clk + 1, 5] + picipep;) ifi <j

Opt-MCM(p, i, 7)

1: if 2 = 5 then

2: return O;

3: else
4 min-so-far < oo;
5: fork«—itoj—1do
6 ¢ «— Opt-MCM(i, k) + Opt-MCM(k + 1, 5)

+Pi—1DkD;
7: if min-so-far > c then
8: min-so-far < c;
9: end if

10: end for
11: return min-so-far;
12: end if

Running time is exponential for the same reason FibonacciA

was exponential. (What’s the recurrence?)

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 5

(©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 26, 2004

A Bottom Up Solution

e We use a table to store cli, j|,i < j.

e Foreach/ = 1ton — 1, recursively calculate the entries
cli,t +]

MCM-Order(p, n)

1: for:=1tondo

2: cli, i) < 0// base cases

3: end for

4: for[=1ton — 1 do

5 fori+—1ton—I[do

6 j <« 1+ [; // not really needed, just to be clearer
7 cli, j] « oo;

8 fork <—itoj —1do

9 t — cli, k] + clk + 1, j] + pi—10kpj;

10: if c[i, j| > t then
11: cli, j] «— t;

12: end if

13: end for

14: end for

15: end for

16: return c|1,n|;

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 6

(©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 26, 2004

Also Record the Splitting Points

Use s|t, j] to store the optimal splitting point k:
MCM-Order(p, n)

1: for:=1ton do
2. cli,i] < 0// base cases

3: end for

4: forl=1ton —1do

5 fori«—1ton—1[do

6 j «— 1+ [; // not really needed, just to be clearer
7 cli, j] « oo;

8 fork—i1toj—1do

9 t — cli, k| +clk + 1,] + pi—1Dkpj;

10: if c[i, j| > t then
11: cli, j] < t;

12: sli, j| < k;

13: end if

14: end for

15: end for

16: end for

17: return c;

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 7

(©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 26, 2004

The Actual MCM

Knowing the splitting points, it i1s now easy:

Matrix-Chain-Multiply (A, 1, 7, s)
1: if § > ¢ then
2 ksl jl;
3: X « Matrix-Chain-Multiply (A, i, k, s);
4: Y « Matrix-Chain-Multiply(A, k + 1, j, s);
5. return XY,
6: else

7

8

: return A;; //t = j in this case
. end if

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 8

(©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 26, 2004

Analysis of MCM’s Algorithm

e We also are concerned about space, not only time
e Space needed is O(n?) for the tables c and s

e Suppose the inner-most loop takes about 1 time unit, then

the running time 1s

n—1 n—I n—1
ZZZ = Zl(n—l)
IR
_ nn_(’n— 1)__ (n— 1)”(2(72,— 1)_|_6)
2 6
- o)

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 9

(©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 26, 2004

Memoization

Memoized-MCM-Order(p, n)

1: fori «— 1tondo
2. cli, j] «— o0

3: end for

4: Lookup(p, 1,n);

Lookup(p, i, j)
1: if c[2, j] < oo then
return c|, j|; // it’s calculated!! Time saved right here
. end if
. if 2 = 7 then

. else
fork—itoj—1do

2
3
4
5. cli,i] « 0;
6
7
8 t < Lookup(p, i, k)+ Lookup(p, k + 1,n)+

Pi—1DPkPj;
9: if t < cl[i, j] then
10: cli,j| «— t; sli, 4] < k;
11: end if
12: end for
13: end if

14: return cli, j|;

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 10

(©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 26, 2004

Longest Common Subsequence (LCS) Problem

X =t h 1 s 1 s ¢ r a z Yy
/Z = h 1 C a z 'y

Z 1s a subsequence of X.

X =t h 1 s i s ¢ r a z Yy

Y = b u t i n t e r e s t 1 n

So, Z = |t, i, s,1] is a common subsequence of X and Y

Given 2 sequences X and Y of lengths m and n, respectively

Find a common subsequence Z of longest length

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 11

(©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 26, 2004

Analyzing the LCS Problem

e Somehow, find a recursive formula for the objective
function

e Suppose X = [xl,...,xm],Y — [yla'“vyn]

Key observation: optimal substructure
Theorem 1. Let LCS(X,Y) be the length of a LCS of X and'Y

o If x,, = yYn, then
LCS(X,)Y)=1+LCS([x1,---sTm-1], Y1, Yn—1])
o Ifx,, # Yy, then either
LCS(X,Y) =LCS([x1,...,Zm], [Y1, - Yn-1])
or
LCS(X,Y)=LCS([x1,-.sTm-1), [Y1s---+Yn))

In other words, LCS(X,Y) is the max of the two in this

case.

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 12

(©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 26, 2004

Conclusions From the Theorem

e For0<:<m,0< 5 <n,let

Xz' = [371,...,5171']
Y; =y,

o Ifx,, =y, =2,thena LCS Z of X and Y can be found
by computing a LCS Z’ of X,,,_1 and Y,,_1, and append z
at the end, i.e. Z = [Z/, z].

o If x,, # y,,thenlet Z; be aLCS of X,,,_1 and Y,,, Z> be
alLCSof X,,,andY,,_;.
Z 1s then either Z; or Z5, whichever is longer.

o Letcli,j| = LCS[X;,Y;], then

’

0 ifsorjis0
cli,jl=<1+c¢cli—1,5—1] if ©; =y,
\max(c[i —1,j],¢li,j —1]) ifx; #y;

Hence, c|i, j] in general depends on one of three entries:
the North entry c[i — 1, j|, the West entry c|i, 7 — 1], and
the NorthWest entry cli — 1,5 — 1].

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 13

(©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 26, 2004

Computing LCS length

We maintain a cost table c[0..m, 0..n] of optimal lengths, and a
“direction” table d[1..m, 1..n] of {N, W, NW } recording
where c[i, j] comes from.

LCS-Length(X,Y, m,n)
1: c[i,0] < Oforeachi=0,...,m;
2: ¢|0,j] « Oforeachj =0,...,n;
3: fori: «— 1tomdo
4. forj «— ltondo

5 if z; = y; then

6: cli,jl —1+cli — 1,7 —1];
7: dli,j| — NW,;

8 else

9 if c[i — 1, j] > c[i, j — 1] then
10: cli, 7] < cli — 1,7];

11: dfi, j| < N;

12: else

13: cli, j| < cli,j —1];

14: dli, j] < W,

15: end if

16: end if

17: end for

18: end for

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 14

(©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 26, 2004

Constructing an LCS

Suppose Z is a global array.
(The first call is Construct-LCS(Z, m,n).)

Construct-LCS(Z, 1, j)
1: ifi =0 or j = 0 then

2 return /;

3: else

4.k« c[i,]];

5. ifdli,j| = NW then

6: Z k] < x;; // which is the same as Y[/]
7 Construct-LCS(Z,7 — 1,5 — 1);
8 end if

o ifdli,j] = N then

10 Construct-LCS(Z,i — 1, j);

11: endif

12: if d[i, j] = W then

13: Construct-LCS(Z,i,j — 1);

14: end if

15: end if

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 15

(©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 26, 2004

Space and Time Analysis

e Filling out the ¢ and d tables take © (mn)-time, which is
also the running time of LCS-Length

e The space requirement is also O (mn)-time
e Construct-LCS takes O(m + n) (why?)
Note:
e We don’t really need the direction table (why?)

e Memoizing this is quite simple too (homework)

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 16

(©Hung Q. Ngo, Computer Science and Engineering, SUNY at Buffalo October 26, 2004

A General Look at Dynamic Programming

Step 1
e Identify the sub-problems
e The sub-problems of sub-problems are overlapping

e The total number of sub-problems is a polynomial in input
size (why do we need this?)

Step 2
e Write a recurrence for the objective function
e Carefully identify the base cases

Step 3

e Investigate the recurrence to see how to fill out the cost
table in a “bottom-up” fashion

e Design appropriate data structure(s) for constructing an
optimal solution later on

Step 4 Pseudo Code
Step 5 Analysis of time and space

CSE 431/531 Lecture Notes Algorithms Analysis and Design Page 17

